$\frac{\text { Annales Mathematicae Silesianae (2023), }}{\text { DOI: } 10.2478 / \text { amsil-2023-0024 }}$

SOME GENERAL THEOREMS

ABOUT A CLASS OF SETS OF NUMBERS

Rafael Jakimczuk

Abstract

We prove a theorem which unifies some formulas, for example the counting function, of some sets of numbers including all positive integers, h-free numbers, h-full numbers, etc. We also establish a conjecture and give some examples where the conjecture holds.

1. Introduction

Let $h \geq 1$ be an arbitrary but fixed positive integer. A number is h-full if all the distinct primes in its prime factorization have multiplicity (or exponent) greater than or equal to h, that is, the number $q_{1}^{s_{1}} \cdots q_{r}^{s_{r}}$ is h-full if $s_{i} \geq h$ $(i=1, \ldots, r)(r \geq 1)$. If $h=1$ we obtain all the positive integers. If $h=2$ the numbers are called square-full or powerful.

Let $h \geq 2$ be an arbitrary but fixed positive integer. A number is h-free if all the distinct primes in its prime factorization have multiplicity (or exponent) less than or equal to $h-1$, that is, the number $q_{1}^{s_{1}} \cdots q_{r}^{s_{r}}$ is h-free if $s_{i} \leq h-1$ $(i=1, \ldots, r)(r \geq 1)$. If $h=2$ we obtain all the square-free numbers. If $h=3$ the numbers are called cube-free.

[^0]Let $Q_{h}(x)$ be the number of h-free numbers not exceeding x. It is wellknown ([1]) that

$$
\begin{equation*}
Q_{h}(x)=\frac{1}{\zeta(h)} x+o(x) \tag{1.1}
\end{equation*}
$$

A number is k-free h-full $(k>h)$ if it is simultaneously a k-free number and h-full number, that is, the number $q_{1}^{s_{1}} \cdots q_{r}^{s_{r}}$ is k-free h-full if $h \leq s_{i} \leq k-1$ $(i=1, \ldots, r)(r \geq 1)$.

These three special cases of numbers are very well studied and they are particular cases of the following sets of numbers.

Definition 1.1. We shall associate each prime p with a finite or infinite set E_{p} of possible exponents, namely $E_{p}=\left\{k, k_{1, p}, k_{2, p}, \ldots\right\}$, where $1 \leq k<$ $k_{1, p}<k_{2, p}<\cdots$. Therefore all sets E_{p} have the same least element k. Let us consider the positive integers n whose prime factorization is of the form $n=q_{1}^{r_{1}} q_{2}^{r_{2}} \cdots q_{s}^{r_{s}}$, where $q_{i}(i=1, \ldots, s)$ are distinct primes and $r_{i} \in E_{q_{i}}$ $(i=1, \ldots, s)$ are the exponents. The set of these positive integers n will be denoted by A.

Consequently, h-free, h-full and k-free h-full numbers $(k>h)$ are particular sets of A.

In this article we prove some general theorems about sets A which unifies some apparently unconnected formulas. For example, let $A(x)$ be the number of positive integers n in the set A not exceeding x, that is, the counting function of the set A. We shall prove that

$$
A(x)=c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

where the positive constant c is

$$
c=\frac{6}{\pi^{2}}\left(\prod_{p}\left(1+\frac{p}{p+1}\left(\frac{1}{p^{\frac{k_{1, p}}{k}}}+\frac{1}{p^{\frac{k_{2, p}}{k}}}+\cdots\right)\right)\right)
$$

We also obtain in these theorems some general results about partitions of a set of positive integers into infinite disjoint subsets.

Consider, as motivation, the following example.
Example 1.2. We can divide the set of all positive integers, whose positive density is 1 , in the following infinite disjoint subsets. The numbers whose greatest exponent in their prime factorization is 1 , that is, the 2 -free numbers or square-free numbers and consequently they have positive density (see (1.1)) $\frac{1}{\zeta(2)}$. The numbers whose greatest exponent in their prime factorization is 2 ,
they have positive density $\frac{1}{\zeta(3)}-\frac{1}{\zeta(2)}$. The numbers whose greatest exponent in their prime factorization is 3 , they have positive density $\frac{1}{\zeta(4)}-\frac{1}{\zeta(3)}$, etc. Now, we shall prove that the sum of the infinite positive densities is the density of the union, namely 1 . The proof is trivial, since

$$
\begin{aligned}
\frac{1}{\zeta(2)}+\sum_{k=3}^{\infty}\left(\frac{1}{\zeta(k)}-\frac{1}{\zeta(k-1)}\right) & =\lim _{m \rightarrow \infty}\left(\frac{1}{\zeta(2)}+\sum_{k=3}^{m}\left(\frac{1}{\zeta(k)}-\frac{1}{\zeta(k-1)}\right)\right) \\
& =\lim _{m \rightarrow \infty} \frac{1}{\zeta(m)}=1
\end{aligned}
$$

for it is well-known that $\zeta(m) \rightarrow 1$ as $m \rightarrow \infty$.
The author knows many examples where the following conjecture is true but cannot prove it. Example 1.2 is a particular case of this conjecture.

Conjecture 1.3. Let s be an arbitrary fixed positive integer. Suppose that we have disjoint infinite sets of numbers $S_{i}(i \geq 1)$ whose union is the set S, that is, a partition of the set S. Let $S_{i}(x)$ be the number of numbers in the set S_{i} not exceeding x and let $S(x)$ be the number of numbers in the set S not exceeding x. Suppose that

$$
S_{i}(x)=\rho_{i} x^{\frac{1}{s}}+o\left(x^{\frac{1}{s}}\right)
$$

where $\rho_{i}>0$ and suppose that $S(x) \leq H x^{\frac{1}{s}}$, where $H>0$. Then

$$
S(x)=\sigma x^{\frac{1}{s}}+o\left(x^{\frac{1}{s}}\right)
$$

where

$$
\sigma=\sum_{i=1}^{\infty} \rho_{i}
$$

Note that the sum $\sum_{i=1}^{n} \rho_{i}$ of positive terms ρ_{i} is bounded by H for all n. Therefore the series $\sum_{i=1}^{\infty} \rho_{i}$ has a certain positive sum σ.

We suppose that $\rho_{i}>0$ for $i \geq 1$ since in the contrary case the conjecture can be false. For example, the number of square-free with k prime factors $(k \geq 1)$ is $o(x)$ by Landau's Theorem ([1]) and the set of all square-free has positive density $\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}$ (see equation (1.1)).

Perhaps, it is necessary add to the conjecture some additional conditions.

