NEW PEXIDERIZATIONS OF DRYGAS' FUNCTIONAL EQUATION ON ABELIAN SEMIGROUPS

Youssef Aissi ${ }^{(0)}$, Driss Zeglami

Abstract

Let $(S,+)$ be an abelian semigroup, let $(H,+)$ be an abelian group which is uniquely 2 -divisible, and let φ be an endomorphism of S. We find the solutions $f, h: S \rightarrow H$ of each of the functional equations $$
\begin{aligned} & f(x+y)+f(x+\varphi(y))=h(x)+f(y)+f \circ \varphi(y), \quad x, y \in S, \\ & f(x+y)+f(x+\varphi(y))=h(x)+2 f(y), \quad x, y \in S, \end{aligned}
$$

in terms of additive and bi-additive maps. Moreover, as applications, we determine the solutions of some related functional equations.

1. Introduction

Throughout this paper, let $(S,+)$ be an abelian semigroup (a set equipped with an associative composition rule $(x, y) \mapsto x+y), \varphi: S \rightarrow S$ be an endomorphism of S. Let $(H,+)$ denote an abelian group which is uniquely 2-divisible, i.e., for any $h \in H$ the equation $2 x=h$ has exactly one solution $x \in H$.

Received: 20.10.2022. Accepted: 10.08.2023. Published online: 29.08.2023.
(2020) Mathematics Subject Classification: 39B52.

Key words and phrases: Pexider, Drygas functional equation, quadratic, symmetric bi-additive function, additive function, semigroup, endomorphism.

This article concerns primarily the following functional equations

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=h(x)+f(y)+f \circ \varphi(y), \quad x, y \in S \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=h(x)+2 f(y), \quad x, y \in S \tag{1.2}
\end{equation*}
$$

where $f, h: S \rightarrow H$ are the unknown functions.
Equations (1.1) and (1.2) contain as special cases the Drygas functional equation

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=2 f(x)+f(y)+f \circ \varphi(y), \quad x, y \in S \tag{1.3}
\end{equation*}
$$

and the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=2 f(x)+2 f(y), \quad x, y \in S \tag{1.4}
\end{equation*}
$$

Equations (1.3) and (1.4 have been studied by a number of mathematicians. Let us mention Sabour and Kabbaj [12], Sabour [11], and Akkaoui et al. [3]. We also call attention to the paper [4] where Fadli et al. determined the solutions of 1.3) and (1.4) on semigroups under the additional condition that φ is involutive ($\varphi \circ \varphi(x)=x$ for all $x \in S$).

The monographs and the papers [1,2,5 $7,10,13,16$ have references and detailed discussions of the classical results on Drygas' and the quadratic equations.

Our main results here are the following:
(1) We determine the structure of all solutions $\{f, h\}$ of (1.1). It turns out that in this structure, additive maps, symmetric bi-additive maps and solutions of the homogeneous equation (2.1) play important role.
(2) We determine the structure of all solutions $\{f, h\}$ of 1.2$)$. Here we involve only additive maps and symmetric bi-additive maps.
(3) These results enable us to find the solutions of some related equations like (1.3), (1.4),

$$
f(x+y)+f(x+\varphi(y))=\gamma+f(y)+f \circ \varphi(y), \quad x, y \in S
$$

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=f(x)+f \circ \varphi(x)+f(y)+f \circ \varphi(y), \quad x, y \in S \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=f \circ \phi(x)+f \circ \psi(x)+2 f(y), \quad x, y \in S \tag{1.6}
\end{equation*}
$$

where $\gamma \in H$ is a constant and $\varphi, \phi, \psi: S \rightarrow S$ are endomorphisms.

2. Set up, notation and terminology

The following notation and terminology will be used throughout the paper unless explicitly stated otherwise.
S is an abelian semigroup, $(H,+)$ denotes an abelian group which is uniquely 2-divisible, and the map $\varphi: S \rightarrow S$ is an endomorphism of S. By φ^{2} we mean $\varphi \circ \varphi$.

A function $a: S \rightarrow H$ is said to be additive if

$$
a(x+y)=a(x)+a(y) \quad \text { for all } x, y \in S
$$

A function $Q: S \times S \rightarrow H$ is bi-additive if it is additive in each variable.
By $\mathcal{N}(S, H, \varphi)$ we mean the set of the solutions $\theta: S \rightarrow H$ of the homogeneous equation

$$
\begin{equation*}
\theta(x+y)+\theta(x+\varphi(y))=0, \quad x, y \in S \tag{2.1}
\end{equation*}
$$

3. Main results

In this section, we seek the solutions of the functional equations (1.1) and (1.2) in terms of additive and symmetric, bi-additive maps and solutions of the homogeneous equation

$$
\theta(x+y)+\theta(x+\varphi(y))=0, \quad x, y \in S
$$

To form our main results (Theorems 3.4 and 3.6), we start with the following lemmas.

