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ON DOUBLED AND QUADRUPLED
FIBONACCI TYPE SEQUENCES

Nur Şeyma Yilmaz, Andrzej Włoch , Engin Özkan,
Dominik Strzałka

Abstract. In this paper we study a family of doubled and quadrupled Fi-
bonacci type sequences obtained by distance generalization of Fibonacci se-
quence. In particular we obtain doubled Fibonacci sequence, doubled and
quadrupled Padovan sequence and quadrupled Narayana’s sequence. We give
a binomial direct formula for these sequences using graph methods, and also we
derive a number of identities. Moreover, we study matrix generators of these
sequences and determine connections with the Pascal’s triangle.

1. Introduction

Fibonacci numbers Fn are terms of the sequence defined by the recurrence
Fn = Fn−1 + Fn−2, for n ≥ 2 with initial conditions F0 = 0 and F1 = 1.
The Fibonacci sequence is perhaps the most famous sequence, it appeared in
the book Liber Abaci of Leonardo de Pisa in 1202. This sequence occurs in
different fields of science, for example in some areas of algebra [24, 10, 22],
graph theory [2, 3, 4, 5, 16, 27], computer algorithms [1, 11, 26] and many
other areas of mathematics. The Fibonacci sequence has applications also
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in other fields such as nature, art, architecture, music, finance, etc, see for
example [15].

The Fibonacci sequence has many generalizations given in different direc-
tions. Some authors have generalized the Fibonacci sequence by preserving
the recurrence relation and altering initial conditions of the sequence [12, 13]
while others have generalized the Fibonacci sequence by preserving initial
conditions and altering the recurrence equation [9, 17, 21]. Among different
generalizations of the Fibonacci sequence generalizations in the distance sense
play an important role.

Let k ≥ 1, d ≥ 1, n ≥ 0 be integers and d 6= k. Distance Fibonacci numbers
are defined recursively by

(1) Fd,k(n) = Fd,k(n− d) + Fd,k(n− k) for n ≥ max{d, k}

with initial conditions Fd,k(n) for n ∈ {0, 1, . . . ,max{d, k} − 1}. Numbers
Fd,k(n) are also named as distance (k, d)–Fibonacci numbers. Note that the
equation (1) describes in fact a family of sequences, where each choice of d
and k gives a distinct sequence.

We list only some of them which will be used in the future considerations.
F1,2(n) = Fn – Fibonacci numbers with F0 = 0, F1 = 1.
F2,3(n) = Pv(n) – Padovan’s numbers with Pv(0) = Pv(1) = Pv(2) = 1.
F1,3(n) = Nn – Narayana’s numbers with N0 = 0, N1 = N2 = 1.

For an arbitrary k ≥ 3 and fixed integer d we obtain well known general-
izations which were introduced quite recently.
F1,k(n) – distance Fibonacci numbers (M. Kwaśnik, I. Włoch [16]).
F2,k(n) = F

(1)
2,k (n) – (2, k)-distance Fibonacci numbers (I. Włoch et al. [29]).

F3,k(n) = F3(k, n) – (3, k)-distance Fibonacci numbers (E. Özkan et al. [20]).
For other generalizations of the Fibonacci sequence see for example [2, 3,

4, 23, 8, 30, 29, 18, 19, 25, 28, 14, 5].
Motivated by results obtained for d ∈ {1, 2, 3} in this paper we consider

the distance Fibonacci sequence (F4,k(n)). For convenience based on notation
used in [20] we will write F4(k, n) instead of F4,k(n).

