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THE SUBSET-STRONG PRODUCT OF GRAPHS

Mehdi Eliasi

Abstract. In this paper, we introduce the subset-strong product of graphs
and give a method for calculating the adjacency spectrum of this product.
In addition, exact expressions for the first and second Zagreb indices of the
subset-strong products of two graphs are reported. Examples are provided to
illustrate the applications of this product in some growing graphs and complex
networks.

1. Introduction

A graph product G∗H is a binary operation that is applied on two graphs
G and H, such that V (G∗H) = V (G)×V (H), and E(G∗H) is determined by
a function on the edges of the factors. Graph products enable us to decompose
a graph with large number of vertices into the small factors that are easier to
study [14]. Graph products also apply in graphics and theoretical computer
science to generate models of complex networks [2, 3], and in engineering to
describe discretized structures of objects in structural mechanics [17, 18]. The
study of spectra properties and topological indices (graph invariants) of graph
products, by using their factor, is an attractive subject among researchers
and many papers have been written on this topic [9, 16, 19, 20, 26]. In graph
theory, the Cartesian, direct, strong product, and lexicographic product are
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four really important products, each with its own set of applications and
theoretical interpretations. For more details, we refer the reader to [14].

Barrière, Dalfó, Fiol, and Mitjana [5] introduced a generalization of the
Cartesian product of two graphs with respect to a fixed subset of vertices of
one of them. In the Cartesian product G�H, two vertices (g, h) and (g′, h′)
are adjacent if g = g′ and hh′ ∈ E(H) or h = h′ and gg′ ∈ E(G), but in the
generalized hierarchical product with respect to U ⊆ V (G), denoted G(U) u
H, the condition g = g′ is replaced by g = g′ ∈ U . It follows immediately
that G(U) u H is a subgraph of G�H. Many papers have been devoted to
the generalized hierarchical product of graphs and its applications [4, 8, 24].
Similar to the Cartesian product, the strong product, introduced by Sabidussi
in 1960 [27], is one of the oldest products that has been widely investigated;
see, for instance, [10, 11, 13, 14, 21, 22, 28]. The first aim of this paper is to
introduce a generalization of the strong product with respect to the subsets
of factors, we call it subset-strong product, similar to the Cartesian product.
Then, we give a method for investigating the eigenvalues and characteristic
polynomial of the subset-strong product of two graphs. We design our new
methods to estimate the spectrum of the adjacency matrix of some class of
growing graphs including strongly n-prism networks.

The first and second Zagreb indices were introduced more than thirty
years ago by Gutman and Trinajstić [12]. These indices were found to be
useful for modeling physicochemical, pharmacologic, toxicologic, biological,
and other properties of chemical compounds [6, 25, 29, 30, 31]. In this paper,
we compute the Zagreb indices of the subset-strong product of two graphs.

This article is organized as follows. Section 2 introduces the subset-strong
product of graphs and some preliminaries. Section 3 explains our method for
computing the spectra of the adjacency matrix of the subset-strong product
of two graphs. Section 4 indicates how this method can be used. In section 5,
we give an exact expression for the first and second Zagreb indices of the
subset-strong product of two graphs. Section 6 gives us a generalization of the
subset-strong product. Finally, in section 7, we summarize our conclusions.

2. Preliminaries

In this paper, we work entirely with simple graphs, with no loops or mul-
tiple edges. Let G = (V (G), E(G)) be a graph on a vertex set V (G) =
{v1, . . . , vn}. The adjacency matrix of G is defined to be the matrix A(G) =
(aij)n×n, where aij = 1 if vivj ∈ E(G) and 0 otherwise. Denote by degG(vi)
the degree of the vertex vi of G and φM (x) the characteristic polynomial of
the square matrix M . In particular, if G is a graph and M = A(G), then we
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write φA(G)(x) by φG(x). Similarly, eig(M) (eigenvalue spectrum of M) and
eig(G) (adjacency spectrum of G) indicate the set of eigenvalues of M and
the set of eigenvalues of A(G), respectively.
The tensor product A ⊗ B of two matrices A = (aij) and B of orders m × p
and n× q, respectively, is the partitioned matrix (aijB) of order mn× pq:

A⊗B =

 a11B · · · a1pB
· · ·

am1B · · · ampB

 .

We denote byMn, the set of n−by−n real matrices. A matrix A ∈Mn is said
to be symmetric if A = A′ (transpose). Let A and B be symmetric matrices.
Simultaneous reduction to diagonal form shows that an orthogonal matrix P
(with P ′P = I) exists such that P ′AP and P ′BP are diagonal if and only if
A and B commute [15]. Pn is the path on n vertices {u1, u2, . . . , un} such that
uiui+1 ∈ E(Pn), for i = 1, . . . , n− 1. In addition, by adding an edge between
u1 and un in Pn, we obtain a cycle with n vertices, denoted by Cn. Note that
eig(Pn) = {2 cos( πi

n+1)|i = 1, . . . , n} [1].
The first and second Zagreb indices of a graph G, denoted by M1(G) and

M2(G), respectively, are defined as

M1(G) =
∑

v∈V (G)

degG(v)2 =
∑

uv∈E(G)

[degG(u) + degG(v)],

M2(G) =
∑

uv∈E(G)

degG(u) degG(v).

