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AN ALTERNATIVE EQUATION FOR GENERALIZED
POLYNOMIALS OF DEGREE TWO

Zoltán Boros , Rayene Menzer

Abstract. In this paper we consider a generalized polynomial f : R → R of
degree two that satisfies the additional equation f(x)f(y) = 0 for the pairs
(x, y) ∈ D, where D ⊆ R2 is given by some algebraic condition. In the partic-
ular cases when there exists a positive rational m fulfilling

D = { (x, y) ∈ R2 |x2 −my2 = 1 },

we prove that f(x) = 0 for all x ∈ R.

1. Introduction

Let R, Q, and N denote the set of all real numbers, rationals, and positive
integers, respectively.

We call a function f : R→ R additive if

f(x+ y) = f(x) + f(y)

for all x, y ∈ R. The function f is called Q-homogeneous if the equation
f(qx) = qf(x) is fulfilled by every q ∈ Q and x ∈ R. As it is well-known
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(see M. Kuczma [6, Theorem 5.2.1]), if f : R → R is additive, then f is
Q-homogeneous as well. For more information concerning these notions the
reader is referred to the monograph [6].

A function f : R → R is called quadratic if it satisfies the Jordan-von
Neumann functional equation:

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ R. In what follows we will apply the fact that f is quadratic if
and only if there exists a bi-additive and symmetric functional B : R×R→ R
such that f(x) = B(x, x) for every x ∈ R (see e.g. J. Aczél, J. Dhombres [1,
Chapter 11, Proposition 1]). Quadratic functions are also called generalized
monomials of degree 2. Further, additive functions are generalized monomials
of degree 1 and real constants are generalized monomials of degree 0. Gener-
alized polynomials are defined as sums of generalized monomials of respective
degrees. For more facts on generalized polynomials the reader is referred to [6,
Chapter 15.9] and L. Székelyhidi [8]. In particular, we call a function f : R→ R
generalized polynomial of degree two if we can write it with the following de-
composition f(x) = g(x) + a(x) + b for every x ∈ R, where g : R → R is
a quadratic function, a : R → R is additive and b ∈ R. Here we do not ex-
clude the particular cases when g(x) = 0 or a(x) = 0 identically, or b = 0.
Therefore, we consider constant functions and additive mappings (as well as
their sums) as particular generalized polynomials of degree two.

For any positive rational m we define the following sets:

S0 = {(x, y) ∈ R2 |xy = 1},

S1,m = {(x, y) ∈ R2 |x2 −my2 = 1},

S2 = {(x, y) ∈ R2 |x2 + y2 = 1}.

Z. Kominek, L. Reich and J. Schwaiger [5] investigated additive real func-
tions that satisfy the additional equation

(1) f(x)f(y) = 0

for every (x, y) ∈ D, considering various subsets D of R2. In several cases they
obtained f(x) = 0 for every x ∈ R. Their result for D = S2 was extended
by Z. Boros and W. Fechner [2] to the situation when f is a generalized
polynomial. On the other hand, P. Kutas [7] has recently established the
existence of a non-zero additive function f : R→ R fulfilling (1) for all (x, y) ∈
S0. The case of bounded f(x)f(y) on S2 was investigated by these authors [3]
for particular generalized polynomials of degree two. In a recent paper [4]
the present authors obtained analogous results, including one for D = S1,m,
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assuming that f is a generalized monomial. However, it remained an open
problem whether one can extend the latter result to the more general case
when f is a generalized polynomial of an arbitrary degree. The purpose of the
present paper is to prove such a theorem when f is a generalized polynomial
of degree two.

2. Main results

Now we can establish our main theorems.

Theorem 2.1. Let m denote a positive rational. Suppose that f : R → R
is a generalized polynomial of degree two and f(x)f(y) = 0 for all solutions
of the equation x2 −my2 = 1. Then f is identically equal to zero.

Proof. Given a generalized polynomial f of degree two, we can associate
a quadratic function g : R→ R, an additive function a : R→ R and a constant
b ∈ R with f such that

(2) f(x) = g(x) + a(x) + b

for every x ∈ R. Moreover, there exists a symmetric and bi-additive functional
G : R× R→ R such that g(x) = G(x, x) for every x ∈ R.

Now, let x ∈ R be such that x ≥ 1. Then there exists 0 ≤ y ∈ R such that
x2−my2 = 1. If α, β are rational numbers such that α2−mβ2 = 1, it is easy
to verify the equality

(αx+ βmy)2 −m(βx+ αy)2 = 1 ,

hence our assumptions on f imply

(3) f(αx+ βmy)f(βx+ αy) = 0 .

Considering the decomposition (2) of f we can calculate that

f(αx+ βmy) = g(αx+ βmy) + a(αx+ βmy) + b

= α2g(x) + (βm)2g(y) + 2αβmG(x, y) + αa(x) + βma(y) + b

and

f(βx+ αy) = g(βx+ αy) + a(βx+ αy) + b

= β2g(x) + α2g(y) + 2αβG(x, y) + βa(x) + αa(y) + b .
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Due to equation (3), for every pair of rationals (α, β) fulfilling α2−mβ2=1,
at least one of the foregoing expressions is equal to zero.

