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AN ALTERNATIVE EQUATION FOR GENERALIZED
POLYNOMIALS OF DEGREE TWO

ZOLTAN BOROS'®, RAYENE MENZER

Abstract. In this paper we consider a generalized polynomial f: R — R of
degree two that satisfies the additional equation f(z)f(y) = 0 for the pairs
(z,y) € D, where D C R? is given by some algebraic condition. In the partic-
ular cases when there exists a positive rational m fulfilling

D= {(z,y) € R?|2® —my® =1},

we prove that f(z) =0 for all z € R.

1. Introduction

Let R, Q, and N denote the set of all real numbers, rationals, and positive
integers, respectively.
We call a function f: R — R additive if

flx+y) = f(=)+ fy)

for all z,y € R. The function f is called Q-homogeneous if the equation
f(gz) = qf(x) is fulfilled by every ¢ € Q and z € R. As it is well-known
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(see M. Kuczma [0, Theorem 5.2.1]), if f: R — R is additive, then f is
Q-homogeneous as well. For more information concerning these notions the
reader is referred to the monograph [6].

A function f: R — R is called quadratic if it satisfies the Jordan-von
Neumann functional equation:

flx+y)+ flz—y)=2f(x)+2f(y)

for all z,y € R. In what follows we will apply the fact that f is quadratic if
and only if there exists a bi-additive and symmetric functional B: RxR — R
such that f(x) = B(x,z) for every x € R (see e.g. J. Aczél, J. Dhombres [1]
Chapter 11, Proposition 1]). Quadratic functions are also called generalized
monomials of degree 2. Further, additive functions are generalized monomials
of degree 1 and real constants are generalized monomials of degree 0. Gener-
alized polynomials are defined as sums of generalized monomials of respective
degrees. For more facts on generalized polynomials the reader is referred to [6]
Chapter 15.9] and L. Székelyhidi [8]. In particular, we call a function f: R — R
generalized polynomial of degree two if we can write it with the following de-
composition f(z) = g(x) + a(z) + b for every x € R, where g: R — R is
a quadratic function, a: R — R is additive and b € R. Here we do not ex-
clude the particular cases when g(x) = 0 or a(x) = 0 identically, or b = 0.
Therefore, we consider constant functions and additive mappings (as well as
their sums) as particular generalized polynomials of degree two.
For any positive rational m we define the following sets:

So ={(z,y) € R?*|zy = 1},
Stm = {(z,y) € R*|2* — my® =1},
Sy ={(z,y) e R*|2” +y* = 1}.

Z. Kominek, L. Reich and J. Schwaiger [5] investigated additive real func-
tions that satisfy the additional equation

(1) f@)f(y) =0

for every (x,y) € D, considering various subsets D of R2. In several cases they
obtained f(x) = 0 for every x € R. Their result for D = Sy was extended
by Z. Boros and W. Fechner [2] to the situation when f is a generalized
polynomial. On the other hand, P. Kutas [7] has recently established the
existence of a non-zero additive function f: R — R fulfilling (1) for all (x,y) €
So. The case of bounded f(x)f(y) on Se was investigated by these authors [3]
for particular generalized polynomials of degree two. In a recent paper [4]
the present authors obtained analogous results, including one for D = S,
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assuming that f is a generalized monomial. However, it remained an open
problem whether one can extend the latter result to the more general case
when f is a generalized polynomial of an arbitrary degree. The purpose of the
present paper is to prove such a theorem when f is a generalized polynomial
of degree two.

2. Main results

Now we can establish our main theorems.

THEOREM 2.1. Let m denote a positive rational. Suppose that f: R — R
is a generalized polynomial of degree two and f(x)f(y) = 0 for all solutions
of the equation x> — my? = 1. Then f is identically equal to zero.

PROOF. Given a generalized polynomial f of degree two, we can associate
a quadratic function g: R — R, an additive function a: R — R and a constant
b € R with f such that

(2) f(@) = g(x) +a(z) + b

for every x € R. Moreover, there exists a symmetric and bi-additive functional
G: R x R — R such that g(z) = G(z, ) for every z € R.

Now, let x € R be such that z > 1. Then there exists 0 < y € R such that

2?2 —my? = 1. If o, B are rational numbers such that a? —mj3? = 1, it is easy

to verify the equality
(az + fmy)? —m(Bz +ay)® =1,
hence our assumptions on f imply
3) flaz + pmy) f(Bz + ay) = 0.
Considering the decomposition of f we can calculate that
flaz + Bmy) = g(ax + fmy) + alazx + fmy) + b
= a?g(z) + (Bm)*g(y) + 2a6mG(z,y) + ca(x) + fma(y) + b
and

f(Br + ay) = g(Br + ay) +a(fr +ay) +b

= B%g(z) + o®g(y) + 2a8G(z,y) + Ba(z) + aaly) +b.
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Due to equation , for every pair of rationals (a, 3) fulfilling a?—mj3? =1,
at least one of the foregoing expressions is equal to zero.