Given a vertex v in G, the neighborhood of v is defined as ΓG(v) = {u ∈
V (G)|uv ∈ E(G)}. It is easy to see that

M1(G) =
∑

v∈V (G)

∑
u∈ΓG(v)

degG(u)

and

M2(G) =
∑

v∈V (G)

∑
u∈ΓG(v)

degG(u) degG(v).

If uv ∈ E(G), then we may sometimes write u ∼ v in G. For n ≥ 3, an easy
computation shows that M1(Pn) = 4n− 6 and M2(Pn) = 4n− 8.

The strong product G�H of two simple graphs G and H is the graph with
vertex set V (G)× V (H) and (g, h)(g′, h′) ∈ E(G�H) whenever gg′ ∈ E(G)
and h = h′ or g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and hh′ ∈ E(H). Now
we give the following generalization of this product.
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Definition 1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
simple graphs and U ⊆ V (G). Then, the U -strong product of G and H is the
graph denoted as G(U) �H, and defined by

V (G(U) �H) = {(g, h)|g ∈ V (G) and h ∈ V (H)},

(g, h)(g′, h′) ∈ E(G(U) �H)⇔


g = g′ ∈ U, hh′ ∈ E(H),

gg′ ∈ E(G), h = h′ ∈ V (H),

gg′ ∈ E(G), hh′ ∈ E(H).

Definition 2. Let G1 = (V (G1), E(G1)) and G2 = (V (G1), E(G2)) be
two graphs. The edge sum of these graphs is defined as follows:

G1 ⊕G2 := (V (G1), E(G1) ∪ E(G2)).

The above definition yields

G(U) �H = (G(U) uH)⊕ (G×H).

Therefore, for (g, h) ∈ V (G(U) �H),

(1) degG(U)�H(g, h) = degG(g) + χU (g) degH(h) + degG(g) degH(h),

where χU denotes the characteristic function of the set U .
Equation (1) leads us to the following result.

Lemma 3. Suppose that G and H are two graphs with |V (G)| = n1,
|V (H)| = n2, |E(G)| = m1 and |E(H)| = m2. If U ⊆ V (G), then

|E(G(U) �H)| = m1n2 +m2|U |+ 2m1m2.

Proof. We have

|E(G(U) �H)| = 1

2

∑
(g,h)∈V (G)×V (H)

degG(U)�H(g, h)

=
1

2

∑
g∈V (G)

∑
h∈V (H)

(degG(g) + χU (g) degH(h) + degG(g) degH(h))

=
1

2

∑
g∈V (G)

∑
h∈V (H)

degG(g) +
1

2

∑
g∈V (G)

∑
h∈V (H)

χU (g) degH(h)

+
1

2

∑
g∈V (G)

∑
h∈V (H)

degG(g) degH(h)
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Figure 1. The graph P3({u1, u3})� P2

=
1

2
2m1n2 +

1

2
2m2

∑
u∈U

χU (g) +
1

2
2m12m2

= m1n2 +m2

∑
u∈U

1 + 2m1m2 = m1n2 +m2|U |+ 2m1m2. �

Suppose that V (G) = {u1, . . . , um} and |V (H)| = n. Then, the adjacency
matrix of G(U) �H is

(2) AG(U)�H = DU ⊗AH +AG ⊗ In +AG ⊗AH ,

where DU = diag(χU (u1), χU (u2), . . . , χU (um)).
For instance, let G = P3, H = P2, V (G) = {u1, u2, u3} and U = {u1, u3}.

Then

AG =

 0 1 0
1 0 1
0 1 0

 , DU =

 1 0 0
0 0 0
0 0 1

 , and AH =

(
0 1
1 0

)
.

Thus, by Equation (2), the adjacency matrix of K = G(U)�H (see Figure 1)
turns out to be

AK = DU ⊗AH +AG ⊗ I2 +AG ⊗AH

=

 AH I2 +AH 02

I2 +AH 02 I2 +AH
02 I2 +AH AH

 =


0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 0 1 1
1 1 0 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

 .
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3. The spectra of the subset-strong product of graphs

Suppose that G and H are two graphs and U ⊆ V (G). In this section, we
give a method to compute eig(G(U) �H) and φG(U)�H .

Theorem 4. Suppose that eig(H) = {λ1, . . . , λn} and K = G(U) � H.
Then

eig(K) =

n⋃
i=1

eig
(
AG + λi(AG +DU )

)
,

φK(x) =

n∏
i=1

φAG+λi(AG+DU )(x).

