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SOME GENERAL THEOREMS
ABOUT A CLASS OF SETS OF NUMBERS

Rafael Jakimczuk

Abstract. We prove a theorem which unifies some formulas, for example
the counting function, of some sets of numbers including all positive integers,
h-free numbers, h-full numbers, etc. We also establish a conjecture and give
some examples where the conjecture holds.

1. Introduction

Let h ≥ 1 be an arbitrary but fixed positive integer. A number is h-full if all
the distinct primes in its prime factorization have multiplicity (or exponent)
greater than or equal to h, that is, the number qs11 · · · qsrr is h-full if si ≥ h
(i = 1, . . . , r) (r ≥ 1). If h = 1 we obtain all the positive integers. If h = 2 the
numbers are called square-full or powerful.

Let h ≥ 2 be an arbitrary but fixed positive integer. A number is h-free if all
the distinct primes in its prime factorization have multiplicity (or exponent)
less than or equal to h−1, that is, the number qs11 · · · qsrr is h-free if si ≤ h−1
(i = 1, . . . , r) (r ≥ 1). If h = 2 we obtain all the square-free numbers. If h = 3
the numbers are called cube-free.
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Let Qh(x) be the number of h-free numbers not exceeding x. It is well-
known ([1]) that

Qh(x) =
1

ζ(h)
x+ o(x).(1.1)

A number is k-free h-full (k > h) if it is simultaneously a k-free number and
h-full number, that is, the number qs11 · · · qsrr is k-free h-full if h ≤ si ≤ k − 1
(i = 1, . . . , r) (r ≥ 1).

These three special cases of numbers are very well studied and they are
particular cases of the following sets of numbers.

Definition 1.1. We shall associate each prime p with a finite or infinite
set Ep of possible exponents, namely Ep = {k, k1,p, k2,p, . . .}, where 1 ≤ k <
k1,p < k2,p < · · · . Therefore all sets Ep have the same least element k. Let
us consider the positive integers n whose prime factorization is of the form
n = qr11 q

r2
2 · · · qrss , where qi (i = 1, . . . , s) are distinct primes and ri ∈ Eqi

(i = 1, . . . , s) are the exponents. The set of these positive integers n will be
denoted by A.

Consequently, h-free, h-full and k-free h-full numbers (k > h) are particu-
lar sets of A.

In this article we prove some general theorems about sets A which unifies
some apparently unconnected formulas. For example, let A(x) be the number
of positive integers n in the set A not exceeding x, that is, the counting
function of the set A. We shall prove that

A(x) = cx
1
k + o

(
x

1
k

)
,

where the positive constant c is

c =
6

π2

(∏
p

(
1 +

p

p+ 1

(
1

p
k1,p
k

+
1

p
k2,p
k

+ · · ·
)))

.

We also obtain in these theorems some general results about partitions of a
set of positive integers into infinite disjoint subsets.

Consider, as motivation, the following example.

Example 1.2. We can divide the set of all positive integers, whose positive
density is 1, in the following infinite disjoint subsets. The numbers whose
greatest exponent in their prime factorization is 1, that is, the 2-free numbers
or square-free numbers and consequently they have positive density (see (1.1))
1
ζ(2) . The numbers whose greatest exponent in their prime factorization is 2,
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they have positive density 1
ζ(3)−

1
ζ(2) . The numbers whose greatest exponent in

their prime factorization is 3, they have positive density 1
ζ(4) −

1
ζ(3) , etc. Now,

we shall prove that the sum of the infinite positive densities is the density of
the union, namely 1. The proof is trivial, since

1

ζ(2)
+

∞∑
k=3

( 1

ζ(k)
− 1

ζ(k − 1)

)
= lim
m→∞

(
1

ζ(2)
+

m∑
k=3

( 1

ζ(k)
− 1

ζ(k − 1)

))

= lim
m→∞

1

ζ(m)
= 1,

for it is well-known that ζ(m)→ 1 as m→∞.

The author knows many examples where the following conjecture is true
but cannot prove it. Example 1.2 is a particular case of this conjecture.

Conjecture 1.3. Let s be an arbitrary fixed positive integer. Suppose that
we have disjoint infinite sets of numbers Si (i ≥ 1) whose union is the set S,
that is, a partition of the set S. Let Si(x) be the number of numbers in the
set Si not exceeding x and let S(x) be the number of numbers in the set S not
exceeding x. Suppose that

Si(x) = ρix
1
s + o

(
x

1
s

)
,

where ρi > 0 and suppose that S(x) ≤ Hx 1
s , where H > 0. Then

S(x) = σx
1
s + o

(
x

1
s

)
,

where

σ =
∞∑
i=1

ρi.