In the following theorem, we give a sufficient condition such that Conjecture 1.3 is true. Before, note that the equation (see Conjecture 1.3)

$$
\begin{equation*}
S_{i}(x)=\rho_{i} x^{\frac{1}{s}}+o\left(x^{\frac{1}{s}}\right) \tag{1.2}
\end{equation*}
$$

implies that there exists a positive number c_{i} such that

$$
S_{i}(x) \leq c_{i} \rho_{i} x^{\frac{1}{s}} \quad(x \geq 1)
$$

Theorem 1.4. Suppose that there exists a positive number C such that $c_{i} \leq C$ for all $i \geq 1$. Then Conjecture 1.3 holds .

Proof. Given $\epsilon>0$, there exists M depending on ϵ such that

$$
\begin{equation*}
\sum_{i>M} \rho_{i}<\epsilon \tag{1.3}
\end{equation*}
$$

We have (see 1.2)

$$
\begin{aligned}
S(x) & =\left(\sum_{1 \leq i \leq M} \rho_{i}\right) x^{\frac{1}{s}}+o\left(x^{\frac{1}{s}}\right)+F(x) \\
& =\sigma x^{\frac{1}{s}}-\left(\sum_{i>M} \rho_{i}\right) x^{\frac{1}{s}}+o\left(x^{\frac{1}{s}}\right)+F(x)
\end{aligned}
$$

where $F(x)$ is the contribution to $S(x)$ of the rest of the numbers not exceeding x. Therefore (see 1.3))

$$
0 \leq F(x) \leq \sum_{i>M} C \rho_{i} x^{\frac{1}{s}}=C x^{\frac{1}{s}} \sum_{i>M} \rho_{i}<C \epsilon x^{\frac{1}{s}}
$$

By combining these equations, we obtain

$$
\left|\frac{S(x)}{x^{\frac{1}{s}}}-\sigma\right| \leq \epsilon+\epsilon+C \epsilon \quad\left(x \geq x_{\epsilon}\right)
$$

that is,

$$
S(x)=\sigma x^{\frac{1}{s}}+o\left(x^{\frac{1}{s}}\right)
$$

since $\epsilon>0$ can be arbitrarily small.
Similar proofs, as the proof of Theorem 1.4, will be used in the proofs of other theorems in this article.

2. Lemmas

Let $h \geq 1$ and let $A_{h}(x)$ be the number of h-full numbers not exceeding x. It was proved by Ivić and Shiu (see either [2, Chapter 14] or [3]) that

$$
\begin{equation*}
A_{h}(x)=\gamma_{0, h} x^{\frac{1}{h}}+\gamma_{1, h} x^{\frac{1}{h+1}}+\cdots+\gamma_{h-1, h} x^{\frac{1}{2 h-1}}+\Delta_{h}(x) \tag{2.1}
\end{equation*}
$$

where $\Delta_{h}(x)=O\left(x^{\rho}\right)$ for ρ small.
We need the weaker lemma.
Lemma 2.1. The following asymptotic formula holds

$$
\begin{equation*}
A_{h}(x)=\gamma_{0, h} x^{\frac{1}{h}}+o\left(x^{\frac{1}{h}}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{0, h}=\frac{6}{\pi^{2}} C_{h}=\frac{6}{\pi^{2}} \prod_{p}\left(1+\frac{1}{(p+1)\left(p^{\frac{1}{h}}-1\right)}\right)=\prod_{p}\left(1+\frac{p-p^{\frac{1}{h}}}{p^{2}\left(p^{\frac{1}{h}}-1\right)}\right) \tag{2.3}
\end{equation*}
$$

Note that if $h=1$ then we obtain the trivial formula $A_{1}(x)=x+o(x)$.
Proof. Equation 2.2 is a weak consequence of (2.1). For equation 2.3) see the reference [4].

Lemma 2.2. Let $h \geq 1$ be an arbitrary but fixed integer. The following series converges

$$
\sum_{Q} \frac{1}{Q^{\frac{1}{h}}}
$$

where the sum runs over all $(h+1)$-full numbers Q.
Proof. Let a_{n} be the n-th $(h+1)$-full number and let $A_{h+1}(x)$ be the number of ($h+1$)-full numbers not exceeding x. By Lemma 2.1, we have $A_{h+1}(x) \sim$ $\gamma_{0, h} \sqrt[h+1]{x}$. Therefore if $x=a_{n}$ we obtain $n=A_{h+1}\left(a_{n}\right) \sim \gamma_{0, h} \sqrt[h+1]{a_{n}}$, that is, $a_{n} \sim \frac{n^{h+1}}{\gamma_{0, h}^{h+1}}$. Now, the lemma follows by the Comparison Criterion, since the series $\sum^{\gamma_{0, h}} \frac{1}{n^{\frac{h+1}{h}}}$ converges.

Lemma 2.3. Let $h \geq 2$ be an arbitrary but fixed integer. Let $r \geq 1$ be an arbitrary but fixed integer. Let us consider r distinct primes q_{1}, \ldots, q_{r}. Let $B_{q_{1}, \ldots, q_{r}}(x)$ be the number of h-free numbers not exceeding x relatively prime to $q_{1} \cdots q_{r}$. The following asymptotic formula holds

$$
B_{q_{1}, \ldots, q_{r}}(x)=\frac{1}{\zeta(h)} \prod_{i=1}^{r} \frac{1-\frac{1}{q_{i}}}{1-\frac{1}{q_{i}^{h}}} x+o(x) .
$$

Proof. See [5].
We have the following general theorem.
TheOrem 2.4. Let $f(i)$ be a sequence such that $0<f(i)<1(i \geq 1)$. Then

$$
\sum_{h=1}^{n}\left(\left(\prod_{i=1}^{h} f(i)\right)\left(\frac{1}{f(h)}-1\right)\right)=1-\left(\prod_{i=1}^{n} f(i)\right)
$$

Proof. Use mathematical induction.
Corollary 2.5. If, in addition, $\prod_{i=1}^{n} f(i) \rightarrow L$ as $i \rightarrow \infty$, then

$$
\sum_{h=1}^{\infty}\left(\left(\prod_{i=1}^{h} f(i)\right)\left(\frac{1}{f(h)}-1\right)\right)=1-L
$$

3. Main results

Our main results are some general theorems and corollaries about sets A and some examples where Conjecture 1.3 holds.

