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NEW PEXIDERIZATIONS OF DRYGAS’ FUNCTIONAL
EQUATION ON ABELIAN SEMIGROUPS

Youssef Aissi , Driss Zeglami

Abstract. Let (S,+) be an abelian semigroup, let (H,+) be an abelian group
which is uniquely 2-divisible, and let ϕ be an endomorphism of S. We find the
solutions f, h : S → H of each of the functional equations

f(x+ y) + f(x+ ϕ(y)) = h(x) + f(y) + f ◦ ϕ(y), x, y ∈ S,

f(x+ y) + f(x+ ϕ(y)) = h(x) + 2f(y), x, y ∈ S,

in terms of additive and bi-additive maps. Moreover, as applications, we de-
termine the solutions of some related functional equations.

1. Introduction

Throughout this paper, let (S,+) be an abelian semigroup (a set equipped
with an associative composition rule (x, y) 7→ x+y), ϕ : S → S be an endomor-
phism of S. Let (H,+) denote an abelian group which is uniquely 2-divisible,
i.e., for any h ∈ H the equation 2x = h has exactly one solution x ∈ H.
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This article concerns primarily the following functional equations

(1.1) f(x+ y) + f(x+ ϕ(y)) = h(x) + f(y) + f ◦ ϕ(y), x, y ∈ S,

and

(1.2) f(x+ y) + f(x+ ϕ(y)) = h(x) + 2f(y), x, y ∈ S,

where f, h : S → H are the unknown functions.
Equations (1.1) and (1.2) contain as special cases the Drygas functional

equation

(1.3) f(x+ y) + f(x+ ϕ(y)) = 2f(x) + f(y) + f ◦ ϕ(y), x, y ∈ S,

and the quadratic functional equation

(1.4) f(x+ y) + f(x+ ϕ(y)) = 2f(x) + 2f(y), x, y ∈ S.

Equations (1.3) and (1.4) have been studied by a number of mathemati-
cians. Let us mention Sabour and Kabbaj [12], Sabour [11], and Akkaoui et
al. [3]. We also call attention to the paper [4] where Fadli et al. determined
the solutions of (1.3) and (1.4) on semigroups under the additional condition
that ϕ is involutive (ϕ ◦ ϕ(x) = x for all x ∈ S).

The monographs and the papers [1, 2, 5–7, 10, 13–16] have references and
detailed discussions of the classical results on Drygas’ and the quadratic equa-
tions.

Our main results here are the following:
(1) We determine the structure of all solutions {f, h} of (1.1). It turns out

that in this structure, additive maps, symmetric bi-additive maps and
solutions of the homogeneous equation (2.1) play important role.

(2) We determine the structure of all solutions {f, h} of (1.2). Here we involve
only additive maps and symmetric bi-additive maps.

(3) These results enable us to find the solutions of some related equations like
(1.3), (1.4),

f(x+ y) + f(x+ ϕ(y)) = γ + f(y) + f ◦ ϕ(y), x, y ∈ S,

f(x+ y) + f(x+ ϕ(y)) = f(x) + f ◦ ϕ(x) + f(y) + f ◦ ϕ(y), x, y ∈ S,(1.5)

and

(1.6) f(x+ y) + f(x+ ϕ(y)) = f ◦ φ(x) + f ◦ ψ(x) + 2f(y), x, y ∈ S,

where γ ∈ H is a constant and ϕ, φ, ψ : S → S are endomorphisms.
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2. Set up, notation and terminology

The following notation and terminology will be used throughout the paper
unless explicitly stated otherwise.

S is an abelian semigroup, (H,+) denotes an abelian group which is
uniquely 2-divisible, and the map ϕ : S → S is an endomorphism of S. By
ϕ2 we mean ϕ ◦ ϕ.

A function a : S → H is said to be additive if

a(x+ y) = a(x) + a(y) for all x, y ∈ S.

