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SOME GENERAL THEOREMS
ABOUT A CLASS OF SETS OF NUMBERS

RAFAEL JAKIMCZUK

Abstract. We prove a theorem which unifies some formulas, for example
the counting function, of some sets of numbers including all positive integers,
h-free numbers, h-full numbers, etc. We also establish a conjecture and give
some examples where the conjecture holds.

1. Introduction

Let h > 1 be an arbitrary but fixed positive integer. A number is h-full if all
the distinct primes in its prime factorization have multiplicity (or exponent)
greater than or equal to h, that is, the number ¢;* --- ¢S is h-full if s; > h
(i=1,...,r) (r>1). If h =1 we obtain all the positive integers. If h = 2 the
numbers are called square-full or powerful.

Let A > 2 be an arbitrary but fixed positive integer. A number is h-free if all
the distinct primes in its prime factorization have multiplicity (or exponent)
less than or equal to h— 1, that is, the number ¢;* - - - g5 is h-free if s; < h—1
(i=1,...,7) (r > 1). If h =2 we obtain all the square-free numbers. If h =3
the numbers are called cube-free.
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Let Qn(z) be the number of h-free numbers not exceeding z. It is well-
known ([I]) that

1
(1.1) Qn(x) = @x + o(x).

A number is k-free h-full (k > h) if it is simultaneously a k-free number and
h-full number, that is, the number ¢;* - - - ¢& is k-free h-full if h < s; <k —1
(i=1,...,r) (r>1).

These three special cases of numbers are very well studied and they are
particular cases of the following sets of numbers.

DEFINITION 1.1. We shall associate each prime p with a finite or infinite
set E, of possible exponents, namely E, = {k, k1 p,k2p,...}, where 1 <k <
k1p < kap < ---. Therefore all sets E), have the same least element k. Let
us consider the positive integers n whose prime factorization is of the form
n = qi'qy® - --qL°, where ¢; (i = 1,...,s) are distinct primes and r; € Ey,
(i =1,...,s) are the exponents. The set of these positive integers n will be
denoted by A.

Consequently, h-free, h-full and k-free h-full numbers (k > h) are particu-
lar sets of A.

In this article we prove some general theorems about sets A which unifies
some apparently unconnected formulas. For example, let A(z) be the number
of positive integers n in the set A not exceeding x, that is, the counting
function of the set A. We shall prove that

Az) = cxk + o(x%),

where the positive constant c is

6< D 1 1
0 )
™\ e N pE

We also obtain in these theorems some general results about partitions of a
set of positive integers into infinite disjoint subsets.
Consider, as motivation, the following example.

ExXAMPLE 1.2. We can divide the set of all positive integers, whose positive
density is 1, in the following infinite disjoint subsets. The numbers whose
greatest exponent in their prime factorization is 1, that is, the 2-free numbers
or square-free numbers and consequently they have positive density (see )

ﬁ. The numbers whose greatest exponent in their prime factorization is 2,
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they have positive density Tli’») c (2) The numbers whose greatest exponent in

their prime factorization is 3, they have positive density @ — @, etc. Now,

we shall prove that the sum of the infinite positive densities is the density of
the union, namely 1. The proof is trivial, since

1 = 1 _ 1 o1 1
(@ Z( (k) <<k—1>>:%inoo(aNZ(c(k)‘ak—l)))

for it is well-known that ¢(m) — 1 as m — oc.

The author knows many examples where the following conjecture is true
but cannot prove it. Example 1.2 is a particular case of this conjecture.

CONJECTURE 1.3. Let s be an arbitrary fixed positive integer. Suppose that
we have disjoint infinite sets of numbers S; (i > 1) whose union is the set S,
that is, a partition of the set S. Let S;(x) be the number of numbers in the
set S; not exceeding x and let S(x) be the number of numbers in the set S not
exceeding x. Suppose that

Si(x) = piw™ + O(l‘%),
where p; > 0 and suppose that S(x) < Hzs, where H > 0. Then

)

J,\H

S(z) = o + o(z*

where
o0
g = E Pi-
i=1

Note that the sum Y ., p; of positive terms p; is bounded by H for all n.
Therefore the series > o, p; has a certain positive sum o.

