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ESTIMATING THE HARDY CONSTANT OF NONCONCAVE
HOMOGENEOUS QUASIDEVIATION MEANS

Zsolt Páles , Paweł Pasteczka

This paper is dedicated to the 70th birthday of Professor Kazimierz Nikodem

Abstract. In this paper, we consider homogeneous quasideviation means gen-
erated by real functions (defined on (0,∞)) which are concave around the
point 1 and possess certain upper estimates near 0 and ∞. It turns out that
their concave envelopes can be completely determined. Using this description,
we establish sufficient conditions for the Hardy property of the homogeneous
quasideviation mean and we also furnish an upper estimates for its Hardy
constant.

1. Introduction

The origin of Hardy property goes back to the paper [4], where this prop-
erty was proved for all power means below the arithmetic means (with nonop-
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timal constant). Later this result was improved and extended by Landau [9],
Knopp [7], and Carleman [1] whose results are summarized in the inequality

∞∑
n=1

Pp(x1, . . . , xn) ≤ C(p)

∞∑
n=1

xn

which holds for every sequences (xn)∞n=1 with positive terms, where Pp denotes
the p-th power mean,

C(p) :=


(1− p)−1/p, p ∈ (−∞, 0) ∪ (0, 1),

e, p = 0,

∞, p ∈ [1,∞),

and this constant is sharp, i.e., it cannot be diminished. For more details
about the history of the developments related to Hardy type inequalities, see
papers Pečarić and Stolarsky [20], Duncan and McGregor [3], and the book
of Kufner, Maligranda, and Persson [8].

It has been also extensively studied by the authors since 2016. There are
a number of results which allows one to obtain the Hardy constant for the
mean. All these results use Kedlaya (or Kedlaya-type) properties [5, 6] in their
background, which unifies their assumptions. In the most natural setting,
we assume that a mean is concave, homogeneous, and repetition invariant
(then it is also monotone).These assumptions are relaxed for example using
homogenizations techniques [15, 16], or by replacing repetition invariance by
a weaker axiom [19]. However we have not been able to relax the concavity
assumption. Due to this reason, it is difficult to establish the Hardy constant
for means which are nonconcave.

The most recent idea, which arises from the paper [18] is to majorize the
mean (in the mentioned paper it was a Gini mean) by certain concave mean
and calculate its Hardy constant, which is an upper estimate of the Hardy
constant of the initial one. The aim of this paper is to generalize this idea to
a broader class of means.

Remarkably, as it was mentioned in the Introduction to the paper [18], Gini
means was considered in the quasideviation framework. This was the most
natural setting due to the earlier, comprehensive study of the Hardy property
in this family [16]. Indeed, the key tool was the use of [18, Lemma 3.2], which
in fact reduces the problem of finding the upper estimate for nonconcave Gini
means to the problem of finding the Hardy constant of the corresponding
quasideviation means which were already homogeneous and concave.

In this paper we focus on homogeneous quasideviation means generated by
functions belonging to a certain class Φ, which means that they are concave
around the point 1 and satisfy some further assumptions. It turns out that
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their concave envelopes are of a special form which will be described in Theo-
rem 3.1. Using this description, in Theorem 4.3, we obtain sufficient conditions
for the Hardy property of such homogeneous quasideviation means and then,
in Theorem 4.4, we establish upper estimates for their Hardy constants.

2. Means and their properties

A function M :
⋃∞
n=1 Rn+ → R+ such that min(x) ≤M(x) ≤ max(x) holds

for all x in the domain of M is called a mean (on R+). Throughout the present
note all considered means are defined on R+, thus we can omit the domain
of a mean whenever convenient. We also adopt the standard convention that
natural properties like convexity, homogeneity, etc. refer to the respective
properties of the n-variable function M|Rn

+
to be valid for all n ∈ N.

For a given mean M let H(M) denote the smallest nonnegative extended
real number, called the Hardy constant of M, such that, for all sequences
(x1, x2, . . . ) of positive elements,

∞∑
n=1

M(x1, . . . , xn) ≤ H(M) ·
∞∑
n=1

xn.

Means with a finite Hardy constant are called Hardy means (cf. [13]). There
are a number of general results for this property obtained by the authors,
however we would like to omit them and proceed to the setup of homogeneous
quasideviation means.

2.1. Homogeneous quasideviation means

In what follows, we recall the notions of a quasideviation mean (cf. [10, 11]).