A function Q : S × S → H is bi-additive if it is additive in each variable.
By N (S,H, ϕ) we mean the set of the solutions θ : S → H of the homoge-

neous equation

(2.1) θ(x+ y) + θ(x+ ϕ(y)) = 0, x, y ∈ S.

3. Main results

In this section, we seek the solutions of the functional equations (1.1) and
(1.2) in terms of additive and symmetric, bi-additive maps and solutions of
the homogeneous equation

θ(x+ y) + θ(x+ ϕ(y)) = 0, x, y ∈ S.

To form our main results (Theorems 3.4 and 3.6), we start with the fol-
lowing lemmas.

Lemma 3.1. Assume that the triple f, h, k : S → H is a solution of

(3.1) f(x+ y) + f(x+ ϕ(y)) = h(x) + k(y), x, y ∈ S.

Then h+ h ◦ ϕ− 2k is a constant function.

Proof. Let f, h, k : S → H be a solution of (3.1). Replacing x by ϕ(x) in
(3.1), we obtain

(3.2) f(ϕ(x) + y) + f(ϕ(x) + ϕ(y)) = h ◦ ϕ(x) + k(y), x, y ∈ S.
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If we add (3.1) and (3.2) side by side, we find that

(3.3) f(x+ y) + f(ϕ(x) + y) + f(x+ ϕ(y)) + f(ϕ(x) + ϕ(y))

= h(x) + h ◦ ϕ(x) + 2k(y), x, y ∈ S.

The left hand side of (3.3) is invariant under interchange of x and y. Hence
so is its right hand side, and this implies that h + h ◦ ϕ − 2k is a constant
function. �

Lemma 3.2. Assume that the pair f, h : S → H satisfies (1.1). Then h is
a solution of Drygas’ functional equation (1.3).

Proof. Let f, h : S → H be a solution of (1.1). Making the following
substitutions (x, y + z) and (x, y + ϕ(z)) in (1.1), we get respectively

(3.4) f(x+ y+ z) + f(x+ϕ(y) +ϕ(z)) = h(x) + f(y+ z) + f(ϕ(y) +ϕ(z)),

and

(3.5) f(x+ y + ϕ(z)) + f(x+ ϕ(y) + ϕ2(z))

= h(x) + f(y + ϕ(z)) + f(ϕ(y) + ϕ2(z)),

for all x, y, z ∈ S. Adding (3.4) and (3.5) side by side, we get by using (1.1)
that

h(x+ y) + f(z) + 2f ◦ ϕ(z) + h(x+ ϕ(y)) + f ◦ ϕ2(z)

= 2h(x) + h(y) + h ◦ ϕ(y) + f(z) + 2f ◦ ϕ(z) + f ◦ ϕ2(z),

for all x, y, z ∈ S, and hence h satisfies (1.3). �

Lemma 3.3. Assume that the pair f, h : S → H satisfies (1.2). Then h is
a solution of the quadratic functional equation (1.4).

Proof. Let f, h : S → H be a solution of (1.2). Making the substitutions
(x, y + z) and (x, y + ϕ(z)) in (1.2), we get respectively

(3.6) f(x+ y + z) + f(x+ ϕ(y) + ϕ(z)) = h(x) + 2f(y + z), x, y, z ∈ S,

and

(3.7) f(x+y+ϕ(z))+f(x+ϕ(y)+ϕ2(z)) = h(x)+2f(y+ϕ(z)), x, y, z ∈ S.
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Adding (3.6) and (3.7) side by side, we get by using (1.2) that

h(x+ y) + 2f(z) + h(x+ ϕ(y)) + 2f ◦ ϕ(z) = 2h(x) + 2h(y) + 4f(z),

for all x, y, z ∈ S. This yields that

(3.8) h(x+y)+h(x+ϕ(y)) = 2h(x)+2h(y)+2f(z)−2f ◦ϕ(z), x, y, z ∈ S.