We suppose that p; > 0 for ¢ > 1 since in the contrary case the conjecture
can be false. For example, the number of square-free with k prime factors
(k > 1) is o(z) by Landau’s Theorem ([1]) and the set of all square-free has
positive density ﬁ = 5 (see equation (LI])).

Perhaps, it is necessary add to the conjecture some additional conditions.
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In the following theorem, we give a sufficient condition such that Conjec-
ture [1.3|is true. Before, note that the equation (see Conjecture |1.3])

(1.2) Si(x) = pixs + o(a:%)
implies that there exists a positive number ¢; such that

1
s

Si(z) < cipizs (x> 1).

THEOREM 1.4. Suppose that there exists a positive number C such that
¢; < C for all i > 1. Then Conjecture [1.3] holds.

PROOF. Given € > 0, there exists M depending on € such that

(1.3) Z pi < €.
We have (see (1.2))
S(z) = ( S pi)x% +o(z?) + F(x)

1<i<M

—oxs — ( Z pi)m% +0(x%) + F(x),

i>M

where F'(z) is the contribution to S(z) of the rest of the numbers not exceed-

ing x. Therefore (see (1.3]))

0< F(z) < Z Cpxs = Ca* Z pi < Cex .

i>M i>M

By combining these equations, we obtain

S
(T) —o|<e+e+Ce (x>ux),
€Ts
that is,
S(z) = or + 0(1‘%),
since € > 0 can be arbitrarily small. ([l

Similar proofs, as the proof of Theorem [1.4] will be used in the proofs of
other theorems in this article.
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2. Lemmas

Let h > 1 and let Ap(z) be the number of A-full numbers not exceeding
x. It was proved by Ivi¢ and Shiu (see either [2, Chapter 14] or [3]) that

(2.1) Ap(x) = 'yo,mc% + Vl,hl‘%“ +- 4+ thl,hﬁflfl + Ap(z),

where Ay (z) = O (2”) for p small.
We need the weaker lemma.

LEMMA 2.1. The following asymptotic formula holds

(2.2) An(z) = Y0027 +0(7),
where

o PR SR O _p-pr
(2.3) Yo = 2H< (p—i—l(ph—l)) 1;[<1+p2 pi_1)>.

Note that if h =1 then we obtain the trivial formula A;(z) = z + o(x).

PROOF. Equation (2.2)) is a weak consequence of (2.1]). For equation ([2.3))
see the reference [4]. O

LEMMA 2.2. Let h > 1 be an arbitrary but fized integer. The following
series converges

S

Q @
where the sum runs over all (h + 1)-full numbers Q.

PROOF. Let a,, be the n-th (h+1)-full number and let Aj41(z) be the num-
ber of (h+1)-full numbers not exceeding . By Lemmal[2.1], we have A1 (z) ~
Yo,n, "/x. Therefore if © = a,, we obtain n = Ap41(an) ~ Yo,n "V/an, that is,

Ap ~ :Zﬂ Now, the lemma follows by the Comparison Criterion, since the

series ) h fpr COMVrges. O
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LEMMA 2.3. Let h > 2 be an arbitrary but fixed integer. Let r > 1 be an
arbitrary but fixed integer. Let us consider r distinct primes qq,...,q,. Let
By, ....q.(x) be the number of h-free numbers not exceeding x relatively prime
to q1---q,. The following asymptotic formula holds

T'l_l

1 qi
By,,....q. () = @ H - T:JU + o(x).

PROOF. See [5]. O
We have the following general theorem.

THEOREM 2.4. Let f(i) be a sequence such that 0 < f(i) < 1 (i > 1).
Then

n

3 (1170) (=) =+ (1)

h=1

Proor. Use mathematical induction. O

COROLLARY 2.5. If, in addition, []]_, f(i) — L as i — oo, then

Z((I[f )((h) 1>>_1_L‘

3. Main results

Our main results are some general theorems and corollaries about sets A
and some examples where Conjecture [I.3] holds.