Proof. Assume that K ′ is a graph with V (K ′) = V (H) × V (G) and
(h, g)(h′, g′) ∈ E(K ′) if and only if (g, h)(g′, h′) ∈ E(K). Then the function
f : V (K ′)→ V (K) defined by f(h, g) = (g, h) is a graph isomorphism and, by
Equation (2), the adjacency matrix of K ′ is AK′ = AH⊗DU +In⊗AG+AH⊗
AG. Therefore eig(K) = eig(K ′) and φK(x) = φK′(x). Since AH and In are
commuting symmetric matrices, AH and In are simultaneously diagonalizable,
that is, there exists a orthogonal matrix P such that P ′AHP and P ′InP are
simultaneously diagonalizable. Without loss of generality, we can assume that
P ′AHP = diag(λ1, . . . , λn). Let E = (P ⊗ Im)′AK′(P ⊗ Im). Then,

E = (P ′ ⊗ Im)
(
AH ⊗DU + In ⊗AG +AH ⊗AG

)
(P ⊗ Im)

=
(
P ′AH ⊗ ImDU + P ′In ⊗ ImAG + P ′AH ⊗ ImAG

)
(P ⊗ Im)

= (P ′AHP )⊗(ImDUIm) + (P ′InP )⊗(ImAGIm) + (P ′AHP )⊗(ImAGIm)

=

 λ1

. . .
λn

⊗DU +

 1
. . .

1

⊗AG +

 λ1

. . .
λn

⊗AG

=

 λ1DU

. . .
λnDU

+

 AG
. . .

AG

+

λ1AG
. . .

λnAG



=

 AG + λ1(AG +DU )
. . .

AG + λn(AG +DU )

 .
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Now, P ′P = In gives that (P ⊗ Im)′(P ⊗ Im) = In ⊗ Im = Inm. Conse-
quently, if

M :=

 AG + λ1(AG +DU )
. . .

AG + λn(AG +DU )

 ,

then φK(x) = φK′(x) = φM (x).
M is a diagonal block matrix and, hence, φM (x)=

∏n
i=1φAG+λi(AG+DU )(x),

which completes the proof. �

4. Some examples of the subset-strong product

Theorem 4 provides a method for calculating the eigenvalues and charac-
teristic polynomial of the adjacency matrix of the subset-strong product of
some classes of graphs and networks. In this section we explain this method.

Let Q0 := P3(∅)�Pn, Q1 := P3({u1})�Pn, Q2 := P3({u2})�Pn, Q1,2 :=
P3({u1, u2})�Pn andQ1,3 := P3({u1, u3})�Pn, see Figure 2. Then, Theorem 4
yields the following statements:

eig(Q0) =

n⋃
i=1

eig

(
AP3 + 2 cos

(
πi

n+ 1

)
(AP3 +D∅)

)

=

n⋃
i=1

eig

 0 1 + 2 cos( πi
n+1) 0

1 + 2 cos( πi
n+1) 0 1 + 2 cos( πi

n+1)

0 1 + 2 cos( πi
n+1) 0


=

n⋃
i=1

{
0,±
√

2

(
1 + 2 cos

(
πi

n+ 1

))}
,

eig(Q2) =

n⋃
i=1

eig

(
AP3 + 2 cos

(
πi

n+ 1

)
(AP3

+D{u2})

)

=

n⋃
i=1

eig


 0 1 + 2 cos( πi

n+1) 0

1 + 2 cos( πi
n+1) 2 cos( πi

n+1) 1 + 2 cos( πi
n+1)

0 1 + 2 cos( πi
n+1) 0




=

n⋃
i=1

{
0, cos

(
πi

n+ 1

)
±

√
9 cos2

(
πi

n+ 1

)
+ 2 + 8 cos

(
πi

n+ 1

)}
,
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Figure 2. Graphs A: P3({u1}) � Pn, B: P3({u2}) � Pn,
C: P3({u1, u2})� Pn and D: P3({u1, u3})� Pn

eig(Q1,3) =

n⋃
i=1

eig

(
AP3 + 2 cos

(
πi

n+ 1

)
(AP3 +D{u1,u3})

)

=

n⋃
i=1

eig


 2 cos( πi

n+1) 1 + 2 cos( πi
n+1) 0

1 + 2 cos( πi
n+1) 0 1 + 2 cos( πi

n+1)

0 1 + 2 cos( πi
n+1) 2 cos( πi

n+1)




=

n⋃
i=1

{
2 cos

(
πi

n+ 1

)
, cos

(
πi

n+ 1

)
±

√
9 cos2

(
πi

n+ 1

)
+2+8 cos

(
πi

n+ 1

)}
.

Moreover,

φQ1 =

n∏
i=1

[
x3 − 2 cos

(
πi

n+ 1

)
x2 − 2

(
1 + 2 cos

(
πi

n+ 1

))2

x

+ 2

(
1 + 2 cos

(
π i

n+ 1

))2

cos

(
πi

n+ 1

)]
,

φQ1,2 =

n∏
i=1

[
x3 − 4 cos

(
πi

n+ 1

)
x2 −

(
2 + 8 cos

(
πi

n+ 1

)
+ 4 cos2

(
πi

n+ 1

))
x

+ 2

(
1 + 2 cos

(
πi

n+ 1

))2

cos

(
πi

n+ 1

)]
.