Let k ≥ 1, n ≥ 0 be integers. By (4, k)-distance Fibonacci numbers, we
mean generalized Fibonacci numbers defined recursively by the following re-
lation

(2) F4(k, n) = F4(k, n− 4) + F4(k, n− k) for n ≥ max{4, k},

with initial conditions F4(k, n) = 1, for n ∈ {0, 1, 2, 3, . . . ,max{3, k − 1}}.
Although, recurrence (2) does not directly generalize Fibonacci like se-

quences we can observe that the family of sequences F4(k, n) for a special
values of k includes double or quadruple Fibonacci type sequences. Note fol-
lowing observations, where we indicate sequences indexed in OEIS [23].
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F4(1, n+ 1) – A003269 (with truncated first element).
F4(2, n) = Fbn2 c+1 – A103609 (with truncated first element).
F4(3, n) – A079398 (with truncated first element).
F4(4, n) = 2b

n
4 c – A200675.

F4(5, n) – A103372.
F4(6, n) = Pvbn2 c not indexed in OEIS.
F4(7, n) not indexed in OEIS.
F4(8, n) = Fbn4 c+1 – not indexed in OEIS.
F4(10, n) – A005686.
F4(12, n) = Nbn4 c+1 Narayana’s sequence.
F4(16, n) – A003269.

For illustration nineteen initial elements of these sequences are presented
in the Table 1.

Table 1. Numbers F4(k, n) for k = {1, 2, . . . , 8}
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

F4(1, n) 1 1 1 1 2 3 4 5 7 10 14 19 26 36 50 69 95 131 181
F4(2, n) 1 1 1 1 2 2 3 3 5 5 8 8 13 13 21 21 34 34 55
F4(3, n) 1 1 1 1 2 2 2 3 4 4 5 7 8 9 12 15 17 21 27
F4(4, n) 1 1 1 1 2 2 2 2 4 4 4 4 8 8 8 8 16 16 16
F4(5, n) 1 1 1 1 1 2 2 2 2 3 4 4 4 5 7 8 8 9 12
F4(6, n) 1 1 1 1 1 1 2 2 2 2 3 3 4 4 5 5 7 7 9
F4(7, n) 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 5 5 5 7
F4(8, n) 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5

It is known that tiling defined by the Fibonacci numbers covers a plane.
In [29, 20] it was shown a tiling covering of a plane defined by doubled and
tripled Fibonacci sequence, respectively. We present a tiling covering of a plane
by quadrupled Fibonacci sequence F4(8, n), see Figure 1.

2 2 2 2

3 3 3 3
5 5 5 5

8888

13
1 1 1 1
1 1 1 1

Figure 1. A tiling interpretation of the quadrupled Fibonacci sequence F4(8, n)

Similar to the classical Fibonacci numbers, (4, k)-distance Fibonacci num-
bers can be extended to negative integers. Such extension is very useful for
studying properties of sequences and we will use it in future considerations.
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If k ∈ {1, 2, 3}, then F4(k, 0) = F4(k, 1) = F4(k, 2) = F4(k, 3) = 1 and

F4(1,−n) = F4(1,−n+ 4)− F4(1,−n+ 3),

F4(2,−n) = F4(2,−n+ 4)− F4(2,−n+ 2),

F4(3,−n) = F4(3,−n+ 4)− F4(3,−n+ 1),

F4(4,−n) =
1

2
F4(4,−n+ 4).

Let k > 4 be integer and F4(k, n) = 1 for n ∈ {0, 1, . . . , k − 1}. Then

F4(k,−n) = F4(k,−n+ k)− F4(k,−n+ (k − 4)).

Table 2 includes the first few elements of F4(k,−n) for special k and non
positive n.

Table 2. Numbers F4(k, n) for non positive n and k = {1, 2, . . . , 8}
n -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

F4(1, n) 6 -4 2 -3 3 -1 1 -2 1 0 1 -1 0 0 1 0 0 0 1
F4(2, n) -21 -21 13 13 -8 -8 5 5 -3 -3 2 2 -1 -1 1 1 0 0 1
F4(3, n) 76 -55 40 -29 21 -15 11 -8 6 -4 3 -2 2 -1 1 0 1 0 1