What is more, we can find infinitely many distinct pairs (¢, §;) such that
a? — mﬁ? =1 and both a; and j3; are rationals. Namely, let
_ %
- myj2 -1

for j € N such that mj? # 1.
Thus, for every j € N, = N\ {1/y/m}, we have either

0= (mjz“>29(w) + (Q‘jm)Qg(y) + MG(%Z/)

my2 —1 mj2 —1 (mj% —1)2
.2 .

mj<+1 2im

LA _AJm b

mj2 — 1a(a:) + mj2 — 1a(y) +

or

0= (E) s+ (mjz“fg(y) P U D g )

mj2—1 mj2 —1 (mj? —1)2
.2 .
mj<+1 27
b.
i la(y) + = 1a(x) +

Multiplying both equations by (mj? — 1)? and introducing the functions
P(j) = j'm?(g(x) + a(z) + b) + j*m* (4G (z,y) + 2a(y))
+5%(2mg(x) + 4m®g(y) — 2mb)
+j(4mG(z, y) — 2ma(y)) + g(z) — a(z) + b
and
P(j) = j*m*(g(y) + a(y) +b) + j*m(4G(z, y) + 2a(z))
+5°(4g(x) + 2mg(y) — 2mb)
+ (4G (@, y) — 2a(x)) + g(y) — aly) +,

we have P(j) = 0 or P(j) = 0 for each integer j € N,,,. Hence either P or P
has infinitely many zeros. On the other hand, both P and P are polynomials
of degree not greater than 4. Therefore, one of them has to be identically
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equal to 0. So either each coefficient of P equals zero, or each coefficient of P
equals zero. In the first case, considering the coefficient of j4, we obtain

m?(g(z) + a(z) +b) =0,
which obviously implies
f(xz) =g(x) +a(x)+b=0.

Now let us consider the second case, when we obtain the following system of
equations:

(4) 9(y) +aly) +b=0,
(5) 4G(z,y) + 2a(x) = 0,
(6) 4g(x) + 2mg(y) — 2mb = 0,
(7) AG(z,y) — 2a(x) = 0,
(8) 9(y) —aly) +b=0.

By summing (4) and (8]) we get g(y) = —b. Then substituting the value of g(y)
in @ we get g(z) = mb. Finally, by summing and we get G(z,y) =0
and a(x) = 0.

We have thus proved, for an arbitrary real number x > 1, that either
f(z) =0 or we have a(z) = 0 and g(z) = mb.

Suppose that f(xg) # 0 for some xg > 1. Then we must have a(zg) = 0,
g(xg) = mb and

0# f(xo) = g(zo) + a(zo) +b=mb+0+b= (m+ 1)b,
which implies b # 0. Then we also have 2z¢ > 2 (and thus 2z > 1),
9(2x0) = 4g(x0) = 4mb # mb
and
f(2z0) = g(2x0) + a(2z0) + b = 4g(x0) + 2a(zo) + b
=4mb+0+b=(4dm+1)b#0
since b # 0 and m # —% (as m is positive). So our conclusions for 22y do not

satisfy our previous results for all x > 1. This contradiction shows that such
an element xy does not exist.
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We have thus proved f(xz) = 0 for every real number x > 1. Applying [4]
Lemma 2.1], we obtain that f(z) =0 for all x € R. O

COROLLARY 2.2. Let a and b denote positive real numbers such that Z—j
is rational. Suppose that f: R — R is a generalized polynomial of degree two

and f(z)f(y) = 0 for all solutions of the equation ﬁ—z — %—j = 1. Then f is
identically equal to zero.

PROOF. Let u and w be real numbers fulfilling the condition u? — ‘;—;wz =1.

Moreover, let f,(t) = f(at) for all t € R. Clearly, then f, is a generalized
polynomial of degree two as well. For x = au and y = aw we have

2 2 2
@y e @
a? b2 b2 ’

hence our assumption yields
fa(u)fa(w) = f(au) f(aw) = f(z)f(y) = 0.

Therefore f, satisfies the assumptions in Theorem with m = g—;, hence f,
is identically equal to zero, which yields f(z) = fo(z/a) = 0 for every x € R
as well. O
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