Note that the sum
∑n
i=1 ρi of positive terms ρi is bounded by H for all n.

Therefore the series
∑∞
i=1 ρi has a certain positive sum σ.

We suppose that ρi > 0 for i ≥ 1 since in the contrary case the conjecture
can be false. For example, the number of square-free with k prime factors
(k ≥ 1) is o(x) by Landau’s Theorem ([1]) and the set of all square-free has
positive density 1

ζ(2) = 6
π2 (see equation (1.1)).

Perhaps, it is necessary add to the conjecture some additional conditions.
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In the following theorem, we give a sufficient condition such that Conjec-
ture 1.3 is true. Before, note that the equation (see Conjecture 1.3)

Si(x) = ρix
1
s + o

(
x

1
s

)
(1.2)

implies that there exists a positive number ci such that

Si(x) ≤ ciρix
1
s (x ≥ 1).

Theorem 1.4. Suppose that there exists a positive number C such that
ci ≤ C for all i ≥ 1. Then Conjecture 1.3 holds.

Proof. Given ε > 0, there exists M depending on ε such that

(1.3)
∑
i>M

ρi < ε.

We have (see (1.2))

S(x) =
( ∑

1≤i≤M

ρi

)
x

1
s + o

(
x

1
s

)
+ F (x)

= σx
1
s −

( ∑
i>M

ρi

)
x

1
s + o

(
x

1
s

)
+ F (x),

where F (x) is the contribution to S(x) of the rest of the numbers not exceed-
ing x. Therefore (see (1.3))

0 ≤ F (x) ≤
∑
i>M

Cρix
1
s = Cx

1
s

∑
i>M

ρi < Cεx
1
s .

By combining these equations, we obtain∣∣∣∣S(x)

x
1
s

− σ
∣∣∣∣ ≤ ε+ ε+ Cε (x ≥ xε),

that is,

S(x) = σx
1
s + o

(
x

1
s

)
,

since ε > 0 can be arbitrarily small. �

Similar proofs, as the proof of Theorem 1.4, will be used in the proofs of
other theorems in this article.
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2. Lemmas

Let h ≥ 1 and let Ah(x) be the number of h-full numbers not exceeding
x. It was proved by Ivić and Shiu (see either [2, Chapter 14] or [3]) that

Ah(x) = γ0,hx
1
h + γ1,hx

1
h+1 + · · ·+ γh−1,hx

1
2h−1 + ∆h(x),(2.1)

where ∆h(x) = O (xρ) for ρ small.
We need the weaker lemma.

Lemma 2.1. The following asymptotic formula holds

Ah(x) = γ0,hx
1
h + o

(
x

1
h

)
,(2.2)

where

γ0,h =
6

π2
Ch =

6

π2

∏
p

(
1 +

1

(p+ 1)(p
1
h − 1)

)
=
∏
p

(
1 +

p− p 1
h

p2
(
p

1
h − 1

)).(2.3)

Note that if h = 1 then we obtain the trivial formula A1(x) = x+ o(x).

Proof. Equation (2.2) is a weak consequence of (2.1). For equation (2.3)
see the reference [4]. �

Lemma 2.2. Let h ≥ 1 be an arbitrary but fixed integer. The following
series converges ∑

Q

1

Q
1
h

,

where the sum runs over all (h+ 1)-full numbers Q.

Proof. Let an be the n-th (h+1)-full number and letAh+1(x) be the num-
ber of (h+1)-full numbers not exceeding x. By Lemma 2.1, we have Ah+1(x) ∼
γ0,h h+1

√
x. Therefore if x = an we obtain n = Ah+1(an) ∼ γ0,h h+1

√
an, that is,

an ∼ nh+1

γh+1
0,h

. Now, the lemma follows by the Comparison Criterion, since the

series
∑

1

n
h+1
h

converges. �
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Lemma 2.3. Let h ≥ 2 be an arbitrary but fixed integer. Let r ≥ 1 be an
arbitrary but fixed integer. Let us consider r distinct primes q1, . . . , qr. Let
Bq1,...,qr(x) be the number of h-free numbers not exceeding x relatively prime
to q1 · · · qr. The following asymptotic formula holds

Bq1,...,qr(x) =
1

ζ(h)

r∏
i=1

1− 1
qi

1− 1
qhi

x+ o(x).

Proof. See [5]. �

We have the following general theorem.