Fix z ∈ S and let α be the constant defined by α := f(z) − f ◦ ϕ(z). If we
add 2α to the two sides of (3.8), we get

(h+ α)(x+ y) + (h+ α)(x+ ϕ(y)) = 2(h+ α)(x) + 2(h+ α)(y), x, y ∈ S.

So, according to [12, Lemma 4.1] we infer that h◦ϕ = h. Applying Lemma 3.1
with k = 2f , we conclude that 2h−4f is a constant, say 2c. SinceH is uniquely
2-divisible, we deduce that

(3.9) h(x)− 2f(x) = c for all x ∈ S.

From (3.9), the fact that h ◦ ϕ = h, and that H is uniquely 2-divisible, we
conclude that f ◦ϕ = f . Hence (3.8) yields that h is a solution of the quadratic
functional equation (1.4). �

Now, we are ready to state our first main result.

Theorem 3.4. The solutions f, h : S → H of (1.1) are the functions of
the following form

(3.10) f(x) = Q(x, x) +A(x) + θ(x) + α and h(x) = 2Q(x, x) + 2A(x),

for all x ∈ S, where α ∈ H is a constant, A : S → H is an additive map,
Q : S × S → H is a symmetric, bi-additive map such that Q(x, ϕ(y)) =
−Q(x, y) for all x, y ∈ S, and

(3.11) θ ∈ N (S,H, ϕ) is such that θ ◦ ϕ = −θ.

Proof. It is easy to check that any pair of functions of the form above sat-
isfies (1.1). Conversely, assume that the pair f, h : S → H is a solution of (1.1).
By Lemma 3.2, h satisfies (1.3), then we deduce from [11, Theorem 3.2] that

h(x) = 2Q(x, x) + 2A(x), x ∈ S,

where Q : S×S → H is a symmetric, bi-additive map satisfying Q(x, ϕ(y)) =
−Q(x, y) for all x, y ∈ S, and where A : S → H is an additive map. By using
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Lemma 3.1, with k = f+f ◦ϕ, we get that h+h◦ϕ−2f−2f ◦ϕ is a constant,
say −4α. Then,

(3.12) 2f + 2f ◦ ϕ = h+ h ◦ ϕ+ 4α.

Multiplying (1.1) by 2 and using (3.12), we get

(3.13) 2f(x+ y) + 2f(x+ ϕ(y)) = 2h(x) + h(y) + h ◦ ϕ(y) + 4α, x, y ∈ S.

According to Lemma 3.2, we know that h satisfies (1.3). So, if we subtract
(3.13) from (1.3), we obtain

(2f − h)(x+ y) + (2f − h)(x+ ϕ(y)) = 4α, x, y ∈ S,

which means that

(2f − h− 2α)(x+ y) + (2f − h− 2α)(x+ ϕ(y)) = 0, x, y ∈ S.

Hence, there exists 2θ ∈ N (S,H, ϕ) such that

2f(x) = h(x) + 2θ + 2α

= 2Q(x, x) + 2A(x) + 2θ(x) + 2α, x ∈ S.

Since H is uniquely 2-divisible, we obtain

(3.14) f(x) = Q(x, x) +A(x) + θ(x) + α, x ∈ S.

Furthermore, the symmetricity of Q and the fact that Q(x, ϕ(y)) = −Q(x, y)
imply that

Q(ϕ(x), ϕ(x)) = Q(x, x), x ∈ S.

By using (3.12) and (3.14), we infer that

4Q(x, x) + 2A(x) + 2A ◦ ϕ(x) + 2θ(x) + 2θ ◦ ϕ(x) + 4α

= 4Q(x, x) + 2A(x) + 2A ◦ ϕ(x) + 4α.

This yields that 2θ ◦ ϕ+ 2θ = 0 and so θ ◦ ϕ = −θ. �
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If S = {x + y, x, y ∈ S}, i.e., for all z ∈ S there exist x, y ∈ S such that
z = x+ y, then the solutions f, h : S → H of (1.1) read as follows.