F4(4, n)
1
32

1
32

1
16

1
16

1
16

1
16

1
8

1
8

1
8

1
8

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

1

F4(5, n) -3 3 -1 0 1 -2 1 0 0 1 -1 0 0 0 1 0 0 0 1
F4(6, n) 0 0 -2 -2 1 1 1 1 -1 -1 0 0 1 1 0 0 0 0 1
F4(7, n) -3 -3 -2 1 2 2 1 -1 -1 -1 0 1 1 1 0 0 0 0 1
F4(8, n) -3 -3 2 2 2 2 -1 -1 -1 -1 1 1 1 1 0 0 0 0 1

Linear recurrence equation with constant coefficients is typically used in
conjunction with generating function which is a powerful technique for study
linear homogenous recurrence relation. For the sequence {F4(k, n)} the gen-
erating function also can be determined.

Theorem 1. Let n ≥ 0, k ≥ 1 be integers. The generating function of
{F4(k, n)} has the following form

g(x) =
1 + t

1− x4 − xk
where t =


0 for k = 1,

x for k = 2,

x+ x2 for k = 3,

x+ x2 + x3 for k ≥ 4.
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Proof. Let g(x) =
∑∞
n=0 F4(k, n)x

n. Using the recurrence (2) we have

g(x)− x4g(x)− xkg(x) = 1 + t, where t =


0 for k = 1,

x for k = 2,

x+ x2 for k = 3,

x+ x2 + x3 for k ≥ 4.

Hence g(x) = 1+t
1−x4−xk . �

2. Graph interpretation of F4(k, n)

The recurrence (2) cannot be solved for an arbitrary k, so it is important
to give a direct formula for F4(k, n) using other methods. In this section
we give the direct binomial formula for F4(k, n) by graph methods. We use
the standard terminology of graph theory and for concepts not defined here,
see [6].

Let Pn, n ≥ 1, be a path with the vertex set V (Pn) = {v1, . . . , vn} with the
vertex numbering in the natural fashion. Moreover by P0 we put the empty
graph.

Let k ≥ 1 be an integer and Yk = {Pt; t ∈ {4, k}} be a family of ver-
tex disjoint subgraphs of Pn such that V (Pn) \

⋃
Pt∈Yk

V (Pt) ⊆ Rk, where
R1 = ∅, R2 = {vn}, R3 = {vn, vn−1} and Rk = {vn, vn−1, vn−2} for k ≥ 4.
We say that the family Yk is a {P4, Pk}-covering of Pn with the rest. If
V (Pn) \

⋃
Pt∈Yk

V (Pt) = ∅, then we have {P4, Pk}-covering of Pn. For P0

we mean that the empty set is the unique {P4, Pk}-covering of P0.
For example let consider a {P4, P1}-covering of the path P5. We can see

that there exist two coverings P4P1 and P1P4, both coverings are without
the rest.

We give a graph interpretation of numbers F4(k, n) using {P4, Pk}-covering
with the rest of Pn.

Denote by α(k, n) the total number of {P4, Pk}-covering with the rest
of Pn.

Theorem 2. Let k ≥ 1, n ≥ 0 be integers. Then α(k, n) = F4(k, n).

Proof. (By induction on n.) Let k, n be as in the statement of the theo-
rem. Denote by α4(k, n) the number of all {P4, Pk}-covering with the rest of
Pn such that v1 ∈ V (P4) and by αk(k, n) the number of all {P4, Pk}-covering
with the rest of Pn such that v1 ∈ V (Pk).
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If n = 0, then the empty set is the unique {P4, Pk}-covering with the rest
of P0 so F4(k, 0) = 1. If 0 < n < min{4, k}, then V (Pn) = Rk, so F4(k, n) = 1.
If min{4, k} ≤ n < max{4, k}, then there is the unique {P4, Pk}-covering with
the rest of Pn realized by either P4 or Pk, so F4(k, n) = 1.