Theorem 2.4. Let f(i) be a sequence such that 0 < f(i) < 1 (i ≥ 1).
Then

n∑
h=1

(( h∏
i=1

f(i)
)( 1

f(h)
− 1
))

= 1−
( n∏
i=1

f(i)

)
.

Proof. Use mathematical induction. �

Corollary 2.5. If, in addition,
∏n
i=1 f(i)→ L as i→∞, then

∞∑
h=1

(( h∏
i=1

f(i)
)( 1

f(h)
− 1
))

= 1− L.

3. Main results

Our main results are some general theorems and corollaries about sets A
and some examples where Conjecture 1.3 holds.

Theorem 3.1. Let A(x) be the number of positive integers n in the set A
not exceeding x. Then

A(x) = cx
1
k + o

(
x

1
k

)
,(3.1)

where the positive constant c is

c =
6

π2

(∏
p

(
1 +

p

p+ 1

(
1

p
k1,p
k

+
1

p
k2,p
k

+ · · ·
)))

.
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Proof. The proof is similar to the proof of Theorem 1.4. Let us consider
the numbers n in the set A of the form qk, where q is square-free. The inequal-
ity qk ≤ x is equivalent to the inequality q ≤ x 1

k . Therefore, by equation (1.1)
with h = 2, the number of qk ≤ x is

6

π2
x

1
k + o

(
x

1
k

)
.(3.2)

The rest of the numbers n in the set A are of the form qkQ, where gcd(q,Q) =
1, q is square-free and Q is (k + 1)-full number. The prime factorization of
the (k + 1)-full number Q is Q =

∏s
i=1 s

ri
i , where si are different primes and

ri ∈ Esi \ {k}. By Lemma 2.3 with h = 2 the number of these numbers n in
the set A not exceeding x, that is qkQ ≤ x, where Q is fixed, is

6

π2
a(Q)

x
1
k

Q
1
k

+ o
(
x

1
k

)
,(3.3)

where, for simplicity, we put a(Q) =
∏s
i=1

si
si+1 .

Given ε > 0, there exists M , depending on ε, such that (Lemma 2.2)∑
Q>M

1

Q
1
k

< ε.(3.4)

Equations (3.2), (3.3) and (3.4) give

A(x) =
6

π2

(
1 +

∑
Q≤M

a(Q)
1

Q
1
k

)
x

1
k + o

(
x

1
k

)
+ F (x)

= cx
1
k − 6

π2

( ∑
Q>M

a(Q)
1

Q
1
k

)
x

1
k + o

(
x

1
k

)
+ F (x),

where

c =
6

π2

(
1 +

∑
Q

a(Q)
1

Q
1
k

)
=

6

π2

(∏
p

(
1 +

p

p+ 1

(
1

p
k1,p
k

+
1

p
k2,p
k

+ · · ·
)))

and (see (3.4))

0 ≤ F (x) ≤
∑

M<Q≤x

⌊ x 1
k

Q
1
k

⌋
< εx

1
k .

Note that the number of solutions q to the equation qkQ ≤ x does not ex-
ceed

⌊
x

1
k /Q

1
k

⌋
.
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Therefore, by combining these equations, we obtain equation (3.1), since
ε > 0 can be arbitrarily small. The theorem is proved. �

Corollary 3.2. Let us consider positive integers n in the set A relatively
prime to the square-free q1 · · · qs, where qi (i = 1, . . . , s) are distinct primes.
The set of these positive integers n will be denoted Aq1,...,qs ⊂ A. The num-
ber of positive integers n in the set Aq1,...,qs not exceeding x will be denoted
Aq1,...,qs(x). We have

Aq1,...,qs(x) = c′cx
1
k + o

(
x

1
k

)
,(3.5)

where the positive constant c′ is

c′ =
1∏s

i=1

(
1 + 1

qi
+ 1

q

k1,qi
k

i

+ 1

q

k2,qi
k

i

+ · · ·
) .(3.6)

Proof. The proof is similar to the proof of Theorem 1.4. Let us consider
the numbers n = qk in the set Aq1,...,qs , where q is square-free. The inequality
qk ≤ x is equivalent to the inequality q ≤ x 1

k . By Lemma 2.3 with h = 2, the
number of qk ≤ x is

6

π2

(
s∏
i=1

qi
qi + 1

)
x

1
k + o

(
x

1
k

)
.(3.7)

The rest of the numbers n in the set Aq1,...,qs are of the form qkQ, where
gcd(q,Q) = 1, q is square-free and Q is (k + 1)-full number. The prime fac-
torization of the (k+ 1)-full number Q is Q =

∏s
i=1 s

ri
i , where si are different

primes, ri ∈ Esi \ {k} and gcd(Q, q1 · · · qs) = 1. By Lemma 2.3 with h = 2,
the number of these numbers n in the set Aq1,...,qs not exceeding x, that is
qkQ ≤ x, where Q is fixed, is

6

π2

(
s∏
i=1

qi
qi + 1

)
a(Q)

x
1
k

Q
1
k

+ o
(
x

1
k

)
,(3.8)

where, for simplicity, we put a(Q) =
∏s
i=1

si
si+1 .