Definition 2.1. A function E : I×I → R is said to be a quasideviation if
(a) for all elements x, y ∈ I, the sign of E(x, y) coincides with that of x− y,
(b) for all x ∈ I, the map I 3 y 7→ E(x, y) is continuous and,
(c) for all x < y in I, the mapping (x, y) 3 t 7→ E(y,t)

E(x,t) is strictly increasing.
By the results of the paper [10], for all n ∈ N and x = (x1, . . . , xn) ∈ In, the
equation

E(x1, y) + · · ·+ E(xn, y) = 0
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has a unique solution y, which will be called the E-quasideviation mean of x
and denoted by DE(x). One can easily notice that power means, quasiarith-
metic means, Gini means are quasideviation means (see [10], [11] for further
details).

Let F denote a class of all continuous functions f : R+ → R such that
(i) sign(f(t)) = sign(t− 1) for all t ∈ R+,
(ii) for all x ∈ (0, 1), the mapping t 7→ f(t)

f(t/x) is strictly increasing on (x, 1).

Lemma 2.2 ([18, Lemma 2.1]). Let f : R+ → R be a function such that
sign(f(x)) = sign(x − 1) holds for all x ∈ R+ and assume that, for some
p ∈ R, the function fp(t) := tpf(t) (t ∈ R+) is increasing on R+ and strictly
increasing on (0, 1). Then f belongs to F. In particular, if f is increasing on
R+ and strictly increasing on (0, 1), then f ∈ F.

By [12], we know that for all f ∈ F the function Ef : R2
+ → R given by

Ef (x, y) := f(xy ) is a quasideviation and the corresponding quasideviation
mean Ef := DEf

is homogeneous and continuous. Conversely, if DE is homo-
geneous and continuous, then DE = Ef for some f ∈ F. One can easily check
that power means and Gini means are homogeneous and continuous.

The following results of papers [14, 16] are instrumental for us.

Lemma 2.3 ([14, Theorem 2.3]). Let f : R+ → R be concave such that
sign(f(x)) = sign(x−1) for all x ∈ R+. Then f ∈ F, the function Ef : R2

+ → R
defined by Ef (x, y) := f

(
x
y

)
is a quasideviation and the quasideviation mean

Ef := DEf
is homogeneous, continuous, nondecreasing and concave.

Lemma 2.4 ([16, Theorem 5.4]). Let f : R+ → R be a concave function
such that sign(f(x)) = sign(x−1) holds for all x ∈ R+. Then the homogeneous
quasideviation mean Ef is a Hardy mean if and only if the function x 7→ f

(
1
x

)
is integrable over (0, 1]. In the latter case, c := H(Ef ) is the unique solution
of the equation ∫ c

0

f
(1

x

)
dx = 0.

Finally, let us recall the following result about the comparison of homoge-
neous quasideviation means. (See, for example [2], [11, Theorem 10], and [18,
Lemma 2.3].)

Lemma 2.5. For all f, g ∈ F with f ≤ g, we have Ef ≤ Eg.
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3. The concave envelope of functions belonging to the class Φ

In this section, we introduce a subclass of homogeneous quasideviation
means which we are going to discuss. Let Φ denote the family of all continuous
functions g : R+ → R satisfying the following properties
(Φ1) sign g(t) = sign(t− 1),
(Φ2) g(t) ≤ t− 1 for all t ∈ R+,
(Φ3) there exist α, β ∈ [0,∞] with α < 1 < β such that

(Φ3a) g in concave on (α, β),
(Φ3b) g possesses the following convexity type condition on (0, α]:

g(t) ≤ t

α
g(α) +

α− t
α

g+(0) (t ∈ (0, α]),

where g+(0) := lim sups→0 g(s),
(Φ3c) g possesses the following convexity type condition on [β,∞),

g(t) ≤ g(β) + q(t− β) (t ∈ [β,∞)),

where q := lim sups→∞ g(s)/s.

3.1. The concave envelope

In this section we aim to describe the concave envelope of functions be-
longing to the class Φ. To do this, we first recall the definition of the concave
envelope of real-valued functions from the paper [17]. Namely, for a function
f : I→R, which possesses a concave majorization, we define conc(f) : I→R by

conc(f)(t) := inf{g(t) | g : I → R, g is a concave function, and g ≥ f}.

In view of the results of the mentioned paper, we know that the concave
envelope admits some natural properties like continuity, concavity and the
inequality f ≤ conc(f) holds. In general, for an arbitrary function f : I → R,
it could happen that there is no concave function above f . On the other hand,
each member of Φ is bounded from above by the affine function t 7→ t − 1,
thus the concave envelope exists for each element of Φ.