Let n ≥ max{4, k} and suppose that α(k, n) = F4(k, n) for an arbitrary n.
We will show that α(k, n+ 1) = F4(k, n+ 1). The {P4, Pk}-coverings of Pn+1

we can divide into two cases, either v1 ∈ V (P4) or v1 ∈ V (Pk). Clearly
α(k, n+1) = α4(k, n+1)+αk(k, n+1). Moreover α4(k, n+1) = α4(k, n−3) and
αk(k, n+1) = αk(k, n+1−k). Then α(k, n+1) = α4(k, n−3)+αk(k, n+1−k) =
F4(k, n− 3) + F4(k, n+ 1− k) = F4(k, n+ 1), which ends the proof. �

Using the above graph interpretation we give the direct formula for F4(k, n).

Theorem 3. Let k ≥ 1, n ≥ 0 be integers. Then

F4(k, n+ t) =

bnk c∑
i=0

(
i+ bn−ik4 c

i

)
where t =


3 for k = 1,

2 for k = 2,

1 for k = 3,

0 for k ≥ 4.

Proof. If n ≤ k − 1, then bnk c = 0 and

F4(k, n) =

0∑
i=0

(
i+ bn−ik4 c

i

)
=

(
0 + bn4 c

0

)
= 1.

Assume that n ≥ k. By Theorem 2, the number F4(k, n) is equal to the
number of {P4, Pk}-covering with the rest of Pn. Each {P4, Pk}-covering with
the rest of Pn consists of i monochromatic paths Pk and j monochromatic
paths P4, where 0 ≤ i ≤ bnk c, 0 ≤ j ≤ bnk c. Moreover, for a fixed i we have
j = bn−ik4 c and the number of {P4, Pk}-covering with the rest is equal to(
i+j
i

)
=
(i+bn−ik

4 c
i

)
. Thus F4(k, n) =

∑bnk c
i=0

(i+bn−ik
4 c
i

)
. �

3. Identities

In this section we give a number of identities of sums of F4(k, n). First we
prove a result which will be useful in proof of the next theorem.
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Lemma 4. Let k ≥ 1, n ≥ 0 be integers. Then
(i) F4(4k, 4n) = F4(4k, 4n+ 1) = F4(4k, 4n+ 2) = F4(4k, 4n+ 3),
(ii) F4(2k, 2n) = F4(2k, 2n+ 1).

Proof. (i) (By induction on n.) From the definition of F4(k, n) we have
that F4(4k, 0) = · · · = F4(4k, 4k − 1) = 1. If n = 4k, then by the formula (2)
we have

F4(4k, 4k) = F4(4k, 4k + 1) = F4(4k, 4k + 2) = F4(4k, 4k + 3) = 2.

Let n ≥ 4k+1. Assume that F4(4k, 4i) = F4(4k, 4i+1) = F4(4k, 4i+2) =
F4(4k, 4i+ 3) for all i ≤ n. We will prove the equality for n+ 1 of the form

F4(4k, 4(n+ 1)) = F4(4k, 4(n+ 1) + 1)(3)

= F4(4k, 4(n+ 1) + 2) = F4(4k, 4(n+ 1) + 3).

Applying definition (2) for all numbers given in (3) we have that

F4(4k, 4(n+ 1)) = F4(4k, 4n) + F4(4k, 4n+ 4− 4k)

= F4(4k, 4n) + F4(4k, 4(n+ 1− k)),

F4(4k, 4(n+ 1) + 1) = F4(4k, 4n+ 1) + F4(4k, 4n+ 5− 4k)

= F4(4k, 4n+ 1) + F4(4k, 4(n+ 1− k) + 1),

F4(4k, 4(n+ 1) + 2) = F4(4k, 4n+ 2) + F4(4k, 4n+ 6− 4k)

= F4(4k, 4n+ 2) + F4(4k, 4(n+ 1− k) + 2),

F4(4k, 4(n+ 1) + 3) = F4(4k, 4n+ 3) + F4(4k, 4n+ 7− 4k)

= F4(4k, 4n+ 3) + F4(4k, 4(n+ 1− k) + 3).