Lemma 3.1. Assume that the triple $f, h, k: S \rightarrow H$ is a solution of

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=h(x)+k(y), \quad x, y \in S \tag{3.1}
\end{equation*}
$$

Then $h+h \circ \varphi-2 k$ is a constant function.
Proof. Let $f, h, k: S \rightarrow H$ be a solution of (3.1). Replacing x by $\varphi(x)$ in (3.1), we obtain

$$
\begin{equation*}
f(\varphi(x)+y)+f(\varphi(x)+\varphi(y))=h \circ \varphi(x)+k(y), \quad x, y \in S \tag{3.2}
\end{equation*}
$$

If we add (3.1) and (3.2) side by side, we find that

$$
\begin{align*}
f(x+y)+f(\varphi(x)+y)+f(x & +\varphi(y))+f(\varphi(x)+\varphi(y)) \tag{3.3}\\
& =h(x)+h \circ \varphi(x)+2 k(y), \quad x, y \in S
\end{align*}
$$

The left hand side of (3.3) is invariant under interchange of x and y. Hence so is its right hand side, and this implies that $h+h \circ \varphi-2 k$ is a constant function.

Lemma 3.2. Assume that the pair $f, h: S \rightarrow H$ satisfies 1.1. Then h is a solution of Drygas' functional equation (1.3).

Proof. Let $f, h: S \rightarrow H$ be a solution of 1.1). Making the following substitutions $(x, y+z)$ and $(x, y+\varphi(z))$ in (1.1), we get respectively

$$
\begin{equation*}
f(x+y+z)+f(x+\varphi(y)+\varphi(z))=h(x)+f(y+z)+f(\varphi(y)+\varphi(z)) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
f(x+y+\varphi(z))+f(x+\varphi(y) & \left.+\varphi^{2}(z)\right) \tag{3.5}\\
& =h(x)+f(y+\varphi(z))+f\left(\varphi(y)+\varphi^{2}(z)\right)
\end{align*}
$$

for all $x, y, z \in S$. Adding (3.4) and (3.5) side by side, we get by using (1.1) that

$$
\begin{aligned}
h(x+y)+f(z) & +2 f \circ \varphi(z)+h(x+\varphi(y))+f \circ \varphi^{2}(z) \\
& =2 h(x)+h(y)+h \circ \varphi(y)+f(z)+2 f \circ \varphi(z)+f \circ \varphi^{2}(z)
\end{aligned}
$$

for all $x, y, z \in S$, and hence h satisfies 1.3).
Lemma 3.3. Assume that the pair $f, h: S \rightarrow H$ satisfies 1.2 . Then h is a solution of the quadratic functional equation (1.4).

Proof. Let $f, h: S \rightarrow H$ be a solution of (1.2). Making the substitutions $(x, y+z)$ and $(x, y+\varphi(z))$ in 1.2$)$, we get respectively

$$
\begin{equation*}
f(x+y+z)+f(x+\varphi(y)+\varphi(z))=h(x)+2 f(y+z), \quad x, y, z \in S \tag{3.6}
\end{equation*}
$$ and

$$
\begin{equation*}
f(x+y+\varphi(z))+f\left(x+\varphi(y)+\varphi^{2}(z)\right)=h(x)+2 f(y+\varphi(z)), \quad x, y, z \in S \tag{3.7}
\end{equation*}
$$

Adding (3.6) and (3.7) side by side, we get by using (1.2) that

$$
h(x+y)+2 f(z)+h(x+\varphi(y))+2 f \circ \varphi(z)=2 h(x)+2 h(y)+4 f(z)
$$

for all $x, y, z \in S$. This yields that

$$
\begin{equation*}
h(x+y)+h(x+\varphi(y))=2 h(x)+2 h(y)+2 f(z)-2 f \circ \varphi(z), \quad x, y, z \in S \tag{3.8}
\end{equation*}
$$

Fix $z \in S$ and let α be the constant defined by $\alpha:=f(z)-f \circ \varphi(z)$. If we add 2α to the two sides of (3.8), we get

$$
(h+\alpha)(x+y)+(h+\alpha)(x+\varphi(y))=2(h+\alpha)(x)+2(h+\alpha)(y), \quad x, y \in S
$$

So, according to [12, Lemma 4.1] we infer that $h \circ \varphi=h$. Applying Lemma 3.1 with $k=2 f$, we conclude that $2 h-4 f$ is a constant, say $2 c$. Since H is uniquely 2-divisible, we deduce that

$$
\begin{equation*}
h(x)-2 f(x)=c \quad \text { for all } x \in S \tag{3.9}
\end{equation*}
$$

From (3.9), the fact that $h \circ \varphi=h$, and that H is uniquely 2-divisible, we conclude that $f \circ \varphi=f$. Hence (3.8) yields that h is a solution of the quadratic functional equation (1.4).