THEOREM 3.1. Let A(x) be the number of positive integers n in the set A
not exceeding x. Then

(3.1) A(z) = cx® +o(z %)

where the positive constant ¢ is

6( D 1 1
c=— H<1+ <k1,p+ k2+>)>
™ p p+1 pk pT
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PROOF. The proof is similar to the proof of Theorem [T.4] Let us consider
the numbers n in the set A of the form ¢*, where ¢ is square-free. The inequal-
ity ¢* < x is equivalent to the inequality ¢ < Tk, Therefore, by equation (1.1)
with h = 2, the number of ¢* < z is

(3.2) %x% +o(z+).

The rest of the numbers n in the set A are of the form ¢*Q, where ged(q, Q) =
1, ¢ is square-free and @ is (k + 1)-full number The prime factorization of
the (k + 1)-full number @ is @ = [[;_, s;’, where s; are different primes and
r; € By, \ {k}. By Lemma [2.3 with » = 2 the number of these numbers n in
the set A not exceeding z, that is ¢*Q < z, where Q is fixed, is

(3.3) —a(Q) . +o( %),

where, for simplicity, we put a(Q) = Hf 1 ssfrl

Given € > 0, there exists M, depending on ¢, such that (Lemma .

(3.4) > 11 <e

o>mwr

Equations , and give
6 1
A(x):FQ( S a(Q)QJ o (2F) + F(a)

Q<M

M<Q<Lzx

Note that the number of solutions g to the equation ¢*@Q < x does not ex-

ceed {x%/Q%J.
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Therefore, by combining these equations, we obtain equation (3.1)), since
€ > 0 can be arbitrarily small. The theorem is proved. O

COROLLARY 3.2. Let us consider positive integers n in the set A relatively
prime to the square-free qq - --qs, where q; (i = 1,...,s) are distinct primes.
The set of these positive integers n will be denoted Ay, .. o, C A. The num-
ber of positive integers n in the set Ay, . 4. not exceeding x will be denoted

Aqg, ..q.(x). We have
(3.5) Ag.ai(@) = dea® +o (m%) ,

where the positive constant ¢’ is

(3.6) d =

1
—
k

4q; q;

ProoOF. The proof is similar to the proof of Theorem [I.4} Let us consider
the numbers n = ¢* in the set Agi g Where q is square-free. The inequality
" <wis equlvalent to the inequality ¢ < TF. By Lemma |2 . with h = 2, the
number of ¢¥ < x is

(3.7) % (H qﬁ1>xi+o(:pi).
i=1 1"

The rest of the numbers n in the set A, . .. are of the form 7*Q, where
ged(q, Q) = 1, q is square-free and @ is (k + 1)-full number The prime fac-
torization of the (k+ 1)-full number Q is Q = [[;_, si*, where s; are different
primes, 7; € E, \ {k} and ged(Q,q1 -+ ¢s) = 1. By Lemma 2.3 with h = 2,
the number of these numbers n in the set A, ., not exceeding z, that is
¢*Q < x, where Q is fixed, is

(3.) f(Hq +1) @2y +o(s).

where, for simplicity, we put a(Q) = [];_; ss_f_l

Given € > 0, there exists M, depending on €, such that (Lemma .

(3.9)

Q>M
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Equations (3.7)), (3.8) and (3.9) give

Ao () = ;(H q‘i 1) <1 + Y a(Q)Ql ):mi o(at) + F(x)

i=1 Q<M
—c":ci—62<f[ e )(ZG(Q) 11)x’£+0(x’1c)+F(x),
T i:lqi—’_l o~ Q*
where
6 L 1
/!
= — 1
= (I5) (rSe@g:
i= Q
() (LG ))
== 1+ + + =cc
2 H k1,p k2,p
i z:lql—i_l PF#£q; p+1 Dk Dk

and

0< F(x) < Z {Z;J<exi.