Proposition 3.5. Let S be an abelian semigroup such that S = {x +
y, x, y ∈ S}. The general solution f, h : S → H of (1.1) is given by

(3.15) f(x) = Q(x, x) +A(x) + α and h(x) = 2Q(x, x) + 2A(x),

for all x ∈ S, where α ∈ H is a constant, A : S → H is an additive map, and
where Q : S × S → H is a symmetric, bi-additive map such that Q(x, ϕ(y)) =
−Q(x, y) for all x, y ∈ S.

Moreover, if S and H are topological semigroups and f is continuous then
so are the maps A and Q in (3.15).

Proof. Let f, h : S → H be a solution of (1.1). From Theorem 3.4, the
pair f, h has the form (3.10). Based on the condition (3.11), making the sub-
stitutions (x + y, z), (x + ϕ(z), y) and (x, y + z) in (2.1), we get respectively
that

θ(x+ y + z) + θ(x+ y + ϕ(z)) = 0,

θ(x+ ϕ(z) + y) + θ(x+ ϕ(z) + ϕ(y)) = 0,

and

θ(x+ y + z) + θ(x+ ϕ(y) + ϕ(z)) = 0,

for all x, y, z ∈ S. Subtracting the middle identity from the sum of the two
others, we obtain

2θ(x+ y + z) = 0 for all x, y, z ∈ S.

Applying the assumption on S twice, we obtain that 2θ = 0. So, the desired
result follows from the fact that H is uniquely 2-divisible.

The converse statement is shown elementarily.
For the continuity statement it is enough to see, from (3.15), that 2Q(x, x) =

f(2x)− 2f(x) + α and 2A(x) = 4f(x)− f(2x)− 3α for all x ∈ S. �

Now we characterize the solutions of Eq. (1.2), that is

f(x+ y) + f(x+ ϕ(y)) = h(x) + 2f(y), x, y ∈ S.
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Theorem 3.6. The solutions f, h : S → H of (1.2) are the functions of
the form

(3.16) f(x) = Q(x, x) +A(x) + α and h(x) = 2Q(x, x) + 2A(x),

for all x ∈ S, where α ∈ H is a constant, A : S → H is an additive function
such that A ◦ ϕ = A, and where Q : S × S → H is a symmetric, bi-additive
map such that Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S.

Moreover, if S and H are topological semigroups and f is continuous then
so are the maps A and Q in (3.16).

Proof. Let f, h : S → H be a solution of (1.2). By Lemma 3.2, h is a
solution of (1.4). Then, from [12, Theorem 4.2] we infer that

h(x) = 2Q(x, x) + 2A(x), x ∈ S,

where A : S → H is an additive map such that A◦ϕ = A, and Q : S×S → H is
a symmetric bi-additive map such that Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S.
Hence h has the desired form. By Lemma 3.1, we get, with k = 2f , that
h+ h ◦ ϕ− 4f is a constant, say −4α. Then,

4f(x) = h(x) + h ◦ ϕ(x) + 4α

= 2Q(x, x) + 2A(x) + 2Q(ϕ(x), ϕ(x)) + 2A ◦ ϕ(x) + 4α

= 4Q(x, x) + 4A(x) + 4α, x ∈ S.

Since H is uniquely 2-divisible, we get

f(x) = Q(x, x) +A(x) + α, x ∈ S.

The proof of the converse implication is a simple calculation that we omit.
The continuity statement can be derived in a similar way as in the proof of
Proposition 3.5. �

Example 3.7. Let S := (R2,+), H := (C,+) and let ϕ be the endomor-
phism of S defined by ϕ(x) = (x2,−x1) for all x := (x1, x2) ∈ S. It is clear
that S is an abelian semigroup satisfying S = {x + y, x, y ∈ S} and that ϕ
is not involutive. We solve (1.1) on S. From [15, Lemma 2.14], the continuous
bi-additive and symmetric maps Q : S × S → C are