In order to describe the concave envelope of functions belonging to Φ,
we introduce the following general transformation. Given an open interval
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I ⊆ R+, a, b ∈ I ∪ {inf I, sup I} with a < b and p, q ∈ R, for any function
g : I → R, we define Γa,b;p,q(g) : R+ → R by

Γa,b;p,q(g)(t) :=


g(a) + p(t− a) for t ∈ (0, a],

g(t) for t ∈ (a, b),

g(b) + q(t− b) for t ∈ [b,+∞).

It is easy to check that if g is continuous then all functions of the form above
are also continuous. It is worth noticing that Γa,b;p,q(g) does not depend on p
and q if a = 0 and b = +∞, respectively. In our first main theorem, we show
the concave envelope of the elements of Φ are of this form.

For to formulation of the subsequent results, we recall the notions of left
lower and the right upper Dini derivatives: For a function g : I → R and
a point x ∈ I, they are defined by

D−g(x) := lim inf
t↑x

g(t)− g(x)

t− x
and D+g(x) := lim sup

t↓x

g(t)− g(x)

t− x
,

respectively.

Theorem 3.1. Let g ∈ Φ and let α, β be chosen according to property
(Φ3). Then there exist a ∈ [α, 1] and b ∈ [1, β] such that conc(g) = Γa,b;p,q(g),
where

p :=

lim inf
t→0+

g(a)− g(t)

a− t
if α > 0,

1 if α = 0,
and q :=

lim sup
t→∞

g(t)

t
if β <∞,

1 if β =∞.

Furthermore 0 ≤ q ≤ 1, in addition, if 0 < α and β < +∞ then they also
satisfy

(3.1) D+g(a) ≤ p ≤ D−g(a) and D+g(b) ≤ q ≤ D−g(b),

respectively.

Proof. If α = 0, then define a := 0 and p := 1. Similarly, if β =∞, then
define b :=∞ and q := 1.

Assume now that α > 0. Due to the property (Φ2), we can see that g has
a finite upper right limit at 0, moreover,

g+(0) ≤ lim sup
t→0

(t− 1) = −1.
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Define the map ϕ : R+ → R by

ϕ(t) :=
g(t)− g+(0)

t
.

Using condition (Φ3b), for all t ∈ (0, α], we get that

ϕ(t) ≤
(
t
αg(α) + α−t

α g+(0)
)
− g+(0)

t
=
g(α)− g+(0)

α
= ϕ(α).

On the other hand, if t ∈ [1,∞), then using property (Φ2) and 1 + g+(0) ≤ 0,
it follows that

ϕ(t) ≤ t− 1− g+(0)

t
= 1− 1 + g+(0)

t
≤ −g+(0) = ϕ(1).

Therefore, in view of its continuity, the function ϕ is bounded from above and
its maximum is attained at an element a ∈ [α, 1]. Thus, for all t ∈ R+, we
have that

ϕ(t) ≤ ϕ(a) =
g(a)− lim sups→0 g(s)

a
= lim inf

s→0

g(a)− g(s)

a− s
=: p.

This inequality, for all t ∈ R+, implies that

g(t) ≤ t

a
g(a) +

a− t
a

g+(0).

Therefore,

D+g(a) ≤ lim sup
t↓a

(
t
ag(a) + a−t

a g+(0)
)
− g(a)

t− a
=
g(a)− g+(0)

a
= p,

D−g(a) ≥ lim inf
t↑a

(
t
ag(a) + a−t

a g+(0)
)
− g(a)

t− a
=
g(a)− g+(0)

a
= p,

which shows the validity of the first two inequalities in (3.1).
If β <∞, then define

q := lim sup
t→∞

g(t)

t
.

Then, using properties (Φ1) and (Φ2), it follows that

0 ≤ q ≤ lim sup
t→∞

t− 1

t
= 1,
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hence q ∈ [0, 1]. Now define the function ψ : R+ → R by ψ(t) := g(t)− qt. In
view of condition (Φ3c), for all t ∈ [β,∞), we get that

ψ(t) ≤ ψ(β).

Additionally, applying conditions (Φ2) and (Φ1), for t ∈ (0, 1], we get that

ψ(t) ≤ (t− 1)− qt = (1− q)t− 1 ≤ −q = ψ(1).