M<Q<z

Therefore, by combining these equations, we obtain equation (3.5)), since € > 0
can be arbitrarily small. The corollary is proved. O

COROLLARY 3.3. Let py, be the h-th prime number and let B, be the set
of positive integers n in the set A such that py is their least prime factor.
Then the infinite sets By, are a partition of the set A, since if hy # ho then
By, N By, is the empty set. Let By, (z) be the number of positive integers n
in the set B, not exceeding x. Then

=

(3.10) By, (x) = cphca:% +o(z

);

where the positive constant c,, is

1 1
Lt +oe

kl,ph
k

(3.11) . =— .
T (14 o e+ ko)

k2,pp
k

p; - p;

and

o0

(3.12) > e =1

h=1
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Hence

o0

g Cp,C=C

h=1

and consequently Conjecture holds for this partition of the set A (see equa-

tion (3.1]) ).

PROOF. The proof is similar to the proof of Theorem [T.4] If ¢, ...,q¢s is
the set of the first h primes, that is p1,...,ps, then equations (3.5)) and (3.6]
become

V! 1
Ap . pn(x) =Ccx* 4+o0 (xk) ,

where the positive constant ¢’ is

1

. .
Hi:1 <1 + i + kll,pi + k'21,:D7; t >
: %

/
CcC =

P P
Furthermore, there exists a positive constant b such that

(3.13) Apyopnl) <bz® (2> 1).

Let us consider the numbers with least prime factor p;, not exceeding x such
that pj, has exponent m, that is pj*a < x, where m € E,,, = {k,k1,p,,k2.p,,---},

with 1 <k <kyp, <ksp, <---anda € Ay, . p,. The number of these num-
bers is

(3.14) e —|—0(a:%).
k

Note that the following series

o =

|

meE,,

by,

is convergent. Therefore if € > 0, then there exists M such that

(3.15) > é <e

k
m,EEph ph
m>M
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Equations (3.14) and (3.15) give

k

Bph(x)zc'cxi< > 1Tn>+o(xi)+F(ac)

mebp, ph
m<M
1 ’ 1 1 1
= cp,cx® —ccxk Z — —l—o(:ck) + F(x),
mEEph p}f

where (see (3.13) and (3.15))

k

1
0<F(a)< 3 b5 < beat.
'mEEPh p}f

m>M

Finally, by combining these equations, we obtain equation (3.10)), since € > 0
can be arbitrarily small.
Equation (3.12)) is an immediate consequence of equation (3.11)), Theo-

rem and Corollary Note that in this case L = 0, since [[;~, (1 + pi) =
oo. The corollary is proved.

COROLLARY 3.4. Let By, >, be the set of positive integers n in the set A

such that pp, > ps is their least prime factor. Let By, >p. () be the number of
positive integers n in the set By, >, not exceeding x. Then

(3.16) By, sp, () = dsca® + o(x?),

where the positive constant dg s

= 1
ds = Z Cpp, = X .
h=s | <1 + i + kllp + kzlp 4. >

pP; p;

Therefore

(3.17) lim dy = 0.

S5—>00
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PrOOF. By Corollary [3.2] we have
Bpths (.T) = Aplv-“ypsfl(x) = CIC.Z'% + O(x%) = dsc'x% + 0('2:%)7
where

ds =c =

s—1 1 1 1
Hi:l (1 + Di + k1,p; + k2,p; - )
D, p; "

On the other hand, by equation (3.12)), we have

s—1 o]
E :Cph+§ :Cphzl'
h=1 h=s

Therefore

[ee) 1

§ :Cphzl_ Cpn

h=s h=1

and by Theorem (see (3.11))

s—1
o
1-— g Cpp, = C.
h=1

The corollary is proved. ([

@
I

Let H(n) be the greatest exponent in the prime factorization of n. Niven ([6])
proved the following equality

<, H(n e
(3.18) lim Lnzs H0) sz_2 <1_C(1k)>'

T—00 x

In the following theorem we generalize this limit to sets A.
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THEOREM 3.5. Let us consider the set A. Then

(3.19) ZH(n) = cxt —i—o(x%),

neA
n<zx

where the constant c4 s

(3.20) ca= <k+ 3 (Q)H(?)).

