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THE REALIZABILITY OF THETA GRAPHS
AS RECONFIGURATION GRAPHS OF

MINIMUM INDEPENDENT DOMINATING SETS

R.C. Brewster∗, C.M. Mynhardt∗ , L.E. Teshima

Abstract. The independent domination number i(G) of a graph G is the
minimum cardinality of a maximal independent set of G, also called an i(G)-
set. The i-graph of G, denoted I (G), is the graph whose vertices correspond
to the i(G)-sets, and where two i(G)-sets are adjacent if and only if they differ
by two adjacent vertices. Not all graphs are i-graph realizable, that is, given
a target graph H, there does not necessarily exist a source graph G such that
H ∼= I (G). We consider a class of graphs called “theta graphs”: a theta graph
is the union of three internally disjoint nontrivial paths with the same two
distinct end vertices. We characterize theta graphs that are i-graph realizable,
showing that there are only finitely many that are not. We also characterize
those line graphs and claw-free graphs that are i-graphs, and show that all
3-connected cubic bipartite planar graphs are i-graphs.

1. Introduction

Our main topic is the characterization of theta graphs that are obtainable
as reconfiguration graphs with respect to the minimum independent dominat-
ing sets of some graph.
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In graph theory, reconfiguration problems are often concerned with solu-
tions to a specific problem that are vertex subsets of a graph. When this is the
case, the reconfiguration problem can be viewed as a token manipulation prob-
lem, where a solution subset is represented by placing a token at each vertex
of the subset. Each solution is represented as a vertex of a new graph, referred
to as a reconfiguration graph, where adjacency between vertices corresponds
to a predefined token manipulation rule called the reconfiguration step. The
reconfiguration step we consider here consists of sliding a single token along
an edge between adjacent vertices belonging to different solutions.

More formally, given a graph G, the slide graph of G is the graph H such
that each vertex of H represents a solution of some problem on G, and two
vertices u and v ofH are adjacent if and only if the solution inG corresponding
to u can be transformed into the solution corresponding to v by sliding a single
token along the edge uv ∈ E(G). See [7] for a survey on reconfiguration of
colourings and dominating sets in graphs.

We use the standard notation of α(G) for the independence number of
a graph G. The independent domination number i(G) of G is the minimum
cardinality of a maximal independent set of G, or, equivalently, the minimum
cardinality of an independent domination set of G. An independent dominat-
ing set of G of cardinality i(G) is also called an i-set of G, or an i(G)-set. An
α-set of G, or an α(G)-set, is defined similarly. When i(G) = α(G), we say
that G is well-covered.

Given a graph G, we consider the slide graph I (G) of G, formally defined
in Section 2 below, with respect to its i-sets. Our main result, Theorem 5.3,
concerns the class Θ of “theta graphs” for which we characterize, in Sections 5
and 6, those graphs H ∈ Θ for which there exists a graph G such that H ∼=
I (G). We state known results required here in Section 3. We introduce the
technique we use for theta graphs in Section 4, where we apply it to the simpler
problem of characterizing line graphs and claw-free graphs that are realizable
as i-graphs. In Section 7.1 we exhibit a graph that is neither a theta graph
nor an i-graph, and in Section 7.2 we show that certain planar graphs are
i-graphs and α-graphs. We conclude with some open problems in Section 8.

In general, we follow the notation of [3]. For other domination principles
and terminology, see [4, 5].

2. i-graphs and theta graphs

The i-graph of a graph G, denoted I (G) = (V (I (G)), E(I (G))), is the
graph with vertices representing the minimum independent dominating sets
of G (that is, the i-sets of G), and where u, v ∈ V (I (G)), corresponding to
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the i(G)-sets Su and Sv, respectively, are adjacent in I (G) if and only if there
exists xy ∈ E(G) such that Su = (Sv−x)∪{y}. Imagine that there is a token
on each vertex of an i-set S of G. Then S is adjacent, in I (G), to an i(G)-set
S′ if and only if a single token can slide along an edge of G to transform S
into S′. Similarly, the α-graph A (G) of a graph G is the slide reconfiguration
graph with vertices representing the α(G)-sets, and where adjacency is defined
as for the i-graph. In Section 5 we present several constructions for i-graphs
that are also constructions for α-graphs.