Then by the induction’s hypothesis we have following equalities

F4(4k, 4n) = F4(4k, 4n+ 1) = F4(4k, 4n+ 2) = F4(4k, 4n+ 3),

F4(4k, 4(n+ 1− k)) = F4(4k, 4(n+ 1− k) + 1) = F4(4k, 4(n+ 1− k) + 2)

= F4(4k, 4(n+ 1− k) + 3).

Consequently the equalities (3) immediately follows.
In the same way we can prove (ii). �
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Theorem 5. Let k ≥ 1, n ≥ 0 be integers. Then
(i)
∑n
i=0 F4(1, i) = F4(1, n+ 4)− 1,

(ii)
∑n
i=0 F4(2, i) = F4(2, n+ 4) + F4(2, n+ 3)− 2,

(iii)
∑n
i=0 F4(3, i) = F4(3, n+ 4) + F4(3, n+ 3) + F4(3, n+ 2)− 3,

(iv)
∑n
i=0 F4(k, i) = F4(k, n + k) + F4(k, n + k − 1) + F4(k, n + k − 2)

+ F4(k, n+ k − 3)− 4, for k ≥ 4,
(v)

∑n
i=0 F4(1, 2i) = F4(1, 2n+ 1) + F4(1, 2n− 1),

(vi)
∑n
i=0 F4(2, 2i) = F4(2, 2n+ 5)− 1,

(vii)
∑n
i=0 F4(3, 2i) = F4(3, 2n+ 5) + F4(3, 2n+ 3)− F4(3, 2n+ 2)− 1,

(viii)
∑n
i=0 F4(k, 2i) = F4(k, 2n+k+1)+F4(k, 2n+k−1)−2, for even k ≥ 4,

(ix)
∑n
i=0 F4(k, 2i) = F4(k, 2n+ k) + F4(k, 2n+ k − 2)− 2, for odd k ≥ 5,

(x)
∑n
i=0 F4(1, 2i+ 1) = F4(1, 2n+ 2) + F4(1, 2n)− 1,

(xi)
∑n
i=0 F4(2, 2i+ 1) = F4(2, 2n+ 4)− 1,

(xii)
∑n
i=0 F4(3, 2i+ 1) = F4(3, 2n+ 2) + F4(3, 2n+ 1) + F4(3, 2n)− 2,

(xiii)
∑n
i=0 F4(4, 2i+ 1) = F4(4, 2n+ 4) + F4(4, 2n+ 2)− 2,

(xiv)
∑n
i=0 F4(k, 2i+1) = F4(k, 2n+k+1)+F4(k, 2n+k− 1)− 2, for k ≥ 5,

(xv)
∑n
i=0 F4(3, 3i) = F4(3, 3n+ 4)− 1,

(xvi)
∑n
i=0 F4(3, 3i+ 1) = F4(3, 3n+ 5)− 1,

(xvii)
∑n
i=0 F4(k, 4i) = F4(k, 4n+ k)− 1, for k ≥ 4,

(xviii)
∑n
i=0 F4(k, 4i+ 1) = F4(k, 4n+ k + 1)− 1, for k ≥ 4.

Proof. (i) (By telescoping method.) From the recurrence (2) we have
F4(1, n) = F4(1, n+4)−F4(1, n+3). So

∑n
i=0 F4(1, i) = F4(1, 4)−F4(1, 3)+

F4(1, 5) − F4(1, 4) + F4(1, 6) − F4(1, 5) + · · · + F4(1, n + 4) − F4(1, n + 3) =
F4(1, n+ 4)− F4(1, 3) = F4(1, n+ 4)− 1.