Now, we are ready to state our first main result.
Theorem 3.4. The solutions $f, h: S \rightarrow H$ of (1.1) are the functions of the following form

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\theta(x)+\alpha \quad \text { and } \quad h(x)=2 Q(x, x)+2 A(x) \tag{3.10}
\end{equation*}
$$

for all $x \in S$, where $\alpha \in H$ is a constant, $A: S \rightarrow H$ is an additive map, $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=$ $-Q(x, y)$ for all $x, y \in S$, and

$$
\begin{equation*}
\theta \in \mathcal{N}(S, H, \varphi) \quad \text { is such that } \quad \theta \circ \varphi=-\theta \tag{3.11}
\end{equation*}
$$

Proof. It is easy to check that any pair of functions of the form above satisfies (1.1). Conversely, assume that the pair $f, h: S \rightarrow H$ is a solution of (1.1). By Lemma 3.2, h satisfies (1.3), then we deduce from [11, Theorem 3.2] that

$$
h(x)=2 Q(x, x)+2 A(x), \quad x \in S
$$

where $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map satisfying $Q(x, \varphi(y))=$ $-Q(x, y)$ for all $x, y \in S$, and where $A: S \rightarrow H$ is an additive map. By using

Lemma 3.1, with $k=f+f \circ \varphi$, we get that $h+h \circ \varphi-2 f-2 f \circ \varphi$ is a constant, say -4α. Then,

$$
\begin{equation*}
2 f+2 f \circ \varphi=h+h \circ \varphi+4 \alpha . \tag{3.12}
\end{equation*}
$$

Multiplying (1.1) by 2 and using (3.12), we get
(3.13) $2 f(x+y)+2 f(x+\varphi(y))=2 h(x)+h(y)+h \circ \varphi(y)+4 \alpha, \quad x, y \in S$.

According to Lemma 3.2 , we know that h satisfies (1.3). So, if we subtract (3.13) from (1.3), we obtain

$$
(2 f-h)(x+y)+(2 f-h)(x+\varphi(y))=4 \alpha, \quad x, y \in S
$$

which means that

$$
(2 f-h-2 \alpha)(x+y)+(2 f-h-2 \alpha)(x+\varphi(y))=0, \quad x, y \in S
$$

Hence, there exists $2 \theta \in \mathcal{N}(S, H, \varphi)$ such that

$$
\begin{aligned}
2 f(x) & =h(x)+2 \theta+2 \alpha \\
& =2 Q(x, x)+2 A(x)+2 \theta(x)+2 \alpha, \quad x \in S
\end{aligned}
$$

Since H is uniquely 2 -divisible, we obtain

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\theta(x)+\alpha, \quad x \in S \tag{3.14}
\end{equation*}
$$

Furthermore, the symmetricity of Q and the fact that $Q(x, \varphi(y))=-Q(x, y)$ imply that

$$
Q(\varphi(x), \varphi(x))=Q(x, x), \quad x \in S
$$

By using (3.12) and (3.14), we infer that

$$
\begin{aligned}
4 Q(x, x)+2 A(x)+2 A \circ \varphi(x)+2 \theta & (x)+2 \theta \circ \varphi(x)+4 \alpha \\
& =4 Q(x, x)+2 A(x)+2 A \circ \varphi(x)+4 \alpha .
\end{aligned}
$$

This yields that $2 \theta \circ \varphi+2 \theta=0$ and so $\theta \circ \varphi=-\theta$.

If $S=\{x+y, x, y \in S\}$, i.e., for all $z \in S$ there exist $x, y \in S$ such that $z=x+y$, then the solutions $f, h: S \rightarrow H$ of (1.1) read as follows.

Proposition 3.5. Let S be an abelian semigroup such that $S=\{x+$ $y, x, y \in S\}$. The general solution $f, h: S \rightarrow H$ of (1.1) is given by

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\alpha \quad \text { and } \quad h(x)=2 Q(x, x)+2 A(x) \tag{3.15}
\end{equation*}
$$

for all $x \in S$, where $\alpha \in H$ is a constant, $A: S \rightarrow H$ is an additive map, and where $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=$ $-Q(x, y)$ for all $x, y \in S$.