What is more, we can find infinitely many distinct pairs (αj , βj) such that
α2
j −mβ2

j = 1 and both αj and βj are rationals. Namely, let

αj =
mj2 + 1

mj2 − 1
and βj =

2j

mj2 − 1

for j ∈ N such that mj2 6= 1.
Thus, for every j ∈ Nm

.
= N \ {1/

√
m}, we have either

0 =

(
mj2 + 1

mj2 − 1

)2

g(x) +

(
2jm

mj2 − 1

)2

g(y) +
4jm(mj2 + 1)

(mj2 − 1)2
G(x, y)

+
mj2 + 1

mj2 − 1
a(x) +

2jm

mj2 − 1
a(y) + b

or

0 =

(
2j

mj2 − 1

)2

g(x) +

(
mj2 + 1

mj2 − 1

)2

g(y) +
4j(mj2 + 1)

(mj2 − 1)2
G(x, y)

+
mj2 + 1

mj2 − 1
a(y) +

2j

mj2 − 1
a(x) + b.

Multiplying both equations by (mj2 − 1)2 and introducing the functions

P (j) = j4m2(g(x) + a(x) + b) + j3m2(4G(x, y) + 2a(y))

+ j2(2mg(x) + 4m2g(y)− 2mb)

+ j(4mG(x, y)− 2ma(y)) + g(x)− a(x) + b

and

P̃ (j) = j4m2(g(y) + a(y) + b) + j3m(4G(x, y) + 2a(x))

+ j2(4g(x) + 2mg(y)− 2mb)

+ j(4G(x, y)− 2a(x)) + g(y)− a(y) + b,

we have P (j) = 0 or P̃ (j) = 0 for each integer j ∈ Nm. Hence either P or P̃
has infinitely many zeros. On the other hand, both P and P̃ are polynomials
of degree not greater than 4. Therefore, one of them has to be identically
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equal to 0. So either each coefficient of P equals zero, or each coefficient of P̃
equals zero. In the first case, considering the coefficient of j4, we obtain

m2(g(x) + a(x) + b) = 0,

which obviously implies

f(x) = g(x) + a(x) + b = 0.

Now let us consider the second case, when we obtain the following system of
equations:

g(y) + a(y) + b = 0,(4)

4G(x, y) + 2a(x) = 0,(5)

4g(x) + 2mg(y)− 2mb = 0,(6)

4G(x, y)− 2a(x) = 0,(7)

g(y)− a(y) + b = 0.(8)

By summing (4) and (8) we get g(y) = −b. Then substituting the value of g(y)
in (6) we get g(x) = mb. Finally, by summing (5) and (7) we get G(x, y) = 0
and a(x) = 0.

We have thus proved, for an arbitrary real number x ≥ 1, that either
f(x) = 0 or we have a(x) = 0 and g(x) = mb.

Suppose that f(x0) 6= 0 for some x0 ≥ 1. Then we must have a(x0) = 0,
g(x0) = mb and

0 6= f(x0) = g(x0) + a(x0) + b = mb+ 0 + b = (m+ 1)b,

which implies b 6= 0. Then we also have 2x0 ≥ 2 (and thus 2x0 ≥ 1),

g(2x0) = 4g(x0) = 4mb 6= mb

and

f(2x0) = g(2x0) + a(2x0) + b = 4g(x0) + 2a(x0) + b

= 4mb+ 0 + b = (4m+ 1)b 6= 0

since b 6= 0 and m 6= −1
4 (as m is positive). So our conclusions for 2x0 do not

satisfy our previous results for all x ≥ 1. This contradiction shows that such
an element x0 does not exist.
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We have thus proved f(x) = 0 for every real number x ≥ 1. Applying [4,
Lemma 2.1], we obtain that f(x) = 0 for all x ∈ R. �

Corollary 2.2. Let a and b denote positive real numbers such that a2

b2

is rational. Suppose that f : R → R is a generalized polynomial of degree two
and f(x)f(y) = 0 for all solutions of the equation x2

a2 − y2

b2 = 1. Then f is
identically equal to zero.

Proof. Let u and w be real numbers fulfilling the condition u2− a2

b2w
2=1.

Moreover, let fa(t) = f(at) for all t ∈ R. Clearly, then fa is a generalized
polynomial of degree two as well. For x = au and y = aw we have

x2

a2
− y2

b2
= u2 − a2

b2
w2 = 1,

hence our assumption yields

fa(u)fa(w) = f(au)f(aw) = f(x)f(y) = 0.

Therefore fa satisfies the assumptions in Theorem 2.1 with m = a2

b2 , hence fa
is identically equal to zero, which yields f(x) = fa(x/a) = 0 for every x ∈ R
as well. �
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