2
s Hea Qk

The sum runs over all (k+1)-full number Q in the set A, that is, Q = [[;
where s; are different primes, r; € Eg, \ {k} and a(Q) = [];_ sst
If A= N is the set of all positive mtegers then equations (3.19) and (3.20))

become

zlz’

Z H(n) = cyz + o(z),

n<z

where the constant ¢y is the Niven’s constant (see (3.18)))

(3.21) CN:H;i(l_C(l’“)).

PROOF. The proof is similar to the proof of Theorem Let us consider
the numbers n in the set A of the form ¢, where ¢ is square-free. Therefore
H(q*) = k. The inequality ¢* < x is equivalent to the inequality ¢ < Tk,
Therefore, by equation with A = 2, the contribution of the numbers
q* < z to the sum an\ H(n) is

nsT

6 1
(3.22) kﬁx? + oz

=

).

The rest of the numbers n in the set A are of the form ¢*Q, where ged(q, Q) =
1, g is square-free and @ is (k + 1)-full number The prime factorization of
the (k + 1)-full number @ is Q = [[;_, s;’, where s; are different primes and
r; € Eg, \ {k}. Therefore H(¢*Q) = H(Q). By Lemma [2.3 . 3l with h = 2, the
contribution of these numbers n in the set A not exceeding = to the sum
Z“? H(n), that is ¢*Q < z, where Q is fixed, is

(323) H(Q) 50(@) 5y +ofat),

where, for simplicity, we put a(Q) = [}, $%5.
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Let d(n) be the number of divisors of n. It is well known ([I]) that d(n) =
o(n?) for all o > 0 and consequently, since H(n) < d(n), we obtain that the

series (see the proof of Lemma

neA
n<z
converges.
Consequently, given € > 0, there exists M, depending on ¢, such that
H
(3.24) > (?) <e
Q%
Q>M
Equations (3:22), (3:23) and (3.24) give
6 H@Q)\ 1 1
ZH(n) = 7T2<k+ Z a(Q)m>xk —|—0(mk) + F(x)
neA Q<M
n<x QEA
1 6 H@Q)\ 1 1
— caat - WQ( S a(Q) é;))ﬂ“ T o(at) + Fo),
Q>M
QEA
where

e = 62(%+ > a<Q>HC§§>)

T QEA
and (sce (321))
TF )
0< F(x) < H(Q)— < exk.
M<Q<az Q*
QeA

Therefore, by combining these equations, we obtain equation (3.19)), since

€ > 0 can be arbitrarily small.
Now, if A is the set of all positive integers and consequently k = 1, we

can write (3.20]) in the form (3.21]). Let us consider the square-full ) with the
same greatest exponent m. We have

6 m  6m P 1 1
— == 1 S e T
QG = . < +p+1<p2+ +pm>)
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where @) runs over all square-full @@ with the same greatest exponent m. There-
fore, we have

7762<1+ZQ:<1(Q)HS))> Cl+§: <m+1 C(?ln))

—1+:02(1_<(1k)>.

The theorem is proved. O

4. Formulas when a small number of primes is removed
from the set A

In this section we obtain formulas when a small number of primes is re-
moved from the set A.

We need two lemmas.

The set of square-free numbers has positive density %. Let P be the set
of all positive prime numbers. In the following lemma we study the counting
function of square-free numbers such that their prime factors are in the set
P\ B where B is a small set of infinite primes.