Moreover, if S and H are topological semigroups and f is continuous then so are the maps A and Q in (3.15).

Proof. Let $f, h: S \rightarrow H$ be a solution of (1.1). From Theorem 3.4 the pair f, h has the form (3.10). Based on the condition (3.11), making the substitutions $(x+y, z),(x+\varphi(z), y)$ and $(x, y+z)$ in 2.1), we get respectively that

$$
\begin{gathered}
\theta(x+y+z)+\theta(x+y+\varphi(z))=0 \\
\theta(x+\varphi(z)+y)+\theta(x+\varphi(z)+\varphi(y))=0
\end{gathered}
$$

and

$$
\theta(x+y+z)+\theta(x+\varphi(y)+\varphi(z))=0
$$

for all $x, y, z \in S$. Subtracting the middle identity from the sum of the two others, we obtain

$$
2 \theta(x+y+z)=0 \quad \text { for all } x, y, z \in S
$$

Applying the assumption on S twice, we obtain that $2 \theta=0$. So, the desired result follows from the fact that H is uniquely 2 -divisible.

The converse statement is shown elementarily.
For the continuity statement it is enough to see, from 3.15), that $2 Q(x, x)=$ $f(2 x)-2 f(x)+\alpha$ and $2 A(x)=4 f(x)-f(2 x)-3 \alpha$ for all $x \in S$.

Now we characterize the solutions of Eq. 1.2), that is

$$
f(x+y)+f(x+\varphi(y))=h(x)+2 f(y), \quad x, y \in S
$$

Theorem 3.6. The solutions $f, h: S \rightarrow H$ of (1.2) are the functions of the form

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\alpha \quad \text { and } \quad h(x)=2 Q(x, x)+2 A(x) \tag{3.16}
\end{equation*}
$$

for all $x \in S$, where $\alpha \in H$ is a constant, $A: S \rightarrow H$ is an additive function such that $A \circ \varphi=A$, and where $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$.

Moreover, if S and H are topological semigroups and f is continuous then so are the maps A and Q in (3.16).

Proof. Let $f, h: S \rightarrow H$ be a solution of (1.2). By Lemma 3.2, h is a solution of (1.4). Then, from [12, Theorem 4.2] we infer that

$$
h(x)=2 Q(x, x)+2 A(x), \quad x \in S
$$

where $A: S \rightarrow H$ is an additive map such that $A \circ \varphi=A$, and $Q: S \times S \rightarrow H$ is a symmetric bi-additive map such that $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$. Hence h has the desired form. By Lemma 3.1, we get, with $k=2 f$, that $h+h \circ \varphi-4 f$ is a constant, say -4α. Then,

$$
\begin{aligned}
4 f(x) & =h(x)+h \circ \varphi(x)+4 \alpha \\
& =2 Q(x, x)+2 A(x)+2 Q(\varphi(x), \varphi(x))+2 A \circ \varphi(x)+4 \alpha \\
& =4 Q(x, x)+4 A(x)+4 \alpha, \quad x \in S
\end{aligned}
$$

Since H is uniquely 2-divisible, we get

$$
f(x)=Q(x, x)+A(x)+\alpha, \quad x \in S
$$

The proof of the converse implication is a simple calculation that we omit. The continuity statement can be derived in a similar way as in the proof of Proposition 3.5 .

Example 3.7. Let $S:=\left(\mathbb{R}^{2},+\right), H:=(\mathbb{C},+)$ and let φ be the endomorphism of S defined by $\varphi(x)=\left(x_{2},-x_{1}\right)$ for all $x:=\left(x_{1}, x_{2}\right) \in S$. It is clear that S is an abelian semigroup satisfying $S=\{x+y, x, y \in S\}$ and that φ is not involutive. We solve (1.1] on S. From [15, Lemma 2.14], the continuous bi-additive and symmetric maps $Q: S \times S \rightarrow \mathbb{C}$ are

$$
Q(x, y)=\lambda x_{1} y_{1}+\beta x_{2} y_{2}+\gamma\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

for all $x:=\left(x_{1}, x_{2}\right), y:=\left(y_{1}, y_{2}\right) \in S$, where $\lambda, \beta, \gamma \in \mathbb{C}$. We compute that $Q(x, \varphi(y))=Q\left(\left(x_{1}, x_{2}\right),\left(y_{2},-y_{1}\right)\right)$, so $Q(x, \varphi(y))=-Q(x, y)$ if and only if