This, using also the continuity of ψ, shows that ψ is bounded from above over
R+ and it attains its maximum at an element b ∈ [1, β]. Consequently, for all
t ∈ R+, we have that

g(t)− qt ≤ g(b)− qb.

Using this inequality, we get

D+g(b) ≤ lim sup
t↓b

(
g(b) + q(t− b)

)
− g(b)

t− b
= q,

D−g(b) ≥ lim inf
t↑a

(
g(b) + q(t− b)

)
− g(b)

t− b
= q,

which shows the validity of the last two inequalities in (3.1).
To complete the proof, we need to show that conc(g) = Γa,b;p,q(g).
Since g is concave on (α, β), it has left and right derivatives at each point

of this interval. The function h := Γa,b;p,q(g) is continuous on R+ and for
its right and left derivatives (using just its definition), we have the following
formulas

D+h(t) =


p if t ∈ (0, a),

D+g(t) if t ∈ [a, b),

q if t ∈ [b,∞),

D−h(t) =


p if t ∈ (0, a],

D−g(t) if t ∈ (a, b],

q if t ∈ (b,∞).

Using the concavity of g over [a, b] ⊆ [α, β] we have that D+g and D−g are
decreasing functions over [a, b) and (a, b], respectively, therefore, in view of
the inequalities in (3.1), it follows that

p ≥ D+g(a) ≥ D+g(t) ≥ D+g(s) ≥ D−g(b) ≥ q (t, s ∈ [a, b), t ≤ s) and

p ≥ D+g(a) ≥ D−g(t) ≥ D−g(s) ≥ D−g(b) ≥ q (t, s ∈ (a, b], t ≤ s).

Thus, we have established that the right (as well as the left) derivative of h
is a decreasing function over R+, which proves that h = Γa,b;p,q(g) is concave
over R+.
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We show now that Γa,b;p,q(g)(t) ≥ g(t) for all t ∈ R+. This inequality is in
fact an equality if t ∈ (a, b). Assume that t ∈ (0, a]. Then, by the inequality
ϕ(t) ≤ ϕ(a), we have that

g(t) ≤ g+(0) + t
g(a)− g+(0)

a
= g+(0) + tp = g(a) + p(t− a).

This proves that Γa,b;p,q(g)(t) ≥ g(t) holds for all t ∈ (0, a].
If t ∈ [b,∞), then, by the inequality ψ(t) ≤ ψ(b), we have that

g(t) ≤ g(b) + q(t− b),

which shows that Γa,b;p,q(g)(t) ≥ g(t) is valid for all t ∈ [b,∞).
Finally, we verify that Γa,b;p,q(g) is minimal among those concave functions

that are nonsmaller than g on R+. Let f : R+ → R be a concave function such
that f(t) ≥ g(t) for all t ∈ R+. The inequality f(t) ≥ Γa,b;p,q(g)(t) is obvious
for t ∈ (a, b).

Due to the inequality g ≤ f and the concavity of f over R+, we can see
that the right limit of f exists at 0 and is nonsmaller than g+(0). Thus we
can extend h continuously to [0,∞) and this extension will also be concave.
Therefore, for t ∈ (0, a],

f(t) = f
(a− t

a
· 0 +

t

a
· a
)
≥ a− t

a
f+(0) +

t

a
f(a) ≥ a− t

a
g+(0) +

t

a
g(a)

= g(a) + p(t− a) = Γa,b;p,q(g)(t).

For t ∈ [b,∞), let s > t be arbitrary. Then, by the concavity of f , we get

f(t) = f
( s− t
s− b

b+
t− b
s− b

s
)
≥ s− t
s− b

f(b) +
t− b
s− b

f(s) ≥ s− t
s− b

g(b) +
t− b
s− b

g(s).

We can see that

lim sup
s→∞

g(s)

s− b
= lim sup

s→∞

g(s)/s

1− (b/s)
= q.

Using this equality, upon taking the limsup as s→∞ in the previous inequal-
ity, it follows that

f(t) ≥ lim sup
s→∞

( s− t
s− b

g(b) +
t− b
s− b

g(s)
)

= g(b) + q(t− b) = Γa,b;p,q(g)(t).

This completes the proof of the equality conc(g) = Γa,b;p,q(g). �
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4. The Hardy property and the Hardy constant

Once we already know the form of concave envelopes of function is Φ,
we can use them to establish upper bounds of homogeneous quasideviations
means which are generated by functions belonging to this family.