LEMMA 4.1. Suppose that B is a set of infinite primes p such that the

series ZpGB % converges. Let C(x) be the number of square-free not exceeding
x such that their prime factors are in the set P\ B. Then

(4.1) C(x) = —ix—i-o(x),

where

Proor. We have

()

peEB

where cp is a positive number, since the series > _p 1% converges.
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Therefore, given € > 0, there exists M, depending on ¢, such that

1
[[—>1-¢
p>M(1+%)

peEB

and

Lemma 2.3 with h = 2 gives

C(z) = x% H (1_’1_1) +o(z) — F(x) = 7:3261139174—0(:13)

p<M
peEB
6 1 ( 1 >
s -1 s ) - F),
=l my -l
peB pEB
where
0§F($)§Z§<ex.
p>M
pEB

By combining these equations we obtain equation (4.1)), since € > 0 can be
arbitrarily small. O

In the following lemma we study the square-free numbers relatively prime
to a certain number and such that the prime factors of these square-free are
in the set P\ B where B is a small set of infinite primes

LEMMA 4.2. Suppose that B is a set of infinite primes p such that the
series ZpeA % converges. Let C(x) be the number of square-free not exceeding
x such that their prime factors are in the set P—B and Cy, .. 4. (x) the number

of these square-free not exceeding x relatively prime to the square-free q1 - - - qs,
where q; € P\ B. Then

6 (o 1 1
Caronga () = ) (H 1_1> ;x + o(z).

=1 qi

PROOF. The proof is the same as in Lemma [4.1] O
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Now, we can prove the main theorem of this section.

THEOREM 4.3. We shall associate each prime p € P\ B, where the set B
was defined in Lemma 4.1, with a finite or infinite set E,, of possible exponents,
namely B, = {k, k1 p,kop,...}, where 1 <k < kyp < kap < ---. Therefore
all sets B, have the same least element k. Let us consider the positive integers
n whose prime factorization is of the formn = qi*qy? - - q5*, where ¢; € P\ B
(t=1,...,s) are distinct primes andr; € Eg, (i =1,...,s) are the exponents.
The set of these positive integers n will be denoted by A

Let A’(x) be the number of positive integers n in the set A’ not exceeding x.

We have

E e

1
Al(z) = e+ o(z
B

)

where the positive constant c is

: )
c=— 1+ +—+ .
m (pGI;IB ( p+1 pkl’ép pk?’v’p

Let us consider the positive integers n in the set A’ relatively prime to the
square-free q1 - - - qs, where q; € P\B (i = 1,...,s) are distinct primes. The set
of these posztwe integers n will be denoted A .q. C A, The number of posi-
tive integers n in the set Aj not emceedmg x will be denoted Ay, (z).
We have

q1,---,4s

=

1 1
li / ES 1
Al (x) = gc cx¥® + o(xk

);

where the positive constant ¢’ is

L (

PROOF. The proof is the same as the proof of Theorem and Corol-
lary In this case we use Lemma [4.1] and Lemma O

q; * q;
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5. Applications and examples

ExXAMPLE 5.1. All positive integers, h-free numbers (h > 2), h-full num-
bers and h-full k-free numbers (k > h) are particular cases of sets A. Therefore
the theorems and corollaries proved in Section [3|are true for these special sets

of numbers.

1) All positive integers.
In this case equation ({3.1]) becomes the trivial equation A(x) = = + o(x)

Equation (3.5) becomes

Agr. (@) = (H (1 _ ;))x + o(x)

i=1

and equation (3.10) becomes

ph (JS

=
— (1 - > z + o(x).

Ph =1

2) h-free numbers.

For example, in this case equation (3.1)) becomes equation (|1.1)) and equa-

tion (3.5 becomes Lemma
3) h-full numbers.
For example, in this case equation (3.1) becomes Lemma and equa-

tion (3.5)) becomes

Agy g, () =

1

iZ1qi(qf —1) +q)

1
s i ﬁ—]. 1 1
(T2 Yoot + (et

where 7 p, is defined by equation (2.3)).
4) h-full k-free numbers (k > h).
For example, equation (3.1) becomes

(5.1) Az) = 2H<(1i;;(1_ph11)>xh +0(£L’3)

p

and equation (3.5)) becomes

1 1
A |S| 1 % q.% - 6 ] l pl'l"% B pI% 1 1
— ? . " =
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Now, we give an example where Conjecture [I.3] holds.