ThEOREM 3.1. Let $A(x)$ be the number of positive integers n in the set A not exceeding x. Then

$$
\begin{equation*}
A(x)=c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.1}
\end{equation*}
$$

where the positive constant c is

$$
c=\frac{6}{\pi^{2}}\left(\prod_{p}\left(1+\frac{p}{p+1}\left(\frac{1}{p^{\frac{k_{1, p}}{k}}}+\frac{1}{p^{\frac{k_{2, p}}{k}}}+\cdots\right)\right)\right) .
$$

Proof. The proof is similar to the proof of Theorem 1.4. Let us consider the numbers n in the set A of the form q^{k}, where q is square-free. The inequality $q^{k} \leq x$ is equivalent to the inequality $q \leq x^{\frac{1}{k}}$. Therefore, by equation (1.1) with $h=2$, the number of $q^{k} \leq x$ is

$$
\begin{equation*}
\frac{6}{\pi^{2}} x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.2}
\end{equation*}
$$

The rest of the numbers n in the set A are of the form $q^{k} Q$, where $\operatorname{gcd}(q, Q)=$ $1, q$ is square-free and Q is $(k+1)$-full number. The prime factorization of the $(k+1)$-full number Q is $Q=\prod_{i=1}^{s} s_{i}^{r_{i}}$, where s_{i} are different primes and $r_{i} \in E_{s_{i}} \backslash\{k\}$. By Lemma 2.3 with $h=2$ the number of these numbers n in the set A not exceeding x, that is $q^{k} Q \leq x$, where Q is fixed, is

$$
\begin{equation*}
\frac{6}{\pi^{2}} a(Q) \frac{x^{\frac{1}{k}}}{Q^{\frac{1}{k}}}+o\left(x^{\frac{1}{k}}\right) \tag{3.3}
\end{equation*}
$$

where, for simplicity, we put $a(Q)=\prod_{i=1}^{s} \frac{s_{i}}{s_{i}+1}$.
Given $\epsilon>0$, there exists M, depending on ϵ, such that (Lemma 2.2)

$$
\begin{equation*}
\sum_{Q>M} \frac{1}{Q^{\frac{1}{k}}}<\epsilon \tag{3.4}
\end{equation*}
$$

Equations (3.2), (3.3) and (3.4) give

$$
\begin{aligned}
A(x) & =\frac{6}{\pi^{2}}\left(1+\sum_{Q \leq M} a(Q) \frac{1}{Q^{\frac{1}{k}}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x) \\
& =c x^{\frac{1}{k}}-\frac{6}{\pi^{2}}\left(\sum_{Q>M} a(Q) \frac{1}{Q^{\frac{1}{k}}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x)
\end{aligned}
$$

where
$c=\frac{6}{\pi^{2}}\left(1+\sum_{Q} a(Q) \frac{1}{Q^{\frac{1}{k}}}\right)=\frac{6}{\pi^{2}}\left(\prod_{p}\left(1+\frac{p}{p+1}\left(\frac{1}{p^{\frac{k_{1, p}}{k}}}+\frac{1}{p^{\frac{k_{2, p}}{k}}}+\cdots\right)\right)\right)$
and (see 3.4)

$$
0 \leq F(x) \leq \sum_{M<Q \leq x}\left\lfloor\frac{x^{\frac{1}{k}}}{Q^{\frac{1}{k}}}\right\rfloor<\epsilon x^{\frac{1}{k}}
$$

Note that the number of solutions q to the equation $q^{k} Q \leq x$ does not exceed $\left\lfloor x^{\frac{1}{k}} / Q^{\frac{1}{k}}\right\rfloor$.

Therefore, by combining these equations, we obtain equation (3.1), since $\epsilon>0$ can be arbitrarily small. The theorem is proved.

Corollary 3.2. Let us consider positive integers n in the set A relatively prime to the square-free $q_{1} \cdots q_{s}$, where $q_{i}(i=1, \ldots, s)$ are distinct primes. The set of these positive integers n will be denoted $A_{q_{1}, \ldots, q_{s}} \subset A$. The number of positive integers n in the set $A_{q_{1}, \ldots, q_{s}}$ not exceeding x will be denoted $A_{q_{1}, \ldots, q_{s}}(x)$. We have

$$
\begin{equation*}
A_{q_{1}, \ldots, q_{s}}(x)=c^{\prime} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.5}
\end{equation*}
$$

where the positive constant c^{\prime} is

$$
\begin{equation*}
c^{\prime}=\frac{1}{\prod_{i=1}^{s}\left(1+\frac{1}{q_{i}}+\frac{1}{q_{i}^{\frac{k_{1}, q_{i}}{k}}}+\frac{1}{q_{i}^{\frac{k_{2}, q_{i}}{k}}}+\cdots\right)} \tag{3.6}
\end{equation*}
$$

Proof. The proof is similar to the proof of Theorem 1.4. Let us consider the numbers $n=q^{k}$ in the set $A_{q_{1}, \ldots, q_{s}}$, where q is square-free. The inequality $q^{k} \leq x$ is equivalent to the inequality $q \leq x^{\frac{1}{k}}$. By Lemma 2.3 with $h=2$, the number of $q^{k} \leq x$ is

$$
\begin{equation*}
\frac{6}{\pi^{2}}\left(\prod_{i=1}^{s} \frac{q_{i}}{q_{i}+1}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.7}
\end{equation*}
$$

The rest of the numbers n in the set $A_{q_{1}, \ldots, q_{s}}$ are of the form $q^{k} Q$, where $\operatorname{gcd}(q, Q)=1, q$ is square-free and Q is $(k+1)$-full number. The prime factorization of the $(k+1)$-full number Q is $Q=\prod_{i=1}^{s} s_{i}^{r_{i}}$, where s_{i} are different primes, $r_{i} \in E_{s_{i}} \backslash\{k\}$ and $\operatorname{gcd}\left(Q, q_{1} \cdots q_{s}\right)=1$. By Lemma 2.3 with $h=2$, the number of these numbers n in the set $A_{q_{1}, \ldots, q_{s}}$ not exceeding x, that is $q^{k} Q \leq x$, where Q is fixed, is

$$
\begin{equation*}
\frac{6}{\pi^{2}}\left(\prod_{i=1}^{s} \frac{q_{i}}{q_{i}+1}\right) a(Q) \frac{x^{\frac{1}{k}}}{Q^{\frac{1}{k}}}+o\left(x^{\frac{1}{k}}\right) \tag{3.8}
\end{equation*}
$$

where, for simplicity, we put $a(Q)=\prod_{i=1}^{s} \frac{s_{i}}{s_{i}+1}$.
Given $\epsilon>0$, there exists M, depending on ϵ, such that (Lemma 2.2)

$$
\begin{equation*}
\sum_{Q>M} \frac{1}{Q^{\frac{1}{k}}}<\epsilon \tag{3.9}
\end{equation*}
$$