$$
(\lambda-\gamma) x_{1} y_{1}+(\beta+\gamma) x_{2} y_{2}+(\lambda+\gamma) x_{1} y_{2}+(\gamma-\beta) x_{2} y_{1}=0
$$

for all $x:=\left(x_{1}, x_{2}\right), y:=\left(y_{1}, y_{2}\right) \in S$, and in that case

$$
\lambda=\beta=\gamma=0, \quad \text { i.e. } \quad Q \equiv 0 .
$$

According to [15, Corollary 2.4], the continuous additive maps $A: S \rightarrow \mathbb{C}$ are parameterized by $a, b \in \mathbb{C}$ as follows

$$
A\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}, \quad\left(x_{1}, x_{2}\right) \in S .
$$

Hence, from Proposition 3.5, the continuous solutions $f, h: \mathbb{R}^{2} \rightarrow \mathbb{C}$ of the functional equation (1.1), namely
$f\left(x_{1}+y_{1}, x_{2}+y_{2}\right)+f\left(x_{1}+y_{2}, x_{2}-y_{1}\right)=h\left(x_{1}, x_{2}\right)+f\left(y_{1}, y_{2}\right)+f\left(y_{2},-y_{1}\right)$, for all $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$, are the functions of the form

$$
f\left(\left(x_{1}, x_{2}\right)\right)=a x_{1}+b x_{2}+\alpha, \quad h\left(\left(x_{1}, x_{2}\right)\right)=2 a x_{1}+2 b x_{2}, \quad x_{1}, x_{2} \in \mathbb{R},
$$

where $\alpha, a, b \in \mathbb{C}$.
Our second example shows that it is possible to have non-trivial solutions of (1.2) with a non-involutive endomorphism.

Example 3.8. Let $S:=\left(\mathbb{R}^{2},+\right), H:=(\mathbb{C},+)$ and let φ be the endomorphism of S defined by $\varphi(x)=\left(-x_{1}, 0\right)$ for all $x:=\left(x_{1}, x_{2}\right) \in S$. The continuous additive maps $A: S \rightarrow \mathbb{C}$ are

$$
A\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}, \quad\left(x_{1}, x_{2}\right) \in S,
$$

where $a, b \in \mathbb{C}$. We compute that $A \circ \varphi\left(x_{1}, x_{2}\right)=A\left(-x_{1}, 0\right)=-a x_{1}$, then $A \circ \varphi=A$ if and only if $a=b=0$, i.e. $A \equiv 0$.

The continuous bi-additive and symmetric maps $Q: S \times S \rightarrow \mathbb{C}$ are

$$
Q(x, y)=\lambda x_{1} y_{1}+\beta x_{2} y_{2}+\gamma\left(x_{1} y_{2}+x_{2} y_{1}\right),
$$

for all $x:=\left(x_{1}, x_{2}\right), y:=\left(y_{1}, y_{2}\right) \in S$, where $\lambda, \beta, \gamma \in \mathbb{C}$. We compute that $Q(x, \varphi(y))=Q\left(\left(x_{1}, x_{2}\right),\left(-y_{1}, 0\right)\right)$, so $Q(x, \varphi(y))=-Q(x, y)$ if and only if
$\beta=\gamma=0$, i.e. $Q(x, y)=\lambda x_{1} y_{1}$ for all $x, y \in S$. Hence, from Theorem 3.6, the continuous solutions of the functional equation (1.2), namely
$f\left(x_{1}+y_{1}, x_{2}+y_{2}\right)+f\left(x_{1}-y_{1}, x_{2}\right)=h\left(x_{1}, x_{2}\right)+2 f\left(y_{1}, y_{2}\right), \quad x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$, are the functions of the form

$$
f\left(x_{1}, x_{2}\right)=\lambda x_{1}^{2}+\alpha, \quad h\left(x_{1}, x_{2}\right)=2 \lambda x_{1}^{2}, \quad x_{1}, x_{2} \in \mathbb{R},
$$

where $\lambda, \alpha \in \mathbb{C}$.

4. Applications

Now we are in the position to express the solutions of some related functional equations to (1.1) and (1.2). In what follows, we need the following lemma.