The eigenvalues of Q1 can be obtained by solving n cubic equations.
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Figure 3. Networks A: An n-prism p(g) and B: p(g, n, {u1, u3, u5})

Strongly n-prism networks

An n-prism network is built in an iterative way [23]. Let p(g) (with g ≥ 2)
be the family of this graph after g− 1 iterations. Initially, at g = 1, p(1) is an
n-polygon. For g ≥ 2, P (g) is built from p(g − 1), where every existing node
in p(g − 1) gives birth to a new node and the n new nodes form a new n-
polygon, so that each new node is also connected to its corresponding mother
node. Figure 3.A shows the characteristic structure of the n-prism network
p(g). With a suitable labeling for nodes of the n-prism network, we obtain
p(g) = Pg�Cn. This observation leads us to the concept of a strongly n-prism
network.

Definition 5. Let g and n be two positive integers and V (Cn) = {u1,
. . . , un}. For U ⊆ V (Cn), the strongly n-prism network p(g, n, U) is defined
as p(g, n, U) = Cn(U) � Pg. In fact, we delete the edges on the interior that
are bisectors of angles that not belong to U from p(g) (see Figure 3.B).

The Laplacian spectra of the 3-prism network and its applications were
reported in [7]. Also, Liu, Cao, Alofi, AL-Mazrooei, and Elaiw calculated the
Laplacian spectra of the n-prism network [23]. Now, we consider the strongly
n-prism network.

By Lemma 3, the number of vertices and edges in p(g, n, U) are gn and
3ng + (g − 1)|U | − 2n, respectively.

Assume that G = C3, and V (G) = {u1, u2, u3}. We distingue the following
cases:

Case I. Let U = {u1, u2}. Then, for p(g, 3, U), illustrated in Figure 4.B,
Theorem 4 yields
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Figure 4. Networks A: 3-prism, B: p(g, 3, {u1, u2}) and C: p(g, 3, {u1})

eig(p(g,3, {u1, u2}))

=

g⋃
i=1

eig


 2 cos( πi

g+1) 1 + 2 cos( πi
g+1) 1 + 2 cos( πi

g+1)

1 + 2 cos( πi
g+1) 2 cos( πi

g+1) 1 + 2 cos( πi
g+1)

1 + 2 cos( πi
g+1) 1 + 2 cos( πi

g+1) 0




=

g⋃
i=1

{
− 1,±1

2

√
48 cos2

(
πi

g + 1

)
+ 40 cos

(
πi

g + 1

)
+ 9

+
1

2
+ 2 + cos

(
πi

g + 1

)}
.

Moreover,

Φp(g,3,{u1,u2}) =

g∏
i=1

[
x3 − 4 cos

(
πi

g + 1

)
x2 −

(
3 + 12 cos

(
πi

g + 1

)

+ 8 cos

(
πi

g + 1

)2)
x− 8 cos

(
πi

g + 1

)
− 8 cos

(
πi

g + 1

)2

− 2

]
.

Case II. Set U = {u1}. Then, for p(g, 3, U), see Figure 4.C, Theorem 4
gives

eig(p(g,3, {u1}))

=

g⋃
i=1

eig


 2 cos( πi

g+1) 1 + 2 cos( πi
g+1) 1 + 2 cos( πi

g+1)

1 + 2 cos( πi
g+1) 0 1 + 2 cos( πi

g+1)

1 + 2 cos( πi
g+1) 1 + 2 cos( πi

g+1) 0




=

g⋃
i=1

{
− 1− 2 cos

(
πi

g + 1

)
, 2 cos

(
πi

g + 1

)
+

1

2

± 1

2

√
32 cos2

(
πi

g + 1

)
+ 32 cos

(
πi

g + 1

)
+ 9

}
.
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Moreover,

Φp(g,3,{u1}) =

g∏
i=1

[
x3 − 2 cos

(
πi

g + 1

)
x2 − 3

(
1 + 2 cos

(
πi

g + 1

))2

x

− 10 cos

(
πi

g + 1

)
− 16 cos2

(
πi

g + 1

)
− 2− 8 cos3

(
πi

g + 1

)]
.

Case III. Let U = {u1, u2, u3}. Then, p(g, 3, U) is the 3-prism network,
see Figure 4.A. Theorem 4 yields

eig(p(g,3, {u1, u2, u3})) =

g⋃
i=1

eig

(
L(H) + 2 cos

(
πi

g + 1

)
D({u1, u2, u3})

)

=

g⋃
i=1

eig


 2 cos( πi

g+1) 1 + 2 cos( πi
g+1) 1 + cos( πi

g+1)

1 + 2 cos( πi
g+1) 2 cos( πi

g+1) 1 + 2 cos( πi
g+1)

1 + 2 cos( πi
g+1) 1 + 2 cos( πi

g+1) 2 cos( πi
g+1)




=

g⋃
i=1

{
− 1,−1, 2 + 6 cos

(
πi

g + 1

)}
.

