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NOTE ON AN ITERATIVE FUNCTIONAL EQUATION
KAROL BARON', JANUSZ MORAWIEC

Dedicated to Professor Kazimierz Nikodem on his seventieth birthday

Abstract. We study the problem of solvability of the equation

o(z) = /Q 9(@)p (f(z,w)) P(dw) + F(x),

where P is a probability measure on a o-algebra of subsets of {2, assuming
Holder continuity of F' on the range of f.

Fix a probability space (€2, .4, P), a separable metric space (X, p), a sepa-
rable Banach space Y over K € {R,C} and an « € (0, 1].

Motivated by [I], [2] and [3] we consider solutions ¢: X — Y of the equa-
tion

(1) () = /Q 9@ (f (@) P(dw) + F(x)

assuming the following hypotheses.
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(Hy) Function f maps X x Q into X and f(z, -) is measurable for A for every
x € X, ie.,

{weQ: f(x,w) e B} € A for x € X and Borel B C X.

(H2) Function g: Q© — K is integrable for P,

/Q l9(W)|7 p(f(2,w), ) P(dw) < 00 for z € X
and

/Q|g(w)|ip(f(:v,w),f(z,w))P(dw) < Mp(z,2) forax,ze X

with a A € (0,1).
For A C X denote by H,(A) the family of all functions F': X — Y for
which there is an L € [0, 00) such that
[F(z) — F(2)|| < Lp(w,2)* forz,z € A.

Integrating vector—valued functions we use the Bochner integral.
We start with the following lemma.

LEMMA. Assume (Hy) and (Hp). If F € Ho(f(X x Q)), then for every
x € X the function g- F o f(x,-) is integrable for P and the function

xH/ﬁg(w)F(f(ac,w))P(dw), xz € X,
is in Ho(X).

PRrOOF. Fix z € X. Clearly g - F o f(z,-) is measurable for A and with
arbitrarily fixed z € f(X x Q) and an L € (0,00) by Jensen’s inequality (see,
e.g., [4, 10.2.6]) we have

/||g(w)F(f(x,w))||P(dw)§/ g@IIF(f(z,w)) = F(f(z,w)) | P(dw)
Q Q

+ / 9@IF(f(zw)) — F(2)[[P(dw) + [ F ()| / [9(w) [ P(dw)
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<2 [l p(fe) fa0) Pl )
+ L[ o7 ) P@) +1FE [ lo()lP(a
<1xpte 2+ 1 [ el ) Pla))

+IF ) / 19(w)| P(dw) < 00

Thus g - F o f(x,-) is integrable for P.
For the proof of the second part note that with an L € (0,00) for all
x,z € X we have

| [otrmttenpian - [ srie.ara

< [ 19@IIF (@) = (7)) [ P(d)
Q
<L< /Q 9(@)|* p(f (), f@,@)p(dw)) e O

Assuming (H;) and (Hs) and making use of the Lemma for every F €
Ho (f(X x Q)) we define a sequence (F,)nen in Ho(X) by

Fo(z) = F(x), Fn(w)ZLg(W)Fn1(f($,W))P(dW)

for x € X and n € N; moreover we put

v = / gdP.
Q

THEOREM. Assume (Hy) and (Hy). Let F € Ho (f(X x Q).
(i) If v # 1, then equation has ezactly one solution p € F + Hq(X).
(ii) If v =1 and there is an xo € f(X x Q) such that lim,,_,o F, (o) = 0,
then equation has a solution ¢ € F+H(X) unique up to an additive
constant.
(iii) If v = 1 and equation has a solution ¢ € F + Ho(X), then
limy, 00 Frn(z) = 0 for every z € f(X x Q).

Our theorem reads.
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PROOF. Put Xy = f(X x Q) and consider Xy with the metric d given by
d = (plxoxx,)% Then fy defined as f|x,xo maps Xo x Q into Xo, fo(z,-) is
measurable for A for every x € Xy and by Jensen’s inequality

[ lawldfoe).) i) < ([ o)1 p(r(o) )P (dw)) <

for x € Xy, and
/Q 9()|d(fol, ), folz,w)) P(d)

< ( / g(w)\ip(f(x,W),f(zw))P(dw))a < (ol 2))" = Nd(x, 2)

for x, z € Xg.

We will now prove theses (i) and (ii).

It follows from [2 Theorem 2.3] in case (i) and from [3, Theorem 2.1] in
case (ii) that there is a pg: Xo — Y such that

leo(z) — po(2)|| < Lp(x,2)*  for z,2 € Xo

with an L € [0, 00) and

po(z) = /QQ(W)SOO(]C(%W))P(dw) + F(x) for z € Xj.

Using the Lemma define ¢: X — Y by
o(@) = [ g)eo(f(@.)) Pldw) + Pla)

and note that ¢ € F + Hq(X), ¢|x, = ¢o, and ¢ solves (I).

To prove the uniqueness suppose that o1, 92 € F + Ho(X) are solutions
of (). Then ¢ defined as @1 — 2 is in Hq(X) and solves with F' = 0.
Denoting by L the smallest Lipschitz-Holder constant for ¢, for all z,z € X
we have

lo(@) — p(2)ll < /\g Ml (f(.0)) — o(F(zw)) | Pldw) < LA p(x, 2)%,

whence L = 0 and ¢ is a constant function. In case (i) the only constant
solution of with F' = 0 is the zero function, whence ¢; = @s.
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To get (iii) it is enough to note that if ¢: X — R is a solution of in
F +H,(X), then ¢|x, is a Lipschitz solution of (1)) with F' replaced by F'|x,
and to apply [3, Theorem 2.1]. O

REMARK. Assume (Hy) and (Hz). If F € Hq (f(X xQ)) and zg € X, then
each of the following two conditions implies that lim,, . F,(xg) = 0:
(a) f(xo, ) = xo a.e. for P and F(xzq) = 0;
(b) Fof(,wi)o...of(-,wn)(xo) =0 for every n € N and wy,...,w, € Q.

EXAMPLE. Assume that X is a separable normed space over K and let
HANS X*a (pn)nEN € [07 ]-]N) ('Yn)nGN € KNa (an)n€N7 (bn)nEN € XN with

o0 o0
> on=1, > pulml <o,
n=1 n=1

o0 o0 o0

1 " 1 1
S palval® <000 071 pabval#lanll < 1S paltmlE lball < oo.
n=1 n=1 n=1
Put

v = anvn, Xo =Lin({a, : » € N} U {b, : n € N})

n=1

and let F' € Ho(Xo).

If v # 1, then by part (i) of the Theorem (with Q@ = N, P({n}) = p,, for
n €N, and f(x,n) = (z*z)ay, + b, for (z,n) € X x N, g(n) =, for n € N)
the equation

(2) p(z) = Z Vnpn@((x*x)an + bn) + F(x)

n=1

has exactly one solution ¢ € F 4+ H,(X); if F is also continuous, or if F is
also uniformly continuous, then so is .

If v =1, 2*b, = 0 and F(b,) = 0 for every n € N, then by part (ii) of
the Theorem and the Remark (cf. condition (b)) equation has a solution
¢ € F 4+ Hq(X) unique up to an additive constant; if F' is also continuous, or
if F' is also uniformly continuous, then so is .
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