Equations (3.7), (3.8) and (3.9) give

$$
\begin{aligned}
A_{q_{1}, \ldots, q_{s}}(x) & =\frac{6}{\pi^{2}}\left(\prod_{i=1}^{s} \frac{q_{i}}{q_{i}+1}\right)\left(1+\sum_{Q \leq M} a(Q) \frac{1}{Q^{\frac{1}{k}}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x) \\
& =c^{\prime \prime} x^{\frac{1}{k}}-\frac{6}{\pi^{2}}\left(\prod_{i=1}^{s} \frac{q_{i}}{q_{i}+1}\right)\left(\sum_{Q>M} a(Q) \frac{1}{Q^{\frac{1}{k}}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x)
\end{aligned}
$$

where

$$
\begin{aligned}
c^{\prime \prime} & =\frac{6}{\pi^{2}}\left(\prod_{i=1}^{s} \frac{q_{i}}{q_{i}+1}\right)\left(1+\sum_{Q} a(Q) \frac{1}{Q^{\frac{1}{k}}}\right) \\
& =\frac{6}{\pi^{2}}\left(\prod_{i=1}^{s} \frac{q_{i}}{q_{i}+1}\right)\left(\prod_{p \neq q_{i}}\left(1+\frac{p}{p+1}\left(\frac{1}{p^{\frac{k_{1, p}}{k}}}+\frac{1}{p^{\frac{k_{2, p}}{k}}}+\cdots\right)\right)\right)=c c^{\prime}
\end{aligned}
$$

and

$$
0 \leq F(x) \leq \sum_{M<Q \leq x}\left\lfloor\frac{x^{\frac{1}{k}}}{Q^{\frac{1}{k}}}\right\rfloor<\epsilon x^{\frac{1}{k}}
$$

Therefore, by combining these equations, we obtain equation 3.5, since $\epsilon>0$ can be arbitrarily small. The corollary is proved.

Corollary 3.3. Let p_{h} be the h-th prime number and let $B_{p_{h}}$ be the set of positive integers n in the set A such that p_{h} is their least prime factor. Then the infinite sets $B_{p_{h}}$ are a partition of the set A, since if $h_{1} \neq h_{2}$ then $B_{p_{h_{1}}} \cap B_{p_{h_{2}}}$ is the empty set. Let $B_{p_{h}}(x)$ be the number of positive integers n in the set $B_{p_{h}}$ not exceeding x. Then

$$
\begin{equation*}
B_{p_{h}}(x)=c_{p_{h}} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.10}
\end{equation*}
$$

where the positive constant $c_{p_{h}}$ is

$$
\begin{equation*}
c_{p_{h}}=\frac{\frac{1}{p_{h}}+\frac{1}{p_{h}^{\frac{k_{1, p h}}{k}}}+\frac{1}{p_{h}^{\frac{k_{2}, p_{h}}{k}}}+\cdots}{\prod_{i=1}^{h}\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{\frac{k_{1, p}}{k}}}+\frac{1}{p_{i} \frac{k_{2, p_{i}}^{k}}{k}}+\cdots\right)} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{h=1}^{\infty} c_{p_{h}}=1 \tag{3.12}
\end{equation*}
$$

Hence

$$
\sum_{h=1}^{\infty} c_{p_{h}} c=c
$$

and consequently Conjecture 1.3 holds for this partition of the set A (see equation (3.1).

Proof. The proof is similar to the proof of Theorem 1.4. If q_{1}, \ldots, q_{s} is the set of the first h primes, that is p_{1}, \ldots, p_{h}, then equations (3.5) and (3.6) become

$$
A_{p_{1}, \ldots, p_{h}}(x)=c^{\prime} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

where the positive constant c^{\prime} is

$$
c^{\prime}=\frac{1}{\prod_{i=1}^{h}\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{\frac{k_{1, p}, p_{i}}{k}}}+\frac{1}{p_{i}^{\frac{k_{2}, p_{i}}{k}}}+\cdots\right)}
$$

Furthermore, there exists a positive constant b such that

$$
\begin{equation*}
A_{p_{1}, \ldots, p_{h}}(x)<b x^{\frac{1}{k}} \quad(x \geq 1) . \tag{3.13}
\end{equation*}
$$

Let us consider the numbers with least prime factor p_{h} not exceeding x such that p_{h} has exponent m, that is $p_{h}^{m} a \leq x$, where $m \in E_{p_{h}}=\left\{k, k_{1, p_{h}}, k_{2, p_{h}}, \ldots\right\}$, with $1 \leq k<k_{1, p_{h}}<k_{2, p_{h}}<\cdots$ and $a \in A_{p_{1}, \ldots, p_{h}}$. The number of these numbers is

$$
\begin{equation*}
c^{\prime} c \frac{x^{\frac{1}{k}}}{p_{h}^{\frac{m}{k}}}+o\left(x^{\frac{1}{k}}\right) \tag{3.14}
\end{equation*}
$$

Note that the following series

$$
\sum_{m \in E_{p_{h}}} \frac{1}{p_{h}^{\frac{m}{k}}}
$$

is convergent. Therefore if $\epsilon>0$, then there exists M such that

$$
\begin{equation*}
\sum_{\substack{m \in E_{p_{h}} \\ m>M}} \frac{1}{p_{h}^{\frac{m}{k}}}<\epsilon \tag{3.15}
\end{equation*}
$$

Equations (3.14) and (3.15) give

$$
\begin{aligned}
B_{p_{h}}(x) & =c^{\prime} c x^{\frac{1}{k}}\left(\sum_{\substack{m \in E_{p_{h}} \\
m \leq M}} \frac{1}{p_{h}^{\frac{m}{k}}}\right)+o\left(x^{\frac{1}{k}}\right)+F(x) \\
& =c_{p_{h}} c x^{\frac{1}{k}}-c^{\prime} c x^{\frac{1}{k}}\left(\sum_{\substack{m \in E_{p_{h}} \\
m>M}} \frac{1}{p_{h}^{\frac{m}{k}}}\right)+o\left(x^{\frac{1}{k}}\right)+F(x)
\end{aligned}
$$

where (see 3.13 and 3.15)

$$
0 \leq F(x) \leq \sum_{\substack{m \in E_{p_{h}} \\ m>M}} b \frac{x^{\frac{1}{k}}}{p_{h}^{\frac{m}{k}}}<b \epsilon x^{\frac{1}{k}}
$$

Finally, by combining these equations, we obtain equation 3.10, since $\epsilon>0$ can be arbitrarily small.

Equation (3.12) is an immediate consequence of equation (3.11), Theorem 2.4 and Corollary 2.5 . Note that in this case $L=0$, since $\prod_{i=1}^{\infty}\left(1+\frac{1}{p_{i}}\right)=$ ∞. The corollary is proved.