Moreover,

Φp(g,3,{u1,u2,u3}) =

g∏
i=1

[
x3 − 6 cos

(
πi

g + 1

)
x2 −

(
3 + 12 cos

(
πi

g + 1

))
x

− 6 cos

(
πi

g + 1

)
− 2

]
.

Assume that G = C4, and V (G) = {u1, u2, u3, u4}. We consider the fol-
lowing cases:

Case I. Let U = {u1, u2}. Then, for p(g, 4, U), see Figure 5.C, Theorem 4
gives

eig(p(g, 4, {u1, u2})) =

g⋃
i=1

eig

(
L(H) + 2 cos

(
πi

g + 1

)
D({u1, u2})

)

=

g⋃
i=1

eig




2 cos( πi
g+1) 1 + 2 cos( πi

g+1) 0 1 + 2 cos( πi
g+1)

1 + 2 cos( πi
g+1) 2 cos( πi

g+1) 1 + 2 cos( πi
g+1) 0

0 1 + 2 cos( πi
g+1) 0 1 + 2 cos( πi

g+1)

1 + 2 cos( πi
g+1) 0 1 + 2 cos( πi

g+1) 0



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Figure 5. Networks A: The 4-prism, B: p(g, 4, {u1, u2, u3}), C: p(g, 3, {u1, u2}),
D: p(g, 4, {u1}) and E: p(g, 4, {u1, u3})

=

g⋃
i=1

{
− cos

(
πi

g + 1

)
− 1±

√
5 cos2

(
πi

g + 1

)
+ 4 cos

(
πi

g + 1

)
+ 1,

1 + 3 cos

(
πi

g + 1

)
±

√
5 cos2

(
πi

g + 1

)
+ 4 cos

(
πi

g + 1

)
+ 1

}
.

Case II. Set U = {u1, u3}. Then, for p(g, 4, U), see Figure 5.E, Theorem 4
yields

eig

(
p(g, 4, {u1, u3})

)
=

g⋃
i=1

eig

(
L(H) + 2 cos

(
πi

g + 1

)
D({u1, u3})

)

=

g⋃
i=1

eig




2 cos( πi
g+1) 1 + 2 cos( πi

g+1) 0 1 + 2 cos( πi
g+1)

1 + 2 cos( πi
g+1) 0 1 + 2 cos( πi

g+1) 0

0 1 + 2 cos( πi
g+1) 2 cos( πi

g+1) 1 + 2 cos( πi
g+1)

1 + 2 cos( πi
g+1) 0 1 + 2 cos( πi

g+1) 0




=

g⋃
i=1

{
0, 2 cos

(
πi

g + 1

)
, cos

(
πi

g + 1

)
±

√
17 cos2

(
πi

g + 1

)
+4+16 cos

(
πi

g + 1

)}
.

Case III. Set U = {u1, u2, u3, u4}. Then, p(g, 4, U) is the 4-prism network,
see Figure 5.A, Theorem 4 implies that

eig(p(g, 4, {u1, u2, u3, u4})) =

g⋃
i=1

eig

(
L(H)+2 cos

(
πi

g + 1

)
D({u1, u2, u3, u4})

)

=

g⋃
i=1

eig




2 cos( πi
g+1) 1 + 2 cos( πi

g+1) 0 1 + 2 cos( πi
g+1)

1 + 2 cos( πi
g+1) 2 cos( πi

g+1) 1 + 2 cos( πi
g+1) 0

0 1 + 2 cos( πi
g+1) 1 + cos( πi

g+1) 0

1 + 2 cos( πi
g+1) 0 1 + 2 cos( πi

g+1) 2 cos( πi
g+1)



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=

g⋃
i=1

{
− 2 cos

(
πi

g + 1

)
− 2, 6 cos

(
πi

g + 1

)
+ 2, 2 cos

(
πi

g + 1

)
,

2 cos

(
πi

g + 1

)}
.

Case IV . For U = {u1} or U = {u1, u2, u3}, see Figure 5.D and B, we
can compute the characteristic polynomial of p(g, 4, U).

Φp(g,4,{u1}) =

g∏
i=1

[
x4 − 2 cos

(
πi

g + 1

)
x3 − 4

(
1 + 2 cos

(
πi

g + 1

)2)
x2

+ 4 cos

(
πi

g + 1

)(
1 + 2 cos

(
πi

g + 1

))
x

]
,

Φp(g,4,{u1,u2,u3}) =

g∏
i=1

[
x4 − 6 cos

(
πi

g + 1

)
x3

−
(

4 + 16 cos

(
πi

g + 1

)
+ cos2

(
πi

g + 1

))
x2

+

(
12 cos

(
πi

g + 1

)
+ 48 cos2

(
πi

g + 1

)
+ 40 cos3

(
πi

g + 1

))
x

− 8 cos2

(
πi

g + 1

)
− 32 cos3

(
πi

g + 1

)
− 32 cos4

(
πi

g + 1

)]
.