Given ε > 0, there exists M , depending on ε, such that (Lemma 2.2)∑
Q>M

1

Q
1
k

< ε.(3.9)
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Equations (3.7), (3.8) and (3.9) give

Aq1,...,qs(x) =
6

π2

( s∏
i=1

qi
qi + 1

)(
1 +

∑
Q≤M

a(Q)
1

Q
1
k

)
x

1
k + o

(
x

1
k

)
+ F (x)

= c′′x
1
k − 6

π2

( s∏
i=1

qi
qi + 1

)( ∑
Q>M

a(Q)
1

Q
1
k

)
x

1
k + o

(
x

1
k

)
+ F (x),

where

c′′ =
6

π2

( s∏
i=1

qi
qi + 1

)(
1 +

∑
Q

a(Q)
1

Q
1
k

)

=
6

π2

( s∏
i=1

qi
qi + 1

)( ∏
p6=qi

(
1 +

p

p+ 1

(
1

p
k1,p
k

+
1

p
k2,p
k

+ · · ·
)))

= cc′

and

0 ≤ F (x) ≤
∑

M<Q≤x

⌊
x

1
k

Q
1
k

⌋
< εx

1
k .

Therefore, by combining these equations, we obtain equation (3.5), since ε > 0
can be arbitrarily small. The corollary is proved. �

Corollary 3.3. Let ph be the h-th prime number and let Bph be the set
of positive integers n in the set A such that ph is their least prime factor.
Then the infinite sets Bph are a partition of the set A, since if h1 6= h2 then
Bph1 ∩Bph2 is the empty set. Let Bph(x) be the number of positive integers n
in the set Bph not exceeding x. Then

Bph(x) = cphcx
1
k + o

(
x

1
k

)
,(3.10)

where the positive constant cph is

cph =

1
ph

+ 1

p

k1,ph
k

h

+ 1

p

k2,ph
k

h

+ · · ·

∏h
i=1

(
1 + 1

pi
+ 1

p

k1,pi
k

i

+ 1

p

k2,pi
k

i

+ · · ·
)(3.11)

and

(3.12)
∞∑
h=1

cph = 1.
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Hence
∞∑
h=1

cphc = c

and consequently Conjecture 1.3 holds for this partition of the set A (see equa-
tion (3.1)).

Proof. The proof is similar to the proof of Theorem 1.4. If q1, . . . , qs is
the set of the first h primes, that is p1, . . . , ph, then equations (3.5) and (3.6)
become

Ap1,...,ph(x) = c′cx
1
k + o

(
x

1
k

)
,

where the positive constant c′ is

c′ =
1∏h

i=1

(
1 + 1

pi
+ 1

p

k1,pi
k

i

+ 1

p

k2,pi
k

i

+ · · ·
) .

Furthermore, there exists a positive constant b such that

Ap1,...,ph(x) < bx
1
k (x ≥ 1).(3.13)

Let us consider the numbers with least prime factor ph not exceeding x such
that ph has exponentm, that is pmh a ≤ x, wherem ∈ Eph = {k, k1,ph , k2,ph , . . .},
with 1 ≤ k < k1,ph < k2,ph < · · · and a ∈ Ap1,...,ph . The number of these num-
bers is

c′c
x

1
k

p
m
k

h

+ o
(
x

1
k

)
.(3.14)

Note that the following series ∑
m∈Eph

1

p
m
k

h

is convergent. Therefore if ε > 0, then there exists M such that∑
m∈Eph
m>M

1

p
m
k

h

< ε.(3.15)
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Equations (3.14) and (3.15) give

Bph(x) = c′cx
1
k

( ∑
m∈Eph
m≤M

1

p
m
k

h

)
+ o
(
x

1
k

)
+ F (x)

= cphcx
1
k − c′cx 1

k

( ∑
m∈Eph
m>M

1

p
m
k

h

)
+ o
(
x

1
k

)
+ F (x),

where (see (3.13) and (3.15))

0 ≤ F (x) ≤
∑

m∈Eph
m>M

b
x

1
k

p
m
k

h

< bεx
1
k .