We say H is an i-graph, or is i-graph realizable, if there exists some graph
G such that I (G) ∼= H. Moreover, we refer to G as the seed graph of the
i-graph H. Going forward, we mildly abuse notation to denote both the i-set
X of G and its corresponding vertex in H as X, so that X ⊆ V (G) and
X ∈ V (H).

In acknowledgment of the slide-action in i-graphs, given i-setsX = {x1, x2,
. . . , xk} and Y = {y1, x2, . . . xk} of G with x1y1 ∈ E(G), we denote the
adjacency of X and Y in I (G) as X x1y1∼ Y , where we imagine transforming
the i-set X into Y by sliding the token at x1 along an edge to y1. When
discussing several graphs, we use the notation X

x1y1∼G Y to specify that the
relationship is on G. More generally, we use x ∼ y to denote the adjacency
of vertices x and y (and x 6∼ y to denote non-adjacency); this is used in the
context of both the seed graph and the target graph.

The study of i-graphs was initiated by Teshima in [9]. In [2], Brewster,
Mynhardt and Teshima investigated i-graph realizability and proved some
results concerning the adjacency of vertices in an i-graph and the structure
of their associated i-sets in the seed graph. They presented the three smallest
graphs that are not i-graphs: the diamond graph D = K4 − e, K2,3 and the
graph κ, which is K2,3 with an edge subdivided. They showed that several
graph classes, like trees and cycles, are i-graphs. They demonstrated that
known i-graphs can be used to construct new i-graphs and applied these
results to build other classes of i-graphs, such as block graphs, hypercubes,
forests, cacti, and unicyclic graphs.

The diamond D, K2,3, and κ are examples of theta graphs: graphs that
are the union of three internally disjoint nontrivial paths with the same two
distinct end vertices. The graph Θ 〈j, k, `〉, where j ≤ k ≤ `, is the theta
graph with paths of lengths j, k, and `. In this notation, the three non-i-graph
realizable examples are D ∼= Θ 〈1, 2, 2〉, K2,3

∼= Θ 〈2, 2, 2〉, and κ ∼= Θ 〈2, 2, 3〉.
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3. Previous results

To begin, we state several useful observations and lemmas from [2, 9]
about the structure of i-sets within given i-graphs. Given a set S ⊆ V (G) and
a vertex v ∈ S, the private neighbourhood of v with respect to S is the set
pn(v, S) = N [v] − N [S − {v}], and the external private neighbourhood of v
with respect to S is the set epn(v, S) = pn(v, S)− {v}.

Observation 3.1 ([2, 9]). Let G be a graph and H = I (G). A vertex
X ∈ V (H) has degH(X) ≥ 1 if and only if for some v ∈ X ⊆ V (G), there
exists u ∈ epn(v,X) such that u dominates pn(v,X).

For some path X1, X2, . . . , Xk in H, at most one vertex of the i-set is
changed at each step, and so X1 and Xk differ on at most k− 1 vertices. This
yields the following immediate observation.

Observation 3.2 ([2, 9]). Let G be a graph and H = I (G). Then for any
i-sets X and Y of G, the distance dH(X,Y ) ≥ |X − Y |.

Lemma 3.3 ([2, 9]). Let G be a graph with H = I (G). Suppose XY and
Y Z are edges in H with X xy1∼ Y and Y y2z∼ Z, with X 6= Z. Then XZ is an
edge of H if and only if y1 = y2.

Combining the results from Lemma 3.3 with Observation 3.2 yields the
following observation for vertices of i-graphs at distance 2.

Observation 3.4 ([2, 9]). Let G be a graph and H = I (G). Then for any
i-sets X and Y of G, if dH(X,Y ) = 2, then |X − Y | = 2.