(viii) (By induction on n.) Let k ≥ 4 be even. F4(k, 0) = 1 = 2 + 1− 2 =
F4(k, k+1)+F4(k, k−1)−2. Assume that the formula (viii) holds for n. We will
prove it for n+1. From Lemma 4 we have F4(k, 2n+2) = F4(k, 2n+3). By the
induction hypothesis we have

∑n+1
i=0 F4(k, 2i) = F4(k, 2n+k+1)+F4(k, 2n+

k−1)−2+F4(k, 2n+2) = F4(k, 2n+k+1)+F4(k, 2n+k−1)−2+F4(k, 2n+3) =
F4(k, 2n+ k + 3) + F4(k, 2n+ k + 1)− 2.

(xvi) (By induction on n.) If n = 0, then F4(3, 1) = 1 = 2−1 = F4(3, 5)−1.
Assume that the formula (xvi) holds for n. We will prove it for n+ 1. By the
induction hypothesis we have

∑n+1
i=0 F4(3, 3i+1) = F4(3, 3n+5)−1+F4(3, 3n+

4) = F4(3, 3n+ 8)− 1 = F4(3, 3(n+ 1) + 5)− 1.
(xvii) (By induction on n.) Let k ≥ 4 be even. If n = 0, then F4(k, 0) =

1 = 2 − 1 = F4(k, k) − 1. Assume that the formula (xvii) holds for n. We
will prove it for n+1. By the induction hypothesis we have

∑n+1
i=0 F4(k, 4i) =

F4(k, 4n+k)−1+F4(k, 4n+4) = F4(4, 4n+4+k)−1 = F4(4, 4(n+1)+k)−1.
Analogously, we prove the remaining formulas. �
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4. Matrix generators

Let m = max{4, k} and Qk = [qi,j ]m×m be a square matrix. For a fixed
1 ≤ i ≤ m an element qi,1 is equal to the coefficient at F4(k, i) of the right
hand side of the formula (2). For 1 < j ≤ m and 1 ≤ i ≤ m we have qi,j = 1
if j = i+ 1 and qi,j = 0, otherwise.

The above definition gives matrices

Q1 =

1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , Q2 =

0 1 0 0
1 0 1 0
0 0 0 1
1 0 0 0

 , Q3 =

0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

 ,

Q4 =

0 1 0 0
0 0 1 0
0 0 0 1
2 0 0 0

 , Q5 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0

 ,

Q6 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 , . . . Qk =



0 1 0 0 · · · 0
...

...
. . .

...
...

...
1 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


.

Theorem 6. Let k ≥ 1, n ≥ 0 be integers. Then

detQnk =


(−1)n for k ∈ {1, 2, 3},
(−2)n for k = 4,

(−1)n for even k > 4,

1 for odd k > 4.

We define a square matrix Pk of order max{4, k} as the matrix of initial
conditions. For k ≥ 4

Pk =


F4(k, 2k − 2) F4(k, 2k − 3) · · · F4(k, k) F4(k, k − 1)
F4(k, 2k − 3) F4(k, 2k − 4) · · · F4(k, k − 1) F4(k, k − 2)

...
...

. . .
...

...
F4(k, k) F4(k, k − 1) · · · F4(k, 2) F4(k, 1)

F4(k, k − 1) F4(k, k − 2) · · · F4(k, 1) F4(k, 0)

 .
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We subtract the last column, which elements are ones, from the remaining
columns of Pk. Using Laplace expansions we get the following results.

Theorem 7. Let k ≥ 1 be an integer. Then

detPk =

{
−1 for k ∈ {1, 2, 3, 4},
(−1)b

k−1
2 c for k > 4.

Theorem 8. Let k, n be positive integers. Then

(4) PkQ
n
k

=


F4(k, n+ 2k − 2) F4(k, n+ 2k − 4) · · · F4(k, n+ k) F4(k, n+ k − 1)
F4(k, n+ 2k − 4) F4(k, n+ 2k − 3) · · · F4(k, n+ k − 1) F4(k, n+ k − 2)

...
...

. . .
...