Q(x, y) = λx1y1 + βx2y2 + γ(x1y2 + x2y1),
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for all x := (x1, x2), y := (y1, y2) ∈ S, where λ, β, γ ∈ C. We compute that
Q(x, ϕ(y)) = Q((x1, x2), (y2,−y1)), so Q(x, ϕ(y)) = −Q(x, y) if and only if

(λ− γ)x1y1 + (β + γ)x2y2 + (λ+ γ)x1y2 + (γ − β)x2y1 = 0,

for all x := (x1, x2), y := (y1, y2) ∈ S, and in that case

λ = β = γ = 0, i.e. Q ≡ 0.

According to [15, Corollary 2.4], the continuous additive maps A : S → C
are parameterized by a, b ∈ C as follows

A(x1, x2) = ax1 + bx2, (x1, x2) ∈ S.

Hence, from Proposition 3.5, the continuous solutions f, h : R2 → C of the
functional equation (1.1), namely

f(x1 + y1, x2 + y2) + f(x1 + y2, x2 − y1) = h(x1, x2) + f(y1, y2) + f(y2,−y1),

for all x1, x2, y1, y2 ∈ R, are the functions of the form

f((x1, x2)) = ax1 + bx2 + α, h((x1, x2)) = 2ax1 + 2bx2, x1, x2 ∈ R,

where α, a, b ∈ C.

Our second example shows that it is possible to have non-trivial solutions
of (1.2) with a non-involutive endomorphism.

Example 3.8. Let S := (R2,+), H := (C,+) and let ϕ be the endo-
morphism of S defined by ϕ(x) = (−x1, 0) for all x := (x1, x2) ∈ S. The
continuous additive maps A : S → C are

A(x1, x2) = ax1 + bx2, (x1, x2) ∈ S,

where a, b ∈ C. We compute that A ◦ ϕ(x1, x2) = A(−x1, 0) = −ax1, then
A ◦ ϕ = A if and only if a = b = 0, i.e. A ≡ 0.

The continuous bi-additive and symmetric maps Q : S × S → C are

Q(x, y) = λx1y1 + βx2y2 + γ(x1y2 + x2y1),

for all x := (x1, x2), y := (y1, y2) ∈ S, where λ, β, γ ∈ C. We compute that
Q(x, ϕ(y)) = Q((x1, x2), (−y1, 0)), so Q(x, ϕ(y)) = −Q(x, y) if and only if
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β = γ = 0, i.e. Q(x, y) = λx1y1 for all x, y ∈ S. Hence, from Theorem 3.6, the
continuous solutions of the functional equation (1.2), namely

f(x1+y1, x2+y2)+f(x1−y1, x2) = h(x1, x2)+2f(y1, y2), x1, x2, y1, y2 ∈ R,

are the functions of the form

f(x1, x2) = λx21 + α, h(x1, x2) = 2λx21, x1, x2 ∈ R,

where λ, α ∈ C.

4. Applications

Now we are in the position to express the solutions of some related func-
tional equations to (1.1) and (1.2). In what follows, we need the following
lemma.

Lemma 4.1 ( [3]). Let K : S → H be such that K(nx) = n2K(x) for
all n = 1, 2, . . . and x ∈ S, let L : S → H be additive, and let C ∈ H be
a constant. If

K(x) + L(x) = C for all x ∈ S,

then K(x) = L(x) = C = 0 for all x ∈ S.

We start with the following corollary, which describes the solutions of
Eq. (1.5), that is

f(x+ y) + f(x+ ϕ(y)) = f(x) + f ◦ ϕ(x) + f(y) + f ◦ ϕ(y), x, y ∈ S.