Lemma 4.1 ([3]). Let $K: S \rightarrow H$ be such that $K(n x)=n^{2} K(x)$ for all $n=1,2, \ldots$ and $x \in S$, let $L: S \rightarrow H$ be additive, and let $C \in H$ be a constant. If

$$
K(x)+L(x)=C \quad \text { for all } x \in S
$$

then $K(x)=L(x)=C=0$ for all $x \in S$.
We start with the following corollary, which describes the solutions of Eq. (1.5), that is

$$
f(x+y)+f(x+\varphi(y))=f(x)+f \circ \varphi(x)+f(y)+f \circ \varphi(y), \quad x, y \in S
$$

Corollary 4.2. The general solution $f: S \rightarrow H$ of the functional equation (1.5) is given by

$$
f(x)=Q(x, x)+A(x)+\theta(x), \quad x \in S,
$$

where $A: S \rightarrow H$ is an additive map such that $A \circ \varphi=A, Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$, and $\theta \in \mathcal{N}(S, H, \varphi)$ is such that $\theta \circ \varphi=-\theta$.

Proof. It is elementary to check that the formula above of f defines a solution of (1.5). So, it remains to show the other direction. Let $f: S \rightarrow H$ be a solution of (1.5). By applying Theorem 3.4, with $h=f+f \circ \varphi$, we infer that there exist a constant $\alpha \in H$, a symmetric, bi-additive map $Q: S \times S \rightarrow H$ with $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$, an additive map $A: S \rightarrow H$, and a function $\theta: S \rightarrow H$ satisfying $\theta \circ \varphi=-\theta$ and $\theta \in \mathcal{N}(S, H, \varphi)$, such that

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\theta(x)+\alpha, \quad x \in S \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)+f \circ \varphi(x)=2 Q(x, x)+2 A(x), \quad x \in S \tag{4.2}
\end{equation*}
$$

If we use the symmetricity of Q and $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$, we get

$$
\begin{equation*}
f \circ \varphi(x)=Q(x, x)+A \circ \varphi(x)-\theta(x)+\alpha, \quad x \in S \tag{4.3}
\end{equation*}
$$

Hence, if we add (4.1) and (4.3) we get

$$
\begin{equation*}
f(x)+f \circ \varphi(x)=2 Q(x, x)+A(x)+A \circ \varphi(x)+2 \alpha, \quad x \in S \tag{4.4}
\end{equation*}
$$

If we subtract $(4.2$ from (4.4), we find that

$$
A(x)-A \circ \varphi(x)=2 \alpha, \quad x \in S
$$

By using the fact that H is a uniquely 2-divisible and Lemma 4.1, with $K \equiv 0$, $L \equiv A-A \circ \varphi$ and $C=2 \alpha$, we deduce that $A \circ \varphi=A$ and $\alpha=0$. These complete the proof.

Corollary 4.3 below describes the solutions of 1.3 . This result was treated by Sabour in 11.

Corollary 4.3. The solutions $f: S \rightarrow H$ of 1.3 are the functions of the form

$$
\begin{equation*}
f(x)=Q(x, x)+A(x), \quad x \in S \tag{4.5}
\end{equation*}
$$

where $A: S \rightarrow H$ is an additive map and $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$.

Proof. Applying Theorem 3.4 with $h=2 f$, we obtain

$$
\left\{\begin{align*}
f(x) & =Q(x, x)+A(x)+\theta(x)+\alpha \tag{4.6}\\
2 f(x) & =2 Q(x, x)+2 A(x), \quad x \in S
\end{align*}\right.
$$

where $\alpha \in H$ is a constant, $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S, A: S \rightarrow H$ is an additive map, and where $\theta \in \mathcal{N}(S, H, \varphi)$ is such that $\theta \circ \varphi=-\theta$. Since H is uniquely 2-divisible, we deduce from (4.6) that

$$
\begin{equation*}
\theta(x)+\alpha=0 \quad \text { for all } x \in S \tag{4.7}
\end{equation*}
$$

Replacing x by $\varphi(x)$ and subtracting (4.7) from the obtained result, we get that $2 \theta \equiv 0$ and hence $\theta=\alpha=0$. So, f has the form (4.5).

Conversely, it is elementary to show that any function of the form (4.5) satisfies (1.3).

Corollary 4.4. The solutions $f: S \rightarrow H$ of the functional equation

$$
f(x+y)+f(x+\varphi(y))=f(y)+f \circ \varphi(y), \quad x, y \in S
$$

are the functions of the form

$$
f(x)=\theta(x)+\alpha, \quad x \in S
$$

where $\theta \in \mathcal{N}(S, H, \varphi)$ is such that $\theta \circ \varphi=-\theta$, and $\alpha \in H$ is a constant.
Proof. The proof follows easily from Theorem 3.4 .
REmark 4.5. The functional equation

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=\gamma+f(y)+f \circ \varphi(y), \quad x, y \in H \tag{4.8}
\end{equation*}
$$

has no solution when $\gamma \neq 0$. Indeed, assume that the functional equation (4.8) with $\gamma \neq 0$ has a solution. Applying Theorem 3.4 with $h=\gamma$, we obtain

$$
2 Q(x, x)+2 A(x)=\gamma, \quad x \in S
$$

Using Lemma 4.1 with $K(x):=2 Q(x, x), L(x):=2 A(x)$ and $C=\gamma$, we get that

$$
2 Q(x, x)=2 A(x)=\gamma=0
$$

which contradicts our assumption on γ.