Corollary 3.4. Let $B_{p_{h} \geq p_{s}}$ be the set of positive integers n in the set A such that $p_{h} \geq p_{s}$ is their least prime factor. Let $B_{p_{h} \geq p_{s}}(x)$ be the number of positive integers n in the set $B_{p_{h} \geq p_{s}}$ not exceeding x. Then

$$
\begin{equation*}
B_{p_{h} \geq p_{s}}(x)=d_{s} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.16}
\end{equation*}
$$

where the positive constant d_{s} is

$$
d_{s}=\sum_{h=s}^{\infty} c_{p_{h}}=\frac{1}{\prod_{i=1}^{s-1}\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i} \frac{k_{1, p_{i}}^{k}}{k}}+\frac{1}{p_{i} \frac{k_{2, p_{i}}^{k}}{k}}+\cdots\right)}
$$

Therefore

$$
\begin{equation*}
\lim _{s \rightarrow \infty} d_{s}=0 \tag{3.17}
\end{equation*}
$$

Proof. By Corollary 3.2, we have

$$
B_{p_{h} \geq p_{s}}(x)=A_{p_{1}, \ldots, p_{s-1}}(x)=c^{\prime} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)=d_{s} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

where

$$
d_{s}=c^{\prime}=\frac{1}{\prod_{i=1}^{s-1}\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{\frac{k_{1, p_{i}}^{k}}{}}}+\frac{1}{p_{i}^{\frac{k_{2, p}^{k}}{k}}}+\cdots\right)} .
$$

On the other hand, by equation 3.12 , we have

$$
\sum_{h=1}^{s-1} c_{p_{h}}+\sum_{h=s}^{\infty} c_{p_{h}}=1
$$

Therefore

$$
\sum_{h=s}^{\infty} c_{p_{h}}=1-\sum_{h=1}^{s-1} c_{p_{h}}
$$

and by Theorem 2.4 (see 3.11)

$$
1-\sum_{h=1}^{s-1} c_{p_{h}}=c^{\prime}
$$

The corollary is proved.
Let $H(n)$ be the greatest exponent in the prime factorization of n. Niven ([6]) proved the following equality

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\sum_{n \leq x} H(n)}{x}=1+\sum_{k=2}^{\infty}\left(1-\frac{1}{\zeta(k)}\right) \tag{3.18}
\end{equation*}
$$

In the following theorem we generalize this limit to sets A.

Theorem 3.5. Let us consider the set A. Then

$$
\begin{equation*}
\sum_{\substack{n \in A \\ n \leq x}} H(n)=c_{A} x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.19}
\end{equation*}
$$

where the constant c_{A} is

$$
\begin{equation*}
c_{A}=\frac{6}{\pi^{2}}\left(k+\sum_{Q \in A} a(Q) \frac{H(Q)}{Q^{\frac{1}{k}}}\right) \tag{3.20}
\end{equation*}
$$

The sum runs over all $(k+1)$-full number Q in the set A, that is, $Q=\prod_{i=1}^{s} s_{i}^{r_{i}}$, where s_{i} are different primes, $r_{i} \in E_{s_{i}} \backslash\{k\}$ and $a(Q)=\prod_{i=1}^{s} \frac{s_{i}}{s_{i}+1}$.

If $A=N$ is the set of all positive integers then equations (3.19) and (3.20) become

$$
\sum_{n \leq x} H(n)=c_{N} x+o(x)
$$

where the constant c_{N} is the Niven's constant (see (3.18)

$$
\begin{equation*}
c_{N}=1+\sum_{k=2}^{\infty}\left(1-\frac{1}{\zeta(k)}\right) \tag{3.21}
\end{equation*}
$$

Proof. The proof is similar to the proof of Theorem 1.4. Let us consider the numbers n in the set A of the form q^{k}, where q is square-free. Therefore $H\left(q^{k}\right)=k$. The inequality $q^{k} \leq x$ is equivalent to the inequality $q \leq x^{\frac{1}{k}}$. Therefore, by equation (1.1) with $h=2$, the contribution of the numbers $q^{k} \leq x$ to the sum $\sum_{\substack{n \in A \\ n \leq x}} H(n)$ is

$$
\begin{equation*}
k \frac{6}{\pi^{2}} x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{3.22}
\end{equation*}
$$

The rest of the numbers n in the set A are of the form $q^{k} Q$, where $\operatorname{gcd}(q, Q)=$ $1, q$ is square-free and Q is $(k+1)$-full number. The prime factorization of the $(k+1)$-full number Q is $Q=\prod_{i=1}^{s} s_{i}^{r_{i}}$, where s_{i} are different primes and $r_{i} \in E_{s_{i}} \backslash\{k\}$. Therefore $H\left(q^{k} Q\right)=H(Q)$. By Lemma 2.3 with $h=2$, the contribution of these numbers n in the set A not exceeding x to the sum $\sum_{\substack{n \in A \\ n \leq x}} H(n)$, that is $q^{k} Q \leq x$, where Q is fixed, is

$$
\begin{equation*}
H(Q) \frac{6}{\pi^{2}} a(Q) \frac{x^{\frac{1}{k}}}{Q^{\frac{1}{k}}}+o\left(x^{\frac{1}{k}}\right) \tag{3.23}
\end{equation*}
$$

where, for simplicity, we put $a(Q)=\prod_{i=1}^{s} \frac{s_{i}}{s_{i}+1}$.

Let $d(n)$ be the number of divisors of n. It is well known ([1]) that $d(n)=$ $o\left(n^{\sigma}\right)$ for all $\sigma>0$ and consequently, since $H(n)<d(n)$, we obtain that the series (see the proof of Lemma 2.2)

$$
\sum_{\substack{n \in A \\ n \leq x}} \frac{H(n)}{Q^{\frac{1}{k}}}
$$

converges.
Consequently, given $\epsilon>0$, there exists M, depending on ϵ, such that

$$
\begin{equation*}
\sum_{Q>M} \frac{H(Q)}{Q^{\frac{1}{k}}}<\epsilon \tag{3.24}
\end{equation*}
$$

Equations (3.22), 3.23 and (3.24) give

$$
\begin{aligned}
\sum_{\substack{n \in A \\
n \leq x}} H(n) & =\frac{6}{\pi^{2}}\left(k+\sum_{\substack{Q \leq M \\
Q \in A}} a(Q) \frac{H(Q)}{Q^{\frac{1}{k}}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x) \\
& =c_{A} x^{\frac{1}{k}}-\frac{6}{\pi^{2}}\left(\sum_{\substack{Q>M \\
Q \in A}} a(Q) \frac{H(Q)}{Q^{\frac{1}{k}}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x)
\end{aligned}
$$

where

$$
c_{A}=\frac{6}{\pi^{2}}\left(k+\sum_{Q \in A} a(Q) \frac{H(Q)}{Q^{\frac{1}{k}}}\right)
$$

and (see (3.24))

$$
0 \leq F(x) \leq \sum_{\substack{M<Q \leq x \\ Q \in A}} H(Q) \frac{x^{\frac{1}{k}}}{Q^{\frac{1}{k}}}<\epsilon x^{\frac{1}{k}}
$$

Therefore, by combining these equations, we obtain equation (3.19), since $\epsilon>0$ can be arbitrarily small.