EXAMPLE 5.2. Let h > 2 be an arbitrary but fixed integer. Equation (|5.1))
can be written, after some calculations, in the form

p
Al = mH(l_ﬁ(pH)(pi—l)H

145

):gh To(ah)

= prat +o(zh).

We can divide the set of h-full numbers, whose positive density is o 5, in
the following infinite disjoint subsets. The numbers whose greatest exponent
in their prime factorization is h, and consequently they have positive density
ph+1. The numbers whose greatest exponent in their prime factorization is
h + 1, they have positive density pp+2 — pn+1. The numbers whose greatest
exponent in their prime factorization is h + 2, they have positive density
Ph+3 — Ph+2, etc. The sum of the infinite positive densities is the density of
the union, namely o 5, that is

o0
(5.2) prii+ > (pk—pre—1) = Yo
k=h+2

Therefore Conjecture [I.3] holds.
The proof of equation (5.2)) is as the proof in Example since

1 145
lim <1—k b ):1.
koo pr(p+1)(pr —1) +1

The proof of this limit is as follows. Note that

L e(ps
T i) 058

Pi pi

where lim; o ¢(p;) = 1. Therefore, given ¢ > 0, there exists m such that

C(pz) < 1+e

c(pi) < 1+ e€if i > m and consequently if i > m and W <

pi h

—1 = 2 if i > m. Now, we also have (logarithmic power series and
1-== 1—e ’

geometric power series)
2 .3

x
—log(1l — 2) = 44 < 2 S =
og(l —x) x+2+3+ <z+4+z"+2°+ T
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where 0 < z < 1. Consequently

144
1 TR
lim (1 - P )
hreo pl i+ 1D)(pf —1)+1

i=1 p; pl (pi + 1)(pih - 1) +1 i= j28
(o) oo
= khm (1 — C(Z;Z)> = lim exp ( — Z —1lo (1 C(;?)))
— 00 —m ph — 00 i—m pzh
=e'=1

since

as k — 0o, and (¢(s) —1) — 0 as s — oo. The proof is complete.
In the following theorem we study a particular case of Conjecture [1.3]
THEOREM 5.3. Consider the set A. By Theorem 3.1}, we have
(5.3) A(zx) = cxt + 0(:(:%).
Let py, be the h-th prime number and let B, be the set of positive integers n in
the set A such that py, is their least prime factor. Then, by Corollary[3.3] the

infinite subsets By, are a partition of the set A. Let By, (x) be the number of
positive integers n in the subset B, not exceeding x. Then, by Corollary

By, (x) = cphcx% + 0(3:%).

Let us consider a set S included in A (S C A) such that S(x) is the number
of numbers in the set S not exceeding x. Now, consider the partition of the
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set S in the infinite subsets Sy, = S N By, and suppose that the number of
numbers in the subset Sy, not exceeding x is

(5.4) Sp, (x) = spha:% + o(ac%),

where sp, s a positive constant depending of py. Then

where
oo
s = E :Sph
h=1

and consequently Conjecture holds for the set S.

PROOF. Note that the series >",~ ; s,, has increasing partial sums bounded
by ¢ (see equation (5.3])) therefore it has a positive sum s.
Given € > 0 there exists a prime p,, depending of ¢, such that

> sy <€

Ph>Ds

By equation (5.4)), we have

S(x) = ( > sph>:c'1< +o(zt) + F(x)

pPr<Ds

= sz¥ — ( 3 sph>:ci +o(z*) + F(x),

Ph>Ds

where (see (3.16) and (3.17))

E e

0< F($) < BphZ:DS (x) < exk.
By combining these equations we obtain
S(z) = szt + o(x%),

since € > 0 can be arbitrarily small. ([
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