As a further result of Theorem 3.6, we obtain the following corollary about the solutions of (1.6), where ψ and ϕ are two endomorphisms of S.

Corollary 4.6. The solutions $f: S \rightarrow H$ of (1.6) are the functions of the following form

$$
\begin{equation*}
f(x)=Q(x, x)+A(x), \quad x \in S \tag{4.9}
\end{equation*}
$$

where $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that

$$
Q(x, \varphi(y))=-Q(x, y) \quad \text { and } \quad Q(\psi(x), \psi(x))+Q(\phi(x), \phi(x))=2 Q(x, x),
$$

for all $x, y \in S$, and where $A: S \rightarrow H$ is an additive map such that

$$
A \circ \phi+A \circ \psi=2 A \circ \varphi=2 A
$$

Proof. Simple computations based on the properties of Q and A show that the indicated functions (4.9) are solutions of (1.6). Conversely, assume that f is a solution of 1.6 , then from Theorem 3.6 there exist an additive $\operatorname{map} A: S \rightarrow H$ with $A \circ \varphi=A$, a symmetric, bi-additive $\operatorname{map} Q: S \times S \rightarrow H$ with $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$, and a constant $\alpha \in H$ such that

$$
f(x)=Q(x, x)+A(x)+\alpha \quad \text { and } \quad f \circ \phi(x)+f \circ \psi(x)=2 Q(x, x)+2 A(x)
$$

for all $x \in S$. These imply that

$$
\begin{aligned}
& {[Q(\phi(x), \phi(x))+Q(\psi(x), \psi(x))-2 Q(x, x)]} \\
& \quad+[A \circ \phi(x)+A \circ \psi(x))-2 A(x)]=-2 \alpha
\end{aligned}
$$

for all $x \in S$. By using Lemma 3.3 and the fact that H is uniquely 2-divisible, we see that $Q(\phi(x), \phi(x))+Q(\psi(x), \psi(x))=2 Q(x, x)$ for all $x \in S, A \circ \phi+$ $A \circ \psi=2 A$, and $\alpha=0$. These complete the proof.

Remark 4.7. Any solution $f: S \rightarrow H$ of (1.6) satisfies $f \circ \phi+f \circ \psi=2 f$.
Corollary 4.8. The solutions $f: S \rightarrow H$ of the functional equation

$$
f(x+y)+f(x+\varphi(y))=2 f(y), \quad x, y \in S
$$

are the constant functions.
Proof. The proof follows immediately from Theorem 3.6.

Now we solve the inhomogeneous quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))=\Phi(x)+2 f(x)+2 f(y), \quad x, y \in S \tag{4.10}
\end{equation*}
$$

Corollary 4.9. The solutions $f, \Phi: S \rightarrow H$ of 4.10 are the functions of the form

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\alpha \quad \text { and } \quad \Phi(x)=-2 \alpha, \quad x \in S \tag{4.11}
\end{equation*}
$$

where $\alpha \in H$ is a constant, $A: S \rightarrow H$ is an additive function such that $A \circ \varphi=A$, and where $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=-Q(x, y)$ for all $x, y \in S$.

Proof. Let $f, \Phi: S \rightarrow H$ be a solution of (4.10). By applying Theorem 3.6, with $h=\Phi(x)+2 f(x)$, we get

$$
\left\{\begin{array}{l}
f(x)=Q(x, x)+A(x)+\alpha \\
\Phi(x)+2 f(x)=2 Q(x, x)+2 A(x), \quad x \in S
\end{array}\right.
$$

where $Q: S \times S \rightarrow H$ is a symmetric, bi-additive map such that $Q(x, \varphi(y))=$ $-Q(x, y)$ for all $x, y \in S, A: S \rightarrow H$ is an additive function such that $A \circ \varphi=$ A, and where $\alpha \in H$ is a constant. Simple computations show that the pair $\{f, \Phi\}$ is of the form 4.11).

The other direction is easy to check.