Now, if A is the set of all positive integers and consequently $k=1$, we can write 3.20 in the form 3.21 . Let us consider the square-full Q with the same greatest exponent m. We have

$$
\begin{aligned}
& \frac{6}{\pi^{2}} \sum_{Q} a(Q) \frac{m}{Q}=\frac{6 m}{\pi^{2}} \prod_{p}\left(1+\frac{p}{p+1}\left(\frac{1}{p^{2}}+\cdots+\frac{1}{p^{m}}\right)\right) \\
& \quad-\frac{6 m}{\pi^{2}} \prod_{p}\left(1+\frac{p}{p+1}\left(\frac{1}{p^{2}}+\cdots+\frac{1}{p^{m-1}}\right)\right)=m\left(\frac{1}{\zeta(m+1)}-\frac{1}{\zeta(m)}\right)
\end{aligned}
$$

where Q runs over all square-full Q with the same greatest exponent m. Therefore, we have

$$
\begin{aligned}
\frac{6}{\pi^{2}}\left(1+\sum_{Q} a(Q) \frac{H(Q)}{Q}\right) & =\frac{1}{\zeta(2)}+\sum_{m=2}^{\infty} m\left(\frac{1}{\zeta(m+1)}-\frac{1}{\zeta(m)}\right) \\
& =1+\sum_{k=2}^{\infty}\left(1-\frac{1}{\zeta(k)}\right)
\end{aligned}
$$

The theorem is proved.

4. Formulas when a small number of primes is removed from the set A

In this section we obtain formulas when a small number of primes is removed from the set A.

We need two lemmas.
The set of square-free numbers has positive density $\frac{6}{\pi^{2}}$. Let P be the set of all positive prime numbers. In the following lemma we study the counting function of square-free numbers such that their prime factors are in the set $P \backslash B$ where B is a small set of infinite primes.

Lemma 4.1. Suppose that B is a set of infinite primes p such that the series $\sum_{p \in B} \frac{1}{p}$ converges. Let $C(x)$ be the number of square-free not exceeding x such that their prime factors are in the set $P \backslash B$. Then

$$
\begin{equation*}
C(x)=\frac{6}{\pi^{2}} \frac{1}{c_{B}} x+o(x) \tag{4.1}
\end{equation*}
$$

where

$$
c_{B}=\prod_{p \in B}\left(1+\frac{1}{p}\right)
$$

Proof. We have

$$
\prod_{p \in B}\left(1+\frac{1}{p}\right)=c_{B}
$$

where c_{B} is a positive number, since the series $\sum_{p \in B} \frac{1}{p}$ converges.

Therefore, given $\epsilon>0$, there exists M, depending on ϵ, such that

$$
\prod_{\substack{p>M \\ p \in B}} \frac{1}{\left(1+\frac{1}{p}\right)}>1-\epsilon
$$

and

$$
\sum_{\substack{p>M \\ p \in B}} \frac{1}{p}<\epsilon
$$

Lemma 2.3 with $h=2$ gives

$$
\begin{aligned}
C(x)= & x \frac{6}{\pi^{2}} \prod_{\substack{p \leq M \\
p \in B}} \frac{1}{\left(1+\frac{1}{p}\right)}+o(x)-F(x)=\frac{6}{\pi^{2}} \frac{1}{c_{B}} x+o(x) \\
& +\frac{6}{\pi^{2}} \prod_{\substack{p \leq M \\
p \in B}} \frac{1}{\left(1+\frac{1}{p}\right)}\left(1-\prod_{\substack{p>M \\
p \in B}} \frac{1}{\left(1+\frac{1}{p}\right)}\right)-F(x)
\end{aligned}
$$

where

$$
0 \leq F(x) \leq \sum_{\substack{p>M \\ p \in B}} \frac{x}{p}<\epsilon x
$$

By combining these equations we obtain equation 4.1 , since $\epsilon>0$ can be arbitrarily small.

In the following lemma we study the square-free numbers relatively prime to a certain number and such that the prime factors of these square-free are in the set $P \backslash B$ where B is a small set of infinite primes

Lemma 4.2. Suppose that B is a set of infinite primes p such that the series $\sum_{p \in A} \frac{1}{p}$ converges. Let $C(x)$ be the number of square-free not exceeding x such that their prime factors are in the set $P-B$ and $C_{q_{1}, \ldots, q_{s}}(x)$ the number of these square-free not exceeding x relatively prime to the square-free $q_{1} \cdots q_{s}$, where $q_{i} \in P \backslash B$. Then

$$
C_{q_{1}, \ldots, q_{s}}(x)=\frac{6}{\pi^{2}}\left(\prod_{i=1}^{s} \frac{1}{1-\frac{1}{q_{i}}}\right) \frac{1}{c_{B}} x+o(x)
$$

Proof. The proof is the same as in Lemma 4.1.

Now, we can prove the main theorem of this section.
ThEOREM 4.3. We shall associate each prime $p \in P \backslash B$, where the set B was defined in Lemma 4.1, with a finite or infinite set E_{p} of possible exponents, namely $E_{p}=\left\{k, k_{1, p}, k_{2, p}, \ldots\right\}$, where $1 \leq k<k_{1, p}<k_{2, p}<\cdots$. Therefore all sets E_{p} have the same least element k. Let us consider the positive integers n whose prime factorization is of the form $n=q_{1}^{r_{1}} q_{2}^{r_{2}} \cdots q_{s}^{r_{s}}$, where $q_{i} \in P \backslash B$ $(i=1, \ldots, s)$ are distinct primes and $r_{i} \in E_{q_{i}}(i=1, \ldots, s)$ are the exponents. The set of these positive integers n will be denoted by A^{\prime}.