Finally, by combining these equations, we obtain equation (3.10), since ε > 0
can be arbitrarily small.

Equation (3.12) is an immediate consequence of equation (3.11), Theo-
rem 2.4 and Corollary 2.5. Note that in this case L = 0, since

∏∞
i=1

(
1 + 1

pi

)
=

∞. The corollary is proved. �

Corollary 3.4. Let Bph≥ps be the set of positive integers n in the set A
such that ph ≥ ps is their least prime factor. Let Bph≥ps(x) be the number of
positive integers n in the set Bph≥ps not exceeding x. Then

Bph≥ps(x) = dscx
1
k + o

(
x

1
k

)
,(3.16)

where the positive constant ds is

ds =
∞∑
h=s

cph =
1∏s−1

i=1

(
1 + 1

pi
+ 1

p

k1,pi
k

i

+ 1

p

k2,pi
k

i

+ · · ·
) .

Therefore

lim
s→∞

ds = 0.(3.17)
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Proof. By Corollary 3.2, we have

Bph≥ps(x) = Ap1,...,ps−1(x) = c′cx
1
k + o

(
x

1
k

)
= dscx

1
k + o

(
x

1
k

)
,

where

ds = c′ =
1∏s−1

i=1

(
1 + 1

pi
+ 1

p

k1,pi
k

i

+ 1

p

k2,pi
k

i

+ · · ·
) .

On the other hand, by equation (3.12), we have

s−1∑
h=1

cph +

∞∑
h=s

cph = 1.

Therefore

∞∑
h=s

cph = 1−
s−1∑
h=1

cph

and by Theorem 2.4 (see (3.11))

1−
s−1∑
h=1

cph = c′.

The corollary is proved. �

LetH(n) be the greatest exponent in the prime factorization of n. Niven ([6])
proved the following equality

lim
x→∞

∑
n≤xH(n)

x
= 1 +

∞∑
k=2

(
1− 1

ζ(k)

)
.(3.18)

In the following theorem we generalize this limit to sets A.
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Theorem 3.5. Let us consider the set A. Then∑
n∈A
n≤x

H(n) = cAx
1
k + o

(
x

1
k

)
,(3.19)

where the constant cA is

cA =
6

π2

(
k +

∑
Q∈A

a(Q)
H(Q)

Q
1
k

)
.(3.20)

The sum runs over all (k+1)-full number Q in the set A, that is, Q =
∏s
i=1 s

ri
i ,

where si are different primes, ri ∈ Esi \ {k} and a(Q) =
∏s
i=1

si
si+1 .

If A = N is the set of all positive integers then equations (3.19) and (3.20)
become ∑

n≤x

H(n) = cNx+ o
(
x
)
,

where the constant cN is the Niven’s constant (see (3.18))

cN = 1 +

∞∑
k=2

(
1− 1

ζ(k)

)
.(3.21)

Proof. The proof is similar to the proof of Theorem 1.4. Let us consider
the numbers n in the set A of the form qk, where q is square-free. Therefore
H(qk) = k. The inequality qk ≤ x is equivalent to the inequality q ≤ x

1
k .

Therefore, by equation (1.1) with h = 2, the contribution of the numbers
qk ≤ x to the sum

∑
n∈A
n≤x

H(n) is

k
6

π2
x

1
k + o

(
x

1
k

)
.(3.22)

The rest of the numbers n in the set A are of the form qkQ, where gcd(q,Q) =
1, q is square-free and Q is (k + 1)-full number. The prime factorization of
the (k + 1)-full number Q is Q =

∏s
i=1 s

ri
i , where si are different primes and

ri ∈ Esi \ {k}. Therefore H(qkQ) = H(Q). By Lemma 2.3 with h = 2, the
contribution of these numbers n in the set A not exceeding x to the sum∑

n∈A
n≤x

H(n), that is qkQ ≤ x, where Q is fixed, is

H(Q)
6

π2
a(Q)

x
1
k

Q
1
k

+ o
(
x

1
k

)
,(3.23)

where, for simplicity, we put a(Q) =
∏s
i=1

si
si+1 .
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Let d(n) be the number of divisors of n. It is well known ([1]) that d(n) =
o(nσ) for all σ > 0 and consequently, since H(n) < d(n), we obtain that the
series (see the proof of Lemma 2.2)∑

n∈A
n≤x

H(n)