Assume additionally that H is a ring of characteristic different from 2. Eq. 4.10 contains as a special case the following equation

$$
\begin{equation*}
f(x+y)+f(x+\varphi(y))+f(\psi(x))=s f(x)+2 f(x)+2 f(y) \tag{4.12}
\end{equation*}
$$

for all $x, y \in S$, where φ and ψ are two endomorphisms of S and $s \in H$ is a constant. Equation (4.12) results from the standard alienation procedure starting in this case from adding the quadratic equation (1.4) and the Schröder equation $f(\psi(x))=s f(x)$ (see e.g., Kuczma [8] or Kuczma, Choczewski and Ger [9]) side by side.

Corollary 4.10. Assume additionally that H is a ring of characteristic different from 2. The solutions $f: S \rightarrow H$ of 4.12 are the functions of the form

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\alpha, \quad x \in S \tag{4.13}
\end{equation*}
$$

where $Q: S \times S \rightarrow H$ is a symmetric, bi-additive function such that

$$
\begin{equation*}
Q(x, \varphi(y))=-Q(x, y) \quad \text { and } \quad Q(\psi(x), \quad \psi(x))=s Q(x, x) \tag{4.14}
\end{equation*}
$$

for all $x, y \in S, A: S \rightarrow H$ is an additive function such that

$$
\begin{equation*}
A \circ \varphi=A \quad \text { and } \quad A \circ \psi=s A \tag{4.15}
\end{equation*}
$$

and where $\alpha \in H$ is a constant such that

$$
\begin{equation*}
s \alpha+3 \alpha=0 \tag{4.16}
\end{equation*}
$$

Proof. It is easy to check that the functions of the form (4.13) are solutions of 4.12). To see that any solution $f: S \rightarrow H$ of 4.12 has the form (4.13) we apply Corollary 4.9, and we get that

$$
\begin{equation*}
f(x)=Q(x, x)+A(x)+\alpha \quad \text { and } \quad s f(x)-f(\psi(x))=-2 \alpha \tag{4.17}
\end{equation*}
$$

for all $x \in S$. With simple computations and by using Lemma4.1 with $K(x):=$ $Q(\psi(x), \psi(x))-s Q(x, x), L(x)=A \circ \psi(x)-s A(x)$ and $C=s \alpha+3 \alpha$, we see that f has the form (4.13) with the conditions (4.14)- (4.16).

References

[1] J. Aczél and E. Vincze, Über eine gemeinsame Verallgemeinerung zweier Funktionalgleichungen von Jensen, Publ. Math. Debrecen 10 (1963), 326-344.
[2] Y. Aissi, D. Zeglami, and A. Mouzoun, A quadratic functional equation with involutive automorphisms on semigroups, Bol. Soc. Mat. Mex. (3) 28 (2022), no. 1, Paper No. 19, 13 pp.
[3] A. Akkaoui, B. Fadli, and M. El Fatini, The Drygas functional equation on abelian semigroups with endomorphisms, Results Math. 76 (2021), no. 1, Paper No. 42, 13 pp.
[4] B. Fadli, D. Zeglami, and S. Kabbaj, A variant of the quadratic functional equation on semigroups, Proyecciones 37 (2018), no. 1, 45-55.
[5] Pl. Kannappan, On inner product spaces. I, Math. Japon. 45 (1997), no. 2, 289-296.
[6] Pl. Kannappan, On quadratic functional equation, Int. J. Math. Stat. Sci. 9 (2000), no. 1, 35-60.
[7] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monogr. Math., Springer, New York, 2009.
[8] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat., 46, Polish Scientific Publishers, Warsaw, 1968.
[9] M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl., 32, Cambridge University Press, Cambridge, 1990.
[10] S. Kurepa, On the quadratic functional, Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 57-72.
[11] Kh. Sabour, A variant of Drygas' functional equation with an endomorphism, Asia Math. 4 (2020), no. 1, 63-68.
[12] Kh. Sabour and S. Kabbaj, Jensen's and the quadratic functional equations with an endomorphism, Proyecciones 36 (2017), no. 1, 187-194.
[13] P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59 (2000), no. 3, 255-261.
[14] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), no. 1-2, 144-172.
[15] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co. Pte. Ltd., Singapore, 2013.
[16] D. Yang, The quadratic functional equation on groups, Publ. Math. Debrecen 66 (2005), no. 3-4, 327-348.

Youssef Aissi, Driss Zeglami
Department of Mathematics E.N.S.A.M
Moulay ISMAIL University
B.P. 15290

Al Mansour
Meknes
Morocco
e-mail: zeglamidriss@yahoo.fr, yaissi94@gmail.com