Let $A^{\prime}(x)$ be the number of positive integers n in the set A^{\prime} not exceeding x. We have

$$
A^{\prime}(x)=\frac{1}{c_{B}} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

where the positive constant c is

$$
c=\frac{6}{\pi^{2}}\left(\prod_{p \in P-B}\left(1+\frac{p}{p+1}\left(\frac{1}{p^{\frac{k_{1, p}}{k}}}+\frac{1}{p^{\frac{k_{2, p}}{k}}}+\cdots\right)\right)\right)
$$

Let us consider the positive integers n in the set A^{\prime} relatively prime to the square-free $q_{1} \cdots q_{s}$, where $q_{i} \in P \backslash B(i=1, \ldots, s)$ are distinct primes. The set of these positive integers n will be denoted $A_{q_{1}, \ldots, q_{s}}^{\prime} \subset A^{\prime}$. The number of positive integers n in the set $A_{q_{1}, \ldots, q_{s}}^{\prime}$ not exceeding x will be denoted $A_{q_{1}, \ldots, q_{s}}^{\prime}(x)$. We have

$$
A_{q_{1}, \ldots, q_{s}}^{\prime}(x)=\frac{1}{c_{B}} c^{\prime} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

where the positive constant c^{\prime} is

$$
c^{\prime}=\frac{1}{\prod_{i=1}^{s}\left(1+\frac{1}{q_{i}}+\frac{1}{q_{i}^{\frac{k_{1}, q_{i}}{k}}}+\frac{1}{q_{i}^{\frac{k_{2}, q_{i}}{k}}}+\cdots\right)}
$$

Proof. The proof is the same as the proof of Theorem 3.1 and Corollary 3.2. In this case we use Lemma 4.1 and Lemma 4.2 .

5. Applications and examples

Example 5.1. All positive integers, h-free numbers $(h \geq 2)$, h-full numbers and h-full k-free numbers $(k>h)$ are particular cases of sets A. Therefore the theorems and corollaries proved in Section 3 are true for these special sets of numbers.

1) All positive integers.

In this case equation (3.1) becomes the trivial equation $A(x)=x+o(x)$.
Equation 3.5 becomes

$$
A_{q_{1}, \ldots, q_{s}}(x)=\left(\prod_{i=1}^{s}\left(1-\frac{1}{q_{i}}\right)\right) x+o(x)
$$

and equation 3.10 becomes

$$
B_{p_{h}}(x)=\frac{1}{p_{h}} \prod_{i=1}^{h-1}\left(1-\frac{1}{p_{i}}\right) x+o(x)
$$

2) h-free numbers.

For example, in this case equation (3.1) becomes equation (1.1) and equation (3.5) becomes Lemma 2.3 .
3) h-full numbers.

For example, in this case equation (3.1) becomes Lemma 2.1 and equation 3.5 becomes

$$
A_{q_{1}, \cdots, q_{s}}(x)=\left(\prod_{i=1}^{s} \frac{q_{i}\left(q_{i}^{\frac{1}{h}}-1\right)}{q_{i}\left(q_{i}^{\frac{1}{h}}-1\right)+q_{i}^{\frac{1}{h}}}\right) \gamma_{0, h} x^{\frac{1}{h}}+o\left(x^{\frac{1}{h}}\right)
$$

where $\gamma_{0, h}$ is defined by equation (2.3).
4) h-full k-free numbers $(k>h)$.

For example, equation (3.1) becomes

$$
\begin{equation*}
A(x)=\frac{6}{\pi^{2}} \prod_{p}\left(\frac{\frac{1}{p^{1+\frac{1}{h}}}-\frac{1}{p^{\frac{k}{h}}}}{\left(1+\frac{1}{p}\right)\left(1-\frac{1}{p^{\frac{1}{h}}}\right)}\right) x^{\frac{1}{h}}+o\left(x^{\frac{1}{h}}\right) \tag{5.1}
\end{equation*}
$$

and equation (3.5) becomes

$$
A_{q_{1}, \ldots, q_{s}}(x)=\prod_{i=1}^{s}\left(1+\frac{\frac{1}{q_{i}}-\frac{1}{q_{i}^{\frac{k}{h}}}}{1-\frac{1}{q_{i}^{\frac{1}{h}}}}\right)^{-1} \frac{6}{\pi^{2}} \prod_{p}\left(\frac{\frac{1}{p^{1+\frac{1}{h}}}-\frac{1}{p^{\frac{k}{h}}}}{\left(1+\frac{1}{p}\right)\left(1-\frac{1}{p^{\frac{1}{h}}}\right)}\right) x^{\frac{1}{h}}+o\left(x^{\frac{1}{h}}\right)
$$

Now, we give an example where Conjecture 1.3 holds.
Example 5.2. Let $h \geq 2$ be an arbitrary but fixed integer. Equation (5.1) can be written, after some calculations, in the form

$$
\begin{aligned}
A(x) & =\gamma_{0, h} \prod_{p}\left(1-\frac{1}{p^{\frac{k}{h}}} \frac{p^{1+\frac{1}{h}}}{(p+1)\left(p^{\frac{1}{h}}-1\right)+1}\right) x^{\frac{1}{h}}+o\left(x^{\frac{1}{h}}\right) \\
& =\rho_{k} x^{\frac{1}{h}}+o\left(x^{\frac{1}{h}}\right) .
\end{aligned}
$$

We can divide the set of h-full numbers, whose positive density is $\gamma_{0, h}$, in the following infinite disjoint subsets. The numbers whose greatest exponent in their prime factorization is h, and consequently they have positive density ρ_{h+1}. The numbers whose greatest exponent in their prime factorization is $h+1$, they have positive density $\rho_{h+2}-\rho_{h+1}$. The numbers whose greatest exponent in their prime factorization is $h+2$, they have positive density $\rho_{h+3}-\rho_{h+2}$, etc. The sum of the infinite positive densities is the density of the union, namely $\gamma_{0, h}$, that is

$$
\begin{equation*}
\rho_{h+1}+\sum_{k=h+2}^{\infty}\left(\rho_{k}-\rho_{k-1}\right)=\gamma_{0, h} \tag{5.2}
\end{equation*}
$$

Therefore Conjecture 1.3 holds.
The proof of equation (5.2) is as the proof in Example 1.2, since

$$
\lim _{k \rightarrow \infty} \prod_{p}\left(1-\frac{1}{p^{\frac{k}{h}}} \frac{p^{1+\frac{1}{h}}}{(p+1)\left(p^{\frac{1}{h}}-1\right)+1}\right)=1
$$