5. The first and second Zagreb indices of the subset-strong
product

In this section, we compute the first and second Zagreb indices of the
subset-strong product of graphs.

Theorem 6. Suppose G and H are graphs with |V (G)| = n1, |V (H)| = n2,
|E(G)| = m1, and |E(H)| = m2. If U ⊆ V (G), then

M1(G(U) �H) = [n2 + 4m2]M1(G) + |U |M1(H)

+M1(G)M1(H) + [4m2 + 2M1(H)]
∑
u∈U

degG(u).
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Proof. By the definition of the first Zagreb index, we have

M1(G(U) �H) =
∑

(g,h)∈V (G(U)�H)

degG(U)�H(g, h)2

=
∑

g∈V (G)

∑
h∈V (H)

[degG(g) + χU (g) degH(h) + degG(g) degH(h)]2 (by (1))

=
∑

g∈V (G)

∑
h∈V (H)

degG(g)2 +
∑

g∈V (G)

∑
h∈V (H)

χU (g)2 degH(h)2

+
∑

g∈V (G)

∑
h∈V (H)

degG(g)2 degH(h)2 + 2
∑

g∈V (G)

∑
h∈V (H)

χU (g)degG(g)degH(h)

+ 2
∑

g∈V (G)

∑
h∈V (H)

degG(g)2degH(h) + 2
∑

g∈V (G)

∑
h∈V (H)

χU (g)degG(g)degH(h)2

= n2M1(G) +
∑

g∈V (G)

χU (g)2M1(H) +M1(G)M1(H)

+ 4m2

∑
g∈V (G)

χU (g) degG(g) + 4m2M1(G) + 2
∑

h∈V (H)

χU (g) degG(g)M1(H)

= n2M1(G) + |U |M1(H) +M1(G)M1(H) + 4m2

∑
u∈U

degG(u)

+ 4m2M1(G) + 2
∑
u∈U

degG(u)M1(H)

= [n2 + 4m2]M1(G) + |U |M1(H) +M1(G)M1(H)

+ [4m2 + 2M1(H)]
∑
u∈U

degG(u). �

The following corollary, already reported in [26], can be derived by direct
consideration of Theorem 6:

Corollary 7. Suppose G and H are graphs with |V (G)| = n1, |V (H)| =
n2, |E(G)| = m1, and |E(H)| = m2. Then,

M1(G�H) = [n2 +4m2]M1(G)+[n1 +4m1]M1(H)+M1(G)M1(H)+8m1m2.

Proof. Let U = V (G). Then,
∑
u∈U degG(u) = 2m1 and the desired

result is obtained from Theorem 6. �
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Example 8. Let K := Pm({ui1 , ui2 , . . . , uit}) � Pn. Then,

M1(K) = 36n2n1−54n2−40n1 +60+(4n2−6)t+(12n2−16)

t∑
j=1

degPm
(uij ).

In particular, if uij 6= u1, um, then

M1(K) = 36n2n1 − 54n2 − 40n1 + 60 + 28n2t− 38t.

Theorem 9. Suppose G and H are graphs with |V (G)| = n1, |V (H)| = n2,
|E(G)| = m1, and |E(H)| = m2. If U ⊆ V (G) and K := G(U) �H, then

M2(K) = [m2 +M1(H) +M2(H)]
∑
u∈U

degG(u)2

+ [M1(H) + 2M2(H)]
∑
u∈U

degG(u)

+ [2m2 + 2M1(H) + 2M2(H)]
∑
u∈U

∑
g∈Γ(u)

degG(g)

+ |U |M2(H) + 2M2(G)M2(H)

+ |{gg′ ∈ E(G)|g, g′ ∈ U}|[M1(H) + 2M2(H)]

+M2(G)[n2 + 6m2 + 3M1(H)].

Proof. By the definition of the second Zagreb index:

M2(K) =
∑

(g,h)(g′,h′)∈E(K)

degK(g, h) degK(g′, h′)

=
∑

(g,h)(g′,h′)∈E(K)

[(degG(g) + χU (g) degH(h) + degG(g) degH(h))

(degG(g′) + χU (g′) degH(h′) + degG(g′) degH(h′))]

=
1

2

∑
∗,∗∗,∗∗∗

[A1 +A2 + · · ·+A9],(3)

where ∗ : g = g′ ∈ U ∧ h′ ∈ Γ(h), ∗∗ : g ∈ Γ(g′) ∧ h = h′ and
∗ ∗ ∗ : g ∈ Γ(g′) ∧ h′ ∈ Γ(h), and

A1 = degG(g) degG(g′), A2 = χU (g′) degG(g) degH(h′),

A3 = degG(g) degG(g′) degH(h′), A4 = χU (g) degG(g′) degH(h),
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A5 =χU (g)χU (g′) degH(h) degH(h′), A6 =χU (g)degH(h) degG(g′) degH(h′),

A7 = degG(g) degH(h) degG(g′), A8 =χU (g′)degG(g) degH(h) degH(h′),

A9 = degG(g) degH(h) degG(g′) degH(h′).