Q
1
k

converges.
Consequently, given ε > 0, there exists M , depending on ε, such that

∑
Q>M

H(Q)

Q
1
k

< ε.(3.24)

Equations (3.22), (3.23) and (3.24) give

∑
n∈A
n≤x

H(n) =
6

π2

(
k +

∑
Q≤M
Q∈A

a(Q)
H(Q)

Q
1
k

)
x

1
k + o

(
x

1
k

)
+ F (x)

= cAx
1
k − 6

π2

( ∑
Q>M

Q∈A

a(Q)
H(Q)

Q
1
k

)
x

1
k + o

(
x

1
k

)
+ F (x),

where

cA =
6

π2

(
k +

∑
Q∈A

a(Q)
H(Q)

Q
1
k

)

and (see (3.24))

0 ≤ F (x) ≤
∑

M<Q≤x
Q∈A

H(Q)
x

1
k

Q
1
k

< εx
1
k .

Therefore, by combining these equations, we obtain equation (3.19), since
ε > 0 can be arbitrarily small.

Now, if A is the set of all positive integers and consequently k = 1, we
can write (3.20) in the form (3.21). Let us consider the square-full Q with the
same greatest exponent m. We have

6

π2

∑
Q

a(Q)
m

Q
=

6m

π2

∏
p

(
1 +

p

p+ 1

(
1

p2
+ · · ·+ 1

pm

))

− 6m

π2

∏
p

(
1 +

p

p+ 1

(
1

p2
+ · · ·+ 1

pm−1

))
= m

(
1

ζ(m+ 1)
− 1

ζ(m)

)
,
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where Q runs over all square-full Q with the same greatest exponentm. There-
fore, we have

6

π2

(
1 +

∑
Q

a(Q)
H(Q)

Q

)
=

1

ζ(2)
+

∞∑
m=2

m

(
1

ζ(m+ 1)
− 1

ζ(m)

)

= 1 +

∞∑
k=2

(
1− 1

ζ(k)

)
.

The theorem is proved. �

4. Formulas when a small number of primes is removed
from the set A

In this section we obtain formulas when a small number of primes is re-
moved from the set A.

We need two lemmas.
The set of square-free numbers has positive density 6

π2 . Let P be the set
of all positive prime numbers. In the following lemma we study the counting
function of square-free numbers such that their prime factors are in the set
P \B where B is a small set of infinite primes.

Lemma 4.1. Suppose that B is a set of infinite primes p such that the
series

∑
p∈B

1
p converges. Let C(x) be the number of square-free not exceeding

x such that their prime factors are in the set P \B. Then

C(x) =
6

π2

1

cB
x+ o(x),(4.1)

where

cB =
∏
p∈B

(
1 +

1

p

)
.

Proof. We have ∏
p∈B

(
1 +

1

p

)
= cB,

where cB is a positive number, since the series
∑
p∈B

1
p converges.
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Therefore, given ε > 0, there exists M , depending on ε, such that∏
p>M

p∈B

1(
1 + 1

p

) > 1− ε

and ∑
p>M

p∈B

1

p
< ε.

Lemma 2.3 with h = 2 gives

C(x) = x
6

π2

∏
p≤M
p∈B

1(
1 + 1

p

) + o(x)− F (x) =
6

π2

1

cB
x+ o(x)

+
6

π2

∏
p≤M
p∈B

1(
1 + 1

p

)(1−
∏
p>M

p∈B

1(
1 + 1

p

))− F (x),

where

0 ≤ F (x) ≤
∑
p>M

p∈B

x

p
< εx.

By combining these equations we obtain equation (4.1), since ε > 0 can be
arbitrarily small. �

In the following lemma we study the square-free numbers relatively prime
to a certain number and such that the prime factors of these square-free are
in the set P \B where B is a small set of infinite primes

Lemma 4.2. Suppose that B is a set of infinite primes p such that the
series

∑
p∈A

1
p converges. Let C(x) be the number of square-free not exceeding

x such that their prime factors are in the set P−B and Cq1,...,qs(x) the number
of these square-free not exceeding x relatively prime to the square-free q1 · · · qs,
where qi ∈ P \B. Then

Cq1,...,qs(x) =
6

π2

(
s∏
i=1

1

1− 1
qi

)
1

cB
x+ o(x).

Proof. The proof is the same as in Lemma 4.1. �



Some general theorems about a class of sets of numbers

Now, we can prove the main theorem of this section.