Corollary 4.2. The general solution f : S → H of the functional equa-
tion (1.5) is given by

f(x) = Q(x, x) +A(x) + θ(x), x ∈ S,

where A : S → H is an additive map such that A ◦ ϕ = A, Q : S × S → H is
a symmetric, bi-additive map such that Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S,
and θ ∈ N (S,H, ϕ) is such that θ ◦ ϕ = −θ.
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Proof. It is elementary to check that the formula above of f defines
a solution of (1.5). So, it remains to show the other direction. Let f : S → H
be a solution of (1.5). By applying Theorem 3.4, with h = f + f ◦ ϕ, we infer
that there exist a constant α ∈ H, a symmetric, bi-additive mapQ : S×S → H
with Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S, an additive map A : S → H, and
a function θ : S → H satisfying θ ◦ ϕ = −θ and θ ∈ N (S,H, ϕ), such that

(4.1) f(x) = Q(x, x) +A(x) + θ(x) + α, x ∈ S,

and

(4.2) f(x) + f ◦ ϕ(x) = 2Q(x, x) + 2A(x), x ∈ S.

If we use the symmetricity of Q and Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S,
we get

(4.3) f ◦ ϕ(x) = Q(x, x) +A ◦ ϕ(x)− θ(x) + α, x ∈ S.

Hence, if we add (4.1) and (4.3) we get

(4.4) f(x) + f ◦ ϕ(x) = 2Q(x, x) +A(x) +A ◦ ϕ(x) + 2α, x ∈ S.

If we subtract (4.2) from (4.4), we find that

A(x)−A ◦ ϕ(x) = 2α, x ∈ S.

By using the fact that H is a uniquely 2-divisible and Lemma 4.1, with K ≡ 0,
L ≡ A − A ◦ ϕ and C = 2α, we deduce that A ◦ ϕ = A and α = 0. These
complete the proof. �

Corollary 4.3 below describes the solutions of (1.3). This result was treated
by Sabour in [11].

Corollary 4.3. The solutions f : S → H of (1.3) are the functions of
the form

(4.5) f(x) = Q(x, x) +A(x), x ∈ S,

where A : S → H is an additive map and Q : S × S → H is a symmetric,
bi-additive map such that Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S.
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Proof. Applying Theorem 3.4 with h = 2f , we obtain

(4.6)

{
f(x) = Q(x, x) +A(x) + θ(x) + α,

2f(x) = 2Q(x, x) + 2A(x), x ∈ S,

where α ∈ H is a constant, Q : S × S → H is a symmetric, bi-additive map
such that Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S, A : S → H is an additive
map, and where θ ∈ N (S,H, ϕ) is such that θ ◦ ϕ = −θ. Since H is uniquely
2-divisible, we deduce from (4.6) that

(4.7) θ(x) + α = 0 for all x ∈ S.

Replacing x by ϕ(x) and subtracting (4.7) from the obtained result, we get
that 2θ ≡ 0 and hence θ = α = 0. So, f has the form (4.5).

Conversely, it is elementary to show that any function of the form (4.5)
satisfies (1.3). �

Corollary 4.4. The solutions f : S → H of the functional equation

f(x+ y) + f(x+ ϕ(y)) = f(y) + f ◦ ϕ(y), x, y ∈ S,

are the functions of the form

f(x) = θ(x) + α, x ∈ S,

where θ ∈ N (S,H, ϕ) is such that θ ◦ ϕ = −θ, and α ∈ H is a constant.

Proof. The proof follows easily from Theorem 3.4. �

Remark 4.5. The functional equation

(4.8) f(x+ y) + f(x+ ϕ(y)) = γ + f(y) + f ◦ ϕ(y), x, y ∈ H,

has no solution when γ 6= 0. Indeed, assume that the functional equation (4.8)
with γ 6= 0 has a solution. Applying Theorem 3.4 with h = γ, we obtain

2Q(x, x) + 2A(x) = γ, x ∈ S.

Using Lemma 4.1 with K(x) := 2Q(x, x), L(x) := 2A(x) and C = γ, we get
that

2Q(x, x) = 2A(x) = γ = 0,

which contradicts our assumption on γ.
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As a further result of Theorem 3.6, we obtain the following corollary about
the solutions of (1.6), where ψ and φ are two endomorphisms of S.