We compute the above sums separately.∑
∗
A1 =

∑
g∈V (G)

∑
h∈V (H)

∑
h′∈Γ(h),g′=g∈U

degG(g)2 = 2m2

∑
u∈U

degG(u)2.

Similarly,∑
∗
A2 = M1(H)

∑
u∈U

degG(u),
∑
∗
A3 = M1(H)

∑
u∈U

degG(u)2,

∑
∗
A4 = M1(H)

∑
u∈U

degG(u),
∑
∗
A5 = 2|U |M2(H),

∑
∗
A6 = 2M2(H)

∑
u∈U

degG(u),
∑
∗
A7 = M1(H)

∑
u∈U

degG(u)2,

∑
∗
A8 = 2M2(H)

∑
u∈U

degG(u),
∑
∗
A9 = 2M2(H)

∑
u∈U

degG(u)2.

Moreover,∑
∗∗
A1 =

∑
g∈V (G)

∑
h∈V (H)

∑
g′∈Γ(g),h′=h

degG(g) degG(g′) = 2n2M2(G).

Similarly,∑
∗∗
A2 = 2m2

∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗
A3 = 4m2M2(G),

∑
∗∗
A4 = 2m2

∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗
A5 = 2M1(H)|{gg′∈E(G)|g, g′∈U}|,

∑
∗∗
A6 = M1(H)

∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗
A7 = 4m2M2(G),

∑
∗∗
A8 = M1(H)

∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗
A9 = 2M2(G)M1(H).
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Finally, ∑
∗∗∗

A1 =
∑

g∈V (G)

∑
h∈V (H)

∑
g′∈Γ(g)

∑
h′∈Γ(h)

degG(g) degG(g′)

= 2M2(G) 2m2 = 4m2M2(G).

Likewise,∑
∗∗∗

A2 = M1(H)
∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗∗

A3 = 2M2(G)M1(H),

∑
∗∗∗

A4 = M1(H)
∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗∗

A5 = 4M2(H)|{gg′∈E(G)|g, g′∈U}|,

∑
∗∗∗

A6 = 2M2(H)
∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗∗

A7 = 2M2(G)M1(H, ),

∑
∗∗∗

A8 = 2M2(H)
∑
u∈U

∑
g∈Γ(u)

degG(g),
∑
∗∗∗

A9 = 4M2(G)M2(H).

Replacing the above quantities in (3) completes the proof. �

Corollary 10. Suppose that G and H are graphs with |V (G)| = n1,
|V (H)| = n2, |E(G)| = m1, and |E(H)| = m2. Then,

M2(G�H) = n1M2(G) + n1M2(H) + 2M2(G)M2(H)

+ 3M1(G)(m2 +M1(H) +M2(H))

+ 3M1(H)(m1 +M2(G)) + 6(m2M2(G) +m1M2(H)).

Proof. Let U = V (G). Then,
∑
u∈UdegG(u)2 =M1(G),

∑
u∈UdegG(u)=

2m1,
∑
u∈U

∑
g∈Γ(u) degG(g) = M1(G), and |{gg′ ∈ E(G)| g, g′ ∈ U}| = m1.

By replacing these quantities in Theorem 9, we obtain the desired result. �

Corollary 10 has already been proved in [26].

Example 11. Let U := {u1, u3, . . . , u2n+1}, and K := P2n+1(U)�P2m+1.
Then, we haveM1(P2n+1) = 8n−2,M1(P2m+1) = 8m−2,M2(P2n+1) = 8n−4,
andM2(P2m+1) = 8m−4. Moreover,

∑
u∈U degG(u) = 2n,

∑
u∈U degG(u)2 =

4n − 2,
∑
u∈U

∑
g∈Γ(U) degG(u) = 4n, and |{gg′ ∈ E(G) | g, g′ ∈ U}| = 0.

Hence,

M2(P2n+1({u1, u3, . . . , u2n+1}) � P2m+1) = 704mn− 200n− 244m+ 60.



280 Mehdi Eliasi

Example 12. For strongly 3 and 4-prism networks, by Theorem 9, it may
be concluded that

M2(P (g, 3, {u1}))=460g − 712, M2(P (g, 3, {u1, u2}))=608g − 966,

M2(P (g, 4, {u1}))=568g − 872, M2(P (g, 4, {u1, u2}))=716g − 1126,

M2(P (g, 4, {u1, u3}))=704g − 1104, M2(P (g, 4, {u1, u2, u3}))=864g − 1380,

where g ≥ 3.