Lemma 4.1. For every function g ∈ F which is bounded from above and
satisfies the inequality g(t) ≤ t− 1 for all t ∈ R+, the mean Eg possesses the
Hardy property and its Hardy constant is less than or equal to c, where c > 1
is the unique solution of the equation

(4.1) c− 1− ln(c) = ln
(

supR+
g + 1

)
.

In particular, for all n ≥ 2,

(4.2) c ≤ exp

(
n

√
n! ln

(
supR+

g + 1
))
.

Proof. Let M := supR+
g > 0 and define h : R+ → R by

(4.3) h(t) := min(t− 1,M) =

{
t− 1 for t ≤M + 1,

M for t > M + 1.

Then we have that h ∈ F and g(t) ≤ h(t) for all t ∈ R+. Therefore Eg ≤ Eh
and it is sufficient to show that Eh is a Hardy mean. However, h is obviously
concave and sign(h(t)) = sign(t−1) holds for all t ∈ R+. Then, by Lemma 2.4,
Eh is a Hardy mean if and only if the function x 7→ h(1/x) is integrable over
(0, 1]. Indeed, we have that∫ 1

0

h
(1

x

)
dx =

∫ 1
M+1

0

h
(1

x

)
dx+

∫ 1

1
M+1

h
(1

x

)
dx

=

∫ 1
M+1

0

M dx+

∫ 1

1
M+1

(1

x
− 1
)
dx

=
M

M + 1
+ ln(M + 1)− M

M + 1
= ln(M + 1) < +∞,

and we are done.
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The Hardy constant c = H(Eh) is the solution of the equation

0 =

∫ c

0

h
(1

x

)
dx = ln(c(M + 1)) + 1− c,

which shows that (4.1) is valid. To verify the last inequality, we use that c > 1
and estimate

c− 1− ln(c) = exp(ln(c))− 1− ln(c) =

∞∑
k=0

(ln(c))k

k!
− 1− ln(c)

=

∞∑
k=2

(ln(c))k

k!
≥ (ln(c))n

n!
(n ≥ 2).

This inequality then directly implies that (4.2) is valid. �

Remark 4.2. One can easily compute the Eh mean of 0 < x1 ≤ x2 ≤
· · · ≤ xn, where h is given by (4.3) and M is a positive number. Then y :=
Eh(x1, . . . , xn) is the solution of the equation

k∑
i=1

(xi
y
− 1
)

+

n∑
i=k+1

M = 0

and k ∈ {1, . . . , n} is the largest index such that xk ≤ y(M + 1). From this
equality, we get that

(4.4) y =
1

k(M + 1)− nM

k∑
i=1

xi.

The condition xk ≤ y(M + 1) is now equivalent to the inequality

(4.5) xk ≤
1

k − n M
M+1

k∑
i=1

xi.

Therefore, to compute y = Eh(x1, . . . , xn), one has to find the largest index
k ∈ {1, . . . , n} such that (4.5) (and hence k > n M

M+1) be valid, then y is given
by (4.4).

In the following result, for any g ∈ F∩Φ, we characterize the Hardy prop-
erty of the mean Econc(g) and, consequently, we establish a sufficient condition
for the Hardy property of Eg.
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Theorem 4.3. Let g ∈ F∩Φ and let α ∈ [0, 1) and β ∈ (1,+∞] according
to property (Φ3) of g. Then conc(g) ∈ F and the mean Econc(g) possesses
the Hardy property if and only if either β = +∞ and

∫ 1

0
g(1t )dt < +∞, or

β < +∞ and g is bounded from above. In these cases, we have that Eg is also
a Hardy mean and H(Eg) ≤ H(Econc(g)).

Proof. In view of Theorem 3.1, the concave envelope of g is nondecreas-
ing, which implies that it belongs to F.

According to Lemma 2.4, Econc(g) is a Hardy mean if and only if the integral∫ 1

0
conc(g)(1t )dt is finite. To check this property, we distinguish two cases.
If β = +∞, then conc(g)(t) = g(t) for all t ≥ 1. Consequently,∫ 1

0

conc(g)
(1

t

)
dt =

∫ 1

0

g
(1

t

)
dt.

Thus,
∫ 1

0
conc(g)(1t )dt is finite if and only if

∫ 1

0
g(1t )dt is finite.

If β < +∞, then there exists b ∈ [1, β] and q ≥ 0 such that, for all
t ∈ [b,∞),

(4.6) conc(g)(t) = g(b) + q(t− b).

The integral
∫ 1

0
conc(g)(1t )dt is finite if and only if

∫ 1
b

0
conc(g)(1t )dt is finite.