Theorem 4.3. We shall associate each prime p ∈ P \B, where the set B
was defined in Lemma 4.1, with a finite or infinite set Ep of possible exponents,
namely Ep = {k, k1,p, k2,p, . . .}, where 1 ≤ k < k1,p < k2,p < · · · . Therefore
all sets Ep have the same least element k. Let us consider the positive integers
n whose prime factorization is of the form n = qr11 q

r2
2 · · · qrss , where qi ∈ P \B

(i = 1, . . . , s) are distinct primes and ri ∈ Eqi (i = 1, . . . , s) are the exponents.
The set of these positive integers n will be denoted by A′.

Let A′(x) be the number of positive integers n in the set A′ not exceeding x.
We have

A′(x) =
1

cB
cx

1
k + o

(
x

1
k

)
,

where the positive constant c is

c =
6

π2

( ∏
p∈P−B

(
1 +

p

p+ 1

(
1

p
k1,p
k

+
1

p
k2,p
k

+ · · ·
)))

.

Let us consider the positive integers n in the set A′ relatively prime to the
square-free q1 · · · qs, where qi ∈ P \B (i = 1, . . . , s) are distinct primes. The set
of these positive integers n will be denoted A′q1,...,qs ⊂ A

′. The number of posi-
tive integers n in the set A′q1,...,qs not exceeding x will be denoted A′q1,...,qs(x).
We have

A′q1,...,qs(x) =
1

cB
c′cx

1
k + o

(
x

1
k

)
,

where the positive constant c′ is

c′ =
1∏s

i=1

(
1 + 1

qi
+ 1

q

k1,qi
k

i

+ 1

q

k2,qi
k

i

+ · · ·
) .

Proof. The proof is the same as the proof of Theorem 3.1 and Corol-
lary 3.2. In this case we use Lemma 4.1 and Lemma 4.2. �
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5. Applications and examples

Example 5.1. All positive integers, h-free numbers (h ≥ 2), h-full num-
bers and h-full k-free numbers (k > h) are particular cases of sets A. Therefore
the theorems and corollaries proved in Section 3 are true for these special sets
of numbers.

1) All positive integers.
In this case equation (3.1) becomes the trivial equation A(x) = x+ o(x).
Equation (3.5) becomes

Aq1,...,qs(x) =

( s∏
i=1

(
1− 1

qi

))
x+ o(x)

and equation (3.10) becomes

Bph(x) =
1

ph

h−1∏
i=1

(
1− 1

pi

)
x+ o(x).

2) h-free numbers.
For example, in this case equation (3.1) becomes equation (1.1) and equa-

tion (3.5) becomes Lemma 2.3.
3) h-full numbers.
For example, in this case equation (3.1) becomes Lemma 2.1 and equa-

tion (3.5) becomes

Aq1,··· ,qs(x) =

( s∏
i=1

qi
(
q

1
h
i − 1

)
qi
(
q

1
h
i − 1

)
+ q

1
h
i

)
γ0,hx

1
h + o

(
x

1
h

)
,

where γ0,h is defined by equation (2.3).
4) h-full k-free numbers (k > h).
For example, equation (3.1) becomes

A(x) =
6

π2

∏
p

( 1

p1+
1
h
− 1

p
k
h(

1 + 1
p

)(
1− 1

p
1
h

))x 1
h + o

(
x

1
h

)
(5.1)

and equation (3.5) becomes

Aq1,...,qs(x) =

s∏
i=1

(
1 +

1
qi
− 1

q
k
h
i

1− 1

q
1
h
i

)−1
6

π2

∏
p

( 1

p1+
1
h
− 1

p
k
h(

1 + 1
p

)(
1− 1

p
1
h

))x 1
h + o

(
x

1
h

)
.
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Now, we give an example where Conjecture 1.3 holds.

Example 5.2. Let h ≥ 2 be an arbitrary but fixed integer. Equation (5.1)
can be written, after some calculations, in the form

A(x) = γ0,h
∏
p

(
1− 1

p
k
h

p1+
1
h

(p+ 1)
(
p

1
h − 1

)
+ 1

)
x

1
h + o

(
x

1
h

)
= ρkx

1
h + o

(
x

1
h

)
.