...
F4(k, n+ k) F4(k, n+ k − 1) · · · F4(k, n+ 2) F4(k, n+ 1)

F4(k, n+ k − 1) F4(k, n+ k − 2) · · · F4(k, n+ 1) F4(k, n)

 .
Proof. If n = 1, then by (2) and simple calculations the result immedi-

ately follows. Assume the formula (4) holds for n, we will prove it for n + 1.
Since PkQn+1

k = (PkQ
n
k)Qk, by our assumption and by the recurrence (2) we

obtain

AkQ
n+1
k

=


F4(k, n+ 2k − 2) F4(k, n+ 2k − 3) · · · F4(k, n+ k) F4(k, n+ k − 1)
F4(k, n+ 2k − 3) F4(k, n+ 2k − 4) · · · F4(k, n+ k − 1) F4(k, n+ k − 2)

...
...

. . .
...

...
F4(k, n+ k) F4(k, n+ k − 1) · · · F4(k, n+ 2) F4(k, n+ 1)

F4(k, n+ k − 1) F4(k, n+ k − 2) · · · F4(k, n+ 1) F4(k, n)

×

×



0 1 0 · · · 0
0 0 1 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0



=


F4(k, n+ 2k − 1) F4(k, n+ 2k − 2) · · · F4(k, n+ k + 1) F4(k, n+ k)
F4(k, n+ 2k − 2) F4(k, n+ 2k − 3) · · · F4(k, n+ k) F4(k, n+ k − 1)

...
...

. . .
...

...
F4(k, n+ k + 1) F4(k, n+ k) · · · F4(k, n+ 3) F4(k, n+ 2)
F4(k, n+ k) F4(k, n+ k − 1) · · · F4(k, n+ 2) F3(k, n+ 1)

 ,

which ends the proof. �
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Remark 9. Let k ≥ 1, n ≥ 0 be integers. Then

detPkQ
n
k =


(−1)n+1 for k ∈ {1, 2, 3},
(−1)n+1(2)n for k = 4,

(−1)n+b
k−1
2 c for even k > 4,

(−1)b
k−1
2 c for odd k > 4.

5. Connections with the Pascal’s triangle

To study connections of (4, k)-distance Fibonacci numbers with Pascal’s
triangle we need to consider a family of sequences given by the same recurrence
as F4(k, n) with different initial conditions.

Let k ≥ 1, k ≥ i ≥ 1, n ≥ 0 be integers and

F i4(k, n) = F i4(k, n− 4) + F i4(k, n− k) for n ≥ max{4, k}

with

F i4(k, n) =

{
1, if n = k − i
0, in otherwise

for n ∈ {0, 1, . . . ,max{3, k − 1}}.

Note that all sequences F i4(k, n) have the same matrix generator Q. For illus-
tration of the family of sequences F i4(k, n) we present a few initial elements
of these sequences for k = 5 and special values n in the Table 3.

Table 3. Distance Fibonacci numbers F i
4(5, n) and F4(5, n)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
F 1
4 (5, n) 0 0 0 0 1 0 0 0 1 1 0 0 1 2 1 0 1 3 3

F 2
4 (5, n) 0 0 0 1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1

F 3
4 (5, n) 0 0 1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 1

F 4
4 (5, n) 0 1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 1 4

F 5
4 (5, n) 1 0 0 0 0 1 0 0 0 1 1 0 0 1 2 1 0 1 3

F4(5, n) 1 1 1 1 1 2 2 2 2 3 4 4 4 5 7 8 8 9 12

Proving analogously as in [30] we have

Theorem 10. Let k ≥ 4, n ≥ 0, 0 ≤ i ≤ k − 1 be integers. Then

F4(k, n) =

max{3,k−1}∑
i=0

F i4(k, n).



On doubled and quadrupled Fibonacci type sequences 347

Er studied in [7] a similar to F i4(k, n) family of sequences. He showed
that nth power of the companion matrix of the family of sequences consists
of entries of these sequences in a special order. Result from [7] applied to
F i4(k, n) has the following form.