Then, in view of the equality (4.6), we have that∫ 1
b

0

conc(g)
(1

t

)
dt =

∫ 1
b

0

g(b) + q
(1

t
− b
)
dt,

which can be finite if and only if q = 0. In this case, g is bounded from above.
On the other hand, if g is bounded from above, then, according to the

Lemma 4.1, it follows that Econc(g) is a Hardy mean.
In view of the inequality g ≤ conc(g) and Lemma 2.5, it follows that

Eg ≤ Econc(g). Therefore, Eg is also a Hardy mean and H(Eg) ≤ H(Econc(g))
holds. �

In what follows, we describe the Hardy constant of the mean Econc(g) pro-
vided that it is finite.

Theorem 4.4. Let g ∈ F ∩ Φ and let α ∈ [0, 1) and β ∈ (1,+∞] accord-
ing to property (Φ3) of g. Assume that Econc(g) is a Hardy mean and choose
a ∈ [α, 1], b ∈ [1, β] and p, q ∈ R as stated in Theorem 3.1. Then the Hardy
constant c > 1 of the mean Econc(g) is determined by the one of following
conditions:
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(i) If α = 0 and β =∞, then c is the unique solution of the equality

(4.7)
∫ c

0

g
(1

t

)
dt = 0.

(ii) If α = 0 and β <∞, then c is the unique solution of the equality

g(b)

b
+

∫ c

1/b

g
(1

t

)
dt = 0.

(iii) If α > 0, then c is the unique solution of the equality

K(g)−
∫ 1/a

c

g
(1

t

)
dt = 0 if K(g) ≤ 0,

K(g) + p ln(ca) +
(
c− 1

a

)
(g(a)− pa) = 0 if K(g) > 0,

where, for β = +∞,

K(g) :=

∫ 1/a

0

g
(1

t

)
dt =

∫ ∞
a

g(s)

s2
ds

and, for β < +∞,

K(g) :=
g(b)

b
+

∫ 1/a

1/b

g
(1

t

)
dt =

g(b)

b
+

∫ b

a

g(s)

s2
ds.

Proof. According to Lemma 2.4, the Hardy constant c of the mean
Econc(g) is the unique solution of the equation ψ(c) = 0, where ψ : R+ → R is
defined by

ψ(x) :=

∫ x

0

conc(g)
(1

t

)
dt.

We rewrite the equation ψ(c) = 0 in each of the cases listed in the theorem.
Using Theorem 3.1, we also have that conc(g) = Γa,b;p,q(g).

If α = 0 and β = ∞, then g = conc(g), therefore, ψ(c) = 0 is equivalent
to (4.7).

If α = 0 and β < ∞, then Econc(g) is a Hardy mean if and only if q = 0.
Now a = 0 and 1

b ≤ 1 < c, thus

0 = ψ(c) =

∫ 1/b

0

conc(g)
(1

t

)
dt+

∫ c

1/b

conc(g)
(1

t

)
dt =

g(b)

b
+

∫ c

1/b

g
(1

t

)
dt.
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If α > 0, then we distinguish two subcases.
(A) If c ∈ (1, 1a ], then ψ( 1

a) ≤ ψ(c) = 0 and

0 = ψ(c) =

∫ c

0

conc(g)
(1

t

)
dt = ψ

(1

a

)
−
∫ 1/a

c

conc(g)
(1

t

)
dt

= ψ
(1

a

)
−
∫ 1/a

c

g
(1

t

)
dt.

(B) If c ∈ ( 1
a ,∞), then ψ( 1

a) > ψ(c) = 0. Then

ψ(c) =

∫ c

0

conc(g)
(1

t

)
dt = ψ

(1

a

)
+

∫ c

1/a

conc(g)
(1

t

)
dt

= ψ
(1

a

)
+

∫ c

1/a

p
(1

t
− a
)

+ g(a) dt

= ψ
(1

a

)
+ p ln(ca) +

(
c− 1

a

)
(g(a)− pa).

Finally, observe that

ψ
(1

a

)
=

∫ 1/a

0

conc(g)
(1

t

)
dt =

∫ 1/a

0

g
(1

t

)
dt = K(g),

if β = +∞ and

ψ( 1
a) =

∫ 1/b

0

g(b) dt+

∫ 1/a

1/b

g
(1

t

)
dt =

g(b)

b
+

∫ 1/a

1/b

g
(1

t

)
dt = K(g),

if β < +∞.
This completes the proof of the assertion in all of the cases. �
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