The proof of this limit is as follows. Note that

$$
\prod_{p_{i}}\left(1-\frac{1}{p_{i}^{\frac{k}{h}}} \frac{p_{i}^{1+\frac{1}{h}}}{\left(p_{i}+1\right)\left(p_{i}^{\frac{1}{h}}-1\right)+1}\right)=\prod_{p_{i}}\left(1-\frac{c\left(p_{i}\right)}{p_{i}^{\frac{k}{h}}}\right)
$$

where $\lim _{i \rightarrow \infty} c\left(p_{i}\right)=1$. Therefore, given $\epsilon>0$, there exists m such that $c\left(p_{i}\right)<1+\epsilon$ if $i \geq m$ and consequently $\frac{c\left(p_{i}\right)}{p_{i}^{\frac{k}{h}}}<\frac{1+\epsilon}{2}$ if $i \geq m$ and $\frac{1}{1-\frac{c\left(p_{i}\right)}{p_{i}^{h}}}<$ $\frac{1}{1-\frac{1+\epsilon}{2}}=\frac{2}{1-\epsilon}$ if $i \geq m$. Now, we also have (logarithmic power series and geometric power series)

$$
-\log (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots \leq x+x^{2}+x^{3}+\cdots=\frac{x}{1-x}
$$

where $0<x<1$. Consequently

$$
\begin{aligned}
\lim _{k \rightarrow \infty} & \prod_{p_{i}}\left(1-\frac{1}{p_{i}^{\frac{k}{h}}} \frac{p_{i}^{1+\frac{1}{h}}}{\left(p_{i}+1\right)\left(p_{i}^{\frac{1}{h}}-1\right)+1}\right) \\
& =\lim _{k \rightarrow \infty} \prod_{i=1}^{m-1} \prod_{p_{i}}\left(1-\frac{1}{p_{i}^{\frac{k}{h}}} \frac{p_{i}^{1+\frac{1}{h}}}{\left(p_{i}+1\right)\left(p_{i}^{\frac{1}{h}}-1\right)+1}\right) \lim _{k \rightarrow \infty} \prod_{i=m}^{\infty}\left(1-\frac{c\left(p_{i}\right)}{p_{i}^{\frac{k}{h}}}\right) \\
& =\lim _{k \rightarrow \infty} \prod_{i=m}^{\infty}\left(1-\frac{c\left(p_{i}\right)}{p_{i}^{\frac{k}{h}}}\right)=\lim _{k \rightarrow \infty} \exp \left(-\sum_{i=m}^{\infty}-\log \left(1-\frac{c\left(p_{i}\right)}{p_{i}^{\frac{k}{h}}}\right)\right) \\
& =e^{0}=1,
\end{aligned}
$$

since

$$
\begin{aligned}
0 & \leq \sum_{i=m}^{\infty}-\log \left(1-\frac{c\left(p_{i}\right)}{p_{i}^{\frac{k}{h}}}\right) \leq \sum_{i=m}^{\infty} \frac{c\left(p_{i}\right)}{p_{i}^{\frac{k}{h}}} \frac{1}{1-\frac{c\left(p_{i}\right)}{p_{i}^{\frac{h}{h}}}} \\
& \leq \frac{2(1+\epsilon)}{(1-\epsilon)} \sum_{i=m}^{\infty} \frac{1}{p_{i}^{\frac{k}{h}}} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$, and $(\zeta(s)-1) \rightarrow 0$ as $s \rightarrow \infty$. The proof is complete.
In the following theorem we study a particular case of Conjecture 1.3 .
Theorem 5.3. Consider the set A. By Theorem 3.1, we have

$$
\begin{equation*}
A(x)=c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{5.3}
\end{equation*}
$$

Let p_{h} be the h-th prime number and let $B_{p_{h}}$ be the set of positive integers n in the set A such that p_{h} is their least prime factor. Then, by Corollary 3.3, the infinite subsets $B_{p_{h}}$ are a partition of the set A. Let $B_{p_{h}}(x)$ be the number of positive integers n in the subset $B_{p_{h}}$ not exceeding x. Then, by Corollary 3.3,

$$
B_{p_{h}}(x)=c_{p_{h}} c x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

Let us consider a set S included in $A(S \subseteq A)$ such that $S(x)$ is the number of numbers in the set S not exceeding x. Now, consider the partition of the
set S in the infinite subsets $S_{p_{h}}=S \cap B_{p_{h}}$ and suppose that the number of numbers in the subset $S_{p_{h}}$ not exceeding x is

$$
\begin{equation*}
S_{p_{h}}(x)=s_{p_{h}} x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right) \tag{5.4}
\end{equation*}
$$

where $s_{p_{h}}$ is a positive constant depending of p_{h}. Then

$$
S(x)=s x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

where

$$
s=\sum_{h=1}^{\infty} s_{p_{h}}
$$

and consequently Conjecture 1.3 holds for the set S.
Proof. Note that the series $\sum_{h=1}^{\infty} s_{p_{h}}$ has increasing partial sums bounded by c (see equation (5.3)) therefore it has a positive sum s.

Given $\epsilon>0$ there exists a prime p_{s}, depending of ϵ, such that

$$
\sum_{p_{h}>p_{s}} s_{p_{h}}<\epsilon
$$

By equation (5.4), we have

$$
\begin{aligned}
S(x) & =\left(\sum_{p_{h} \leq p_{s}} s_{p_{h}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x) \\
& =s x^{\frac{1}{k}}-\left(\sum_{p_{h}>p_{s}} s_{p_{h}}\right) x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)+F(x)
\end{aligned}
$$

where (see 3.16) and 3.17)

$$
0 \leq F(x) \leq B_{p_{h} \geq p_{s}}(x) \leq \epsilon x^{\frac{1}{k}}
$$

By combining these equations we obtain

$$
S(x)=s x^{\frac{1}{k}}+o\left(x^{\frac{1}{k}}\right)
$$

since $\epsilon>0$ can be arbitrarily small.

Acknowledgements. The author is very grateful to the anonymous referee for his / her helpful suggestions and to the Editor-in-Chief. The author is very grateful to Universidad Nacional de Luján.

References

[1] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford, at the Clarendon Press, 1960.
[2] A. Ivić, The Riemann Zeta-Function, Dover Publications, Inc., Mineola, NY, 2003.
[3] A. Ivić and P. Shiu, The distribution of powerful integers, Illinois J. Math. 26 (1982), no. 4, 576-590.
[4] R. Jakimczuk, The kernel of powerful numbers, Int. Math. Forum 12 (2017), no. 15, 721-730.
[5] R. Jakimczuk and M. Lalín, Sums of $\omega(n)$ and $\Omega(n)$ over the k-free parts and k-full parts of some particular sequences, Integers 22 (2022), Paper No. A113, 22 pp.
[6] I. Niven, Averages of exponents in factoring integers, Proc. Amer. Math. Soc. 22 (1969), 356-360.

Departamento de Ciencias Básicas
División Matemática
Universidad Nacional de Luján
Buenos Aires
Argentina
e-mail: jakimczu@mail.unlu.edu.ar

[^0]: Received: 18.06.2023. Accepted: 29.11.2023.
 (2020) Mathematics Subject Classification: 11A99, 11B99.

 Key words and phrases: sets of numbers, counting function, general theorems, least prime factor.
 © 2023 The Author(s).
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/1.