We can divide the set of h-full numbers, whose positive density is γ0,h, in
the following infinite disjoint subsets. The numbers whose greatest exponent
in their prime factorization is h, and consequently they have positive density
ρh+1. The numbers whose greatest exponent in their prime factorization is
h + 1, they have positive density ρh+2 − ρh+1. The numbers whose greatest
exponent in their prime factorization is h + 2, they have positive density
ρh+3 − ρh+2, etc. The sum of the infinite positive densities is the density of
the union, namely γ0,h, that is

ρh+1 +

∞∑
k=h+2

(ρk − ρk−1) = γ0,h.(5.2)

Therefore Conjecture 1.3 holds.
The proof of equation (5.2) is as the proof in Example 1.2, since

lim
k→∞

∏
p

(
1− 1

p
k
h

p1+
1
h

(p+ 1)
(
p

1
h − 1

)
+ 1

)
= 1.

The proof of this limit is as follows. Note that

∏
pi

(
1− 1

p
k
h
i

p
1+ 1

h
i

(pi + 1)
(
p

1
h
i − 1

)
+ 1

)
=
∏
pi

(
1− c(pi)

p
k
h
i

)
,

where limi→∞ c(pi) = 1. Therefore, given ε > 0, there exists m such that
c(pi) < 1 + ε if i ≥ m and consequently c(pi)

p
k
h
i

< 1+ε
2 if i ≥ m and 1

1− c(pi)

p

k
h
i

<

1
1− 1+ε

2

= 2
1−ε if i ≥ m. Now, we also have (logarithmic power series and

geometric power series)

− log(1− x) = x+
x2

2
+
x3

3
+ · · · ≤ x+ x2 + x3 + · · · = x

1− x
,
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where 0 < x < 1. Consequently

lim
k→∞

∏
pi

(
1− 1

p
k
h
i

p
1+ 1

h
i

(pi + 1)
(
p

1
h
i − 1

)
+ 1

)

= lim
k→∞

m−1∏
i=1

∏
pi

(
1− 1

p
k
h
i

p
1+ 1

h
i

(pi + 1)
(
p

1
h
i − 1

)
+ 1

)
lim
k→∞

∞∏
i=m

(
1− c(pi)

p
k
h
i

)

= lim
k→∞

∞∏
i=m

(
1− c(pi)

p
k
h
i

)
= lim
k→∞

exp

(
−
∞∑
i=m

− log

(
1− c(pi)

p
k
h
i

))
= e0 = 1,

since

0 ≤
∞∑
i=m

− log

(
1− c(pi)

p
k
h
i

)
≤
∞∑
i=m

c(pi)

p
k
h
i

1

1− c(pi)

p
k
h
i

≤ 2(1 + ε)

(1− ε)

∞∑
i=m

1

p
k
h
i

→ 0

as k →∞, and (ζ(s)− 1)→ 0 as s→∞. The proof is complete.

In the following theorem we study a particular case of Conjecture 1.3.

Theorem 5.3. Consider the set A. By Theorem 3.1, we have

A(x) = cx
1
k + o

(
x

1
k

)
.(5.3)

Let ph be the h-th prime number and let Bph be the set of positive integers n in
the set A such that ph is their least prime factor. Then, by Corollary 3.3, the
infinite subsets Bph are a partition of the set A. Let Bph(x) be the number of
positive integers n in the subset Bph not exceeding x. Then, by Corollary 3.3,

Bph(x) = cphcx
1
k + o

(
x

1
k

)
.

Let us consider a set S included in A (S ⊆ A) such that S(x) is the number
of numbers in the set S not exceeding x. Now, consider the partition of the



Some general theorems about a class of sets of numbers

set S in the infinite subsets Sph = S ∩ Bph and suppose that the number of
numbers in the subset Sph not exceeding x is

Sph(x) = sphx
1
k + o

(
x

1
k

)
,(5.4)

where sph is a positive constant depending of ph. Then

S(x) = sx
1
k + o

(
x

1
k

)
,

where

s =

∞∑
h=1

sph

and consequently Conjecture 1.3 holds for the set S.

Proof. Note that the series
∑∞
h=1 sph has increasing partial sums bounded

by c (see equation (5.3)) therefore it has a positive sum s.
Given ε > 0 there exists a prime ps, depending of ε, such that∑

ph>ps

sph < ε.

By equation (5.4), we have

S(x) =

( ∑
ph≤ps

sph

)
x

1
k + o

(
x

1
k

)
+ F (x)

= sx
1
k −

( ∑
ph>ps

sph

)
x

1
k + o

(
x

1
k

)
+ F (x),

where (see (3.16) and (3.17))

0 ≤ F (x) ≤ Bph≥ps(x) ≤ εx 1
k .

By combining these equations we obtain

S(x) = sx
1
k + o

(
x

1
k

)
,

since ε > 0 can be arbitrarily small. �
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