6. The generalized subset-strong product

Definition 13. Given 3 graphs Gi = (Vi, Ei) and vertex subsets Ui ⊆ Vi,
for i = 1, 2. The generalized set-strong product product G1(U1)�G2(U2)�G3

is the graph with vertex set V1 × V2 × V3 and the following adjacencies:

(x1, x2, x3) ∼



(y1, x2, x3) if y1x1 ∈ E(G1),

(x1, y2, x3) if y2x2 ∈ E(G2) and x1 ∈ U1,

(x1, x2, y3) if y3x3 ∈ E(G3), x1 ∈ U1, and x2 ∈ U2,

(y1, y2, x3) if y1x1 ∈ E(G1) and y2x2 ∈ E(G2),

(x1, y2, y3) if y2x2 ∈ E(G2), y3x3 ∈ E(G3), and x1 ∈ U1,

(y1, x2, y3) if y1x1 ∈ E(G1) and y3x3 ∈ E(G3),

(y1, y2, y3) if y1x1 ∈ E(G1), y2x2 ∈ E(G2), y3x3 ∈ E(G3).

From Definition 13, it follows that:

G1(U1) �G2(U2) �G3 =
(
G1(U1) uG2(U2) uG3

)
⊕
(
G1 ×G2 ×G3

)
.

Theorem 14. For i = 1, 2, let Gi be a graph and Ui ⊆ Vi. The generalized
subset-strong product satisfies

G1(U1) �G2(U2) �G3 =
(
G1(U1) �G2

)
(U1 × U2) �G3

= G1(U1) �
(
G2(U2) �G3

)
.

Proof. To prove the first equality, we show that in the subset-strong
product

(
G1(U1) � G2

)
(U1 × U2) � G3 vertex ((x1, x2), x3) has the same
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adjacencies as vertex (x1, x2, x3) in G1(U1) �G2(U2) �G3. Indeed,

((x1, x2), x3) ∼


((y1, y2), x3) if (y1, y2)(x1, x2) ∈ E(G1(U1) �G2),

((x1, x2), y3) if y3x3 ∈ E(G3) and (x1, x2) ∈ U1 × U2,

((y1, y2), y3) if (y1, y2)(x1, x2) ∈ E(G1(U1) �G2)

and y3x3 ∈ E(G3).

This is equivalent to

((x1, x2), x3) ∼



((y1, x2), x3) if y1x1 ∈ E(G1),

((x1, y2), x3) if y2x2 ∈ E(G2) and x1 ∈ U1,

((x1, x2), y3) if y3x3 ∈ E(G3), x1 ∈ U3, and x2 ∈ U2,

((y1, y2), x3) if y1x1 ∈ E(G1) and y2x2 ∈ E(G2),

((x1, y2), y3) if y2x2 ∈ E(G2), y3x3 ∈ E(G3), x1 ∈ U1,

((y1, x2), y3) if y1x1 ∈ E(G1) and y3x3 ∈ E(G3),

((y1, y2), y3) if y1x1 ∈ E(G1), y2x2 ∈ E(G2),

and y3x3 ∈ E(G3).

Thus, the required isomorphism is simply ((x1, x2), x3) → (x1, x2, x3). Anal-
ogously, we can prove the second equality. �

Example 15. Let G = P3({u1, u2}) � P3({u1, u2}) � P3 (see Figure 6).
By Theorem 4, we have

eig(P3({u1,u2}) � P3) =

3⋃
i=1

eig
(
AP3 + µi(P3)(AP3 +D{u1,u2})

)

=
3⋃
i=1

eig

 2 cos( iπ4 ) 1 + 2 cos( iπ4 ) 0
1 + 2 cos( iπ4 ) 2 cos( iπ4 ) 1 + 2 cos( iπ4 )

0 1 + 2 cos( iπ4 ) 0


≈ {4.552,−2.459, 0.736, 0, 1.414,−1.414, 0.12,−1.876,−1.072}.

Hence, again by Theorem 4, we obtain

eig(Q(3,(u1, u2))3) =

9⋃
i=1

eig
(
AP3 + µi

(
P3({u1, u2}) � P3

)(
AP3 +D{u1,u2}

))
≈ {11.59, 2.451,−4.938,−4.195,−1.536, 0.812, 3.0378, 0.3761,−1.941,

0, 1.414,−1.414, 4.552, 0.736,−2.459,−1.876,−1.072, 0.12, 1.676,

0.0603,−1.495,−2.895,−1.254, 0.397,−1.147,−1.002, 0.004}.
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Figure 6. Graph B: = P3({u1, u2})� P3({u1, u2})� P3

7. Conclusion

In this work, we introduced subset-strong products of graphs and gave
a method for computing the adjacency spectra or the characteristic polyno-
mial of this product. Our method enabled us to compute the spectra of some
growing graphs and networks. Also, we deduced an exact expression for the
first and second Zagreb indices of the subset-strong product of two graphs.

Acknowledgements. The author thanks the anonymous referees for their
helpful comments that improved the quality of the manuscript.
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