Qnk =


F 1
4 (k, n+ k − 1) F 1

4 (k, n+ k − 2) . . . F 1
4 (k, n)

F 2
4 (k, n+ k − 1) F 2

4 (k, n+ k − 2) . . . F 2
4 (k, n)

...
...

. . .
...

F k4 (k, n+ k − 1) F k4 (k, n+ k − 2) . . . F k4 (k, n)

 .
The matrix Qk we can interpret as adjacency matrix of a special digraph D,
see the Figure 2.

v1 v2 v3 v4 ... vk−1
vk

Figure 2. Digraph D for k > 4

It is well known thatQnk contains the number of all different paths of length
n between corresponding vertices in the digraph D. Namely, the entry qij is
equal to the number of all paths of the length n from vertex vi to vertex vj
in the digraph D.

Using such graph interpretation of the matrix Q, we can prove analogously
as in [20] the following theorem.

Theorem 11. Let k ≥ 4, n ≥ 0, 0 ≤ i ≤ k − 1 be integers. Then

F 1
4 (k, n+ k − 1) =

∑
α4,αk

4α4+kαk=n

(
α4 + αk
α4

)
,

F j4 (k, n+ k − 1) =
∑
α4,αk

4α4+kαk=n−(4−j+1)

(
α4 + αk
α4

)

+
∑
α4,αk

4α4+kαk=n−(k−j+1)

(
α4 + αk
α4

)
for j = 2, 3, 4,

F j4 (k, n+ k − 1) =
∑
α4,αk

4α4+kαk=n−(k−j+1)

(
α4 + αk
α4

)
for 4 < j ≤ k.
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Based on Theorem 10 and Theorem 11 we have

Theorem 12. Let k ≥ 4, n ≥ 0 be integers. Then

F4(k, n+k−1) =
3∑
i=1

∑
α4,αk

4α4+kαk=n−i

(
α4 + αk
α4

)
+

k−1∑
i=0

∑
α4,αk

4α4+kαk=n−i

(
α4 + αk
α4

)
.

From Theorem 12 we can obtain binomials whose sums are equal to num-
bers F4(k, n). Using these binomials we can derive new formulas for F4(k, n)
numbers. For a convenience we use a graphical presentation.

For example, the number F4(5, 30) is a sum of
(
6
2

)
,
(
6
3

)
,
(
6
3

)
,
(
6
4

)
,
(
6
4

)
,
(
6
5

)
,(

6
5

)
,
(
6
6

)
,
(
7
0

)
,
(
7
0

)
,
(
7
1

)
,
(
7
1

)
,
(
7
2

)
. These binomials form a geometrical pattern

in the Pascal’s triangle, we will call it a staircase. Corresponding entries are
indicated by the blue colour, underlining entry is counted two times.

P =



1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0
1 6 15 20 15 6 1 0 0 0 0
1 7 21 35 35 21 7 1 0 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 84 126 126 84 36 9 1 0
1 10 45 120 210 252 210 120 45 10 1


.

We extend the staircase presented above up to infinity in both directions.
Moving such infinite staircase one column to the right, we obtain next number
F4(k, n). In each step of the staircase we have two binomials adjacent. Using
the basic property of binomials(

n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
we immediately obtain a new simplest staircase on the following form.

P =



1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0
1 6 15 20 15 6 1 0 0 0 0
1 7 21 35 35 21 7 1 0 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 84 126 126 84 36 9 1 0
1 10 45 120 210 252 210 120 45 10 1


.
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Such transformations of the formula from Theorem 12 leads to

Corollary 13. Let k = 5, n ≥ 0 be integers.

F4(5, n+ 3) =

bn+2
4 c∑
i=0

(
bn+3−i

4 c
i

)
.

Note that we can perform the above procedure only for sequences with the
special value of k.
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