Corollary 4.6. The solutions f : S → H of (1.6) are the functions of
the following form

(4.9) f(x) = Q(x, x) +A(x), x ∈ S,

where Q : S × S → H is a symmetric, bi-additive map such that

Q(x, ϕ(y)) = −Q(x, y) and Q(ψ(x), ψ(x)) +Q(φ(x), φ(x)) = 2Q(x, x),

for all x, y ∈ S, and where A : S → H is an additive map such that

A ◦ φ+A ◦ ψ = 2A ◦ ϕ = 2A.

Proof. Simple computations based on the properties of Q and A show
that the indicated functions (4.9) are solutions of (1.6). Conversely, assume
that f is a solution of (1.6), then from Theorem 3.6 there exist an additive
map A : S → H with A◦ϕ = A, a symmetric, bi-additive map Q : S×S → H
with Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S, and a constant α ∈ H such that

f(x) = Q(x, x) +A(x) + α and f ◦ φ(x) + f ◦ ψ(x) = 2Q(x, x) + 2A(x),

for all x ∈ S. These imply that

[Q(φ(x), φ(x)) +Q(ψ(x), ψ(x))− 2Q(x, x)]

+ [A ◦ φ(x) +A ◦ ψ(x))− 2A(x)] = −2α,

for all x ∈ S. By using Lemma 3.3 and the fact that H is uniquely 2-divisible,
we see that Q(φ(x), φ(x)) + Q(ψ(x), ψ(x)) = 2Q(x, x) for all x ∈ S, A ◦ φ +
A ◦ ψ = 2A, and α = 0. These complete the proof. �

Remark 4.7. Any solution f : S → H of (1.6) satisfies f ◦φ+ f ◦ψ = 2f .

Corollary 4.8. The solutions f : S → H of the functional equation

f(x+ y) + f(x+ ϕ(y)) = 2f(y), x, y ∈ S,

are the constant functions.

Proof. The proof follows immediately from Theorem 3.6. �
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Now we solve the inhomogeneous quadratic functional equation

(4.10) f(x+ y) + f(x+ ϕ(y)) = Φ(x) + 2f(x) + 2f(y), x, y ∈ S,

Corollary 4.9. The solutions f,Φ: S → H of (4.10) are the functions
of the form

(4.11) f(x) = Q(x, x) +A(x) + α and Φ(x) = −2α, x ∈ S,

where α ∈ H is a constant, A : S → H is an additive function such that
A ◦ ϕ = A, and where Q : S × S → H is a symmetric, bi-additive map such
that Q(x, ϕ(y)) = −Q(x, y) for all x, y ∈ S.

Proof. Let f,Φ: S → H be a solution of (4.10). By applying Theorem
3.6, with h = Φ(x) + 2f(x), we get{

f(x) = Q(x, x) +A(x) + α,

Φ(x) + 2f(x) = 2Q(x, x) + 2A(x), x ∈ S,

where Q : S×S → H is a symmetric, bi-additive map such that Q(x, ϕ(y)) =
−Q(x, y) for all x, y ∈ S, A : S → H is an additive function such that A ◦ϕ =
A, and where α ∈ H is a constant. Simple computations show that the pair
{f,Φ} is of the form (4.11).

The other direction is easy to check. �

Assume additionally that H is a ring of characteristic different from 2.
Eq. (4.10) contains as a special case the following equation

(4.12) f(x+ y) + f(x+ ϕ(y)) + f(ψ(x)) = sf(x) + 2f(x) + 2f(y),

for all x, y ∈ S, where ϕ and ψ are two endomorphisms of S and s ∈ H
is a constant. Equation (4.12) results from the standard alienation procedure
starting in this case from adding the quadratic equation (1.4) and the Schröder
equation f(ψ(x)) = sf(x) (see e.g., Kuczma [8] or Kuczma, Choczewski and
Ger [9]) side by side.

Corollary 4.10. Assume additionally that H is a ring of characteristic
different from 2. The solutions f : S → H of (4.12) are the functions of the
form

(4.13) f(x) = Q(x, x) +A(x) + α, x ∈ S,
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where Q : S × S → H is a symmetric, bi-additive function such that

(4.14) Q(x, ϕ(y)) = −Q(x, y) and Q(ψ(x), ψ(x)) = sQ(x, x),

for all x, y ∈ S, A : S → H is an additive function such that

(4.15) A ◦ ϕ = A and A ◦ ψ = sA,

and where α ∈ H is a constant such that

(4.16) sα+ 3α = 0.

Proof. It is easy to check that the functions of the form (4.13) are so-
lutions of (4.12). To see that any solution f : S → H of (4.12) has the form
(4.13) we apply Corollary 4.9, and we get that

(4.17) f(x) = Q(x, x) +A(x) + α and sf(x)− f(ψ(x)) = −2α,

for all x ∈ S. With simple computations and by using Lemma 4.1 withK(x) :=
Q(ψ(x), ψ(x))− sQ(x, x), L(x) = A ◦ ψ(x)− sA(x) and C = sα+ 3α, we see
that f has the form (4.13) with the conditions (4.14)-(4.16). �

References

[1] J. Aczél and E. Vincze, Über eine gemeinsame Verallgemeinerung zweier Funktional-
gleichungen von Jensen, Publ. Math. Debrecen 10 (1963), 326–344.

[2] Y. Aissi, D. Zeglami, and A. Mouzoun, A quadratic functional equation with involutive
automorphisms on semigroups, Bol. Soc. Mat. Mex. (3) 28 (2022), no. 1, Paper No. 19,
13 pp.

[3] A. Akkaoui, B. Fadli, and M. El Fatini, The Drygas functional equation on abelian
semigroups with endomorphisms, Results Math. 76 (2021), no. 1, Paper No. 42, 13 pp.

[4] B. Fadli, D. Zeglami, and S. Kabbaj, A variant of the quadratic functional equation
on semigroups, Proyecciones 37 (2018), no. 1, 45–55.

[5] Pl. Kannappan, On inner product spaces. I, Math. Japon. 45 (1997), no. 2, 289–296.
[6] Pl. Kannappan, On quadratic functional equation, Int. J. Math. Stat. Sci. 9 (2000),

no. 1, 35–60.
[7] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer

Monogr. Math., Springer, New York, 2009.
[8] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat., 46, Polish

Scientific Publishers, Warsaw, 1968.
[9] M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations, Encyclopedia

Math. Appl., 32, Cambridge University Press, Cambridge, 1990.
[10] S. Kurepa, On the quadratic functional, Acad. Serbe Sci. Publ. Inst. Math. 13 (1959),

57–72.



184 Youssef Aissi, Driss Zeglami

[11] Kh. Sabour, A variant of Drygas’ functional equation with an endomorphism, Asia
Math. 4 (2020), no. 1, 63–68.

[12] Kh. Sabour and S. Kabbaj, Jensen’s and the quadratic functional equations with an
endomorphism, Proyecciones 36 (2017), no. 1, 187–194.

[13] P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59 (2000),
no. 3, 255–261.

[14] H. Stetkær, Functional equations on abelian groups with involution, Aequationes
Math. 54 (1997), no. 1–2, 144–172.

[15] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co. Pte.
Ltd., Singapore, 2013.

[16] D. Yang, The quadratic functional equation on groups, Publ. Math. Debrecen 66
(2005), no. 3–4, 327–348.

Youssef Aissi, Driss Zeglami
Department of Mathematics E.N.S.A.M
Moulay ISMAIL University
B.P. 15290
Al Mansour
Meknes
Morocco
e-mail: zeglamidriss@yahoo.fr, yaissi94@gmail.com


	1. Introduction
	2. Set up, notation and terminology
	3. Main results
	4. Applications
	References