Lemma 3.5 ([2, 9]). Let G be a graph and H = I (G). Suppose H contains
an induced K1,m with vertex set {X,Y1, Y2, . . . , Ym} and degH(X) = m. Let
i 6= j. Then in G,
(i) X − Yi 6= X − Yj,
(ii) |Yi ∩ Yj | = i(G)− 2, and
(iii) m ≤ i(G).

Lemma 3.3 and Observation 3.2 are also used to prove the next result.

Proposition 3.6 ([2, 9]). Let G be a graph and H = I (G). Suppose H
has an induced C4 with vertices X,A,B, Y , where XY,AB /∈ E(H). Then,
without loss of generality, the set composition of X,A,B, Y in G, and the edge
labelling of the induced C4 in H, are as in Figure 1.
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Y = {y1, y2, v3, . . . , vk}

A = {y1, x2, v3, . . . , vk} B = {x1, y2, v3, . . . , vk}

X = {x1, x2, v3, . . . , vk}

X
x1y1∼ A X

x2y2∼ B

A
x2y2∼ Y B

x1y1∼ Y

Figure 1. Reconfiguration structure of an induced C4 subgraph from
Proposition 3.6

We state the above-mentioned results regarding D, K2,3, and κ here for
referencing.

Proposition 3.7 ([2, 9]). The graphs D, K2,3, and κ are not i-graph
realizable.

On the other hand, the house graphH = Θ 〈1, 2, 3〉 in Figure 2(b) is a theta
graph that is an i-graph, as illustrated by the seed graph G in Figure 2(a).
The i-sets of G and their adjacencies are overlaid on H in Figure 2(b).

Proposition 3.8 ([2, 9]). The house graph H is an i-graph.

a b c

d

e

(a) A graph G such that I (G) = H

{a, e}{a, d}

{b, d} {b, e}

{a, c}

(b) The house graph H with i-sets of G
Figure 2. The graph G for Proposition 3.8 with I (G) = H

The next result shows that maximal cliques in i-graphs can be replaced
by arbitrarily larger maximal cliques to form larger i-graphs.

Lemma 3.9 (Max Clique Replacement Lemma [2, 9]). Let H be an i-graph
with a maximal m-vertex clique, Km. The graph Hw formed by adding a new
vertex w∗ adjacent to all of Km is also an i-graph.
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The Deletion Lemma below shows that the class of i-graphs is closed under
vertex deletion, that is, every induced subgraph of an i-graph is also an i-
graph.

Lemma 3.10 (Deletion Lemma [2, 9]). If H is a nontrivial i-graph, then
any induced subgraph of H is also an i-graph.

Corollary 3.11 ([2, 9]). If H is not an i-graph, then any graph containing
an induced copy of H is also not an i-graph.

When visualizing the connections between the i-sets of a graph G, it is
sometimes advantageous to consider its complement G instead. From a human
perspective, it is curiously easier see to which vertices a vertex v is adjacent,
rather than to which vertices v is nonadjacent. This is especially true when
i(G) = 2 or 3, when we may interpret the adjacency of i-sets of G as the
adjacencies of edges and triangles (i.e. K3), respectively, in G. In the following
sections we examine how the use of graph complements can be exploited to
construct the i-graph seeds for certain classes of line graphs, theta graphs,
and maximal planar graphs.

4. Line graphs and claw-free graphs

Consider a graph G with i(G) = 2 and where X = {u, v} is an i-set of G.
In G, u and v are adjacent, so X is represented as the edge uv. Moreover, no
other vertex w is adjacent to both vertices of X in G; otherwise, {u, v, w} is
independent in G, contrary to X being an i-set.

Now consider the line graph L(G) of G. If X = {u, v} is an i-set of G,
then e = uv is an edge of G and hence e is a vertex of L(G). Thus, the i-sets
of G correspond to a subset of the vertices of L(G). In the case where G is
triangle-free (that is, G has no independent sets of cardinality 3), these i-sets
of G are exactly the vertices of L(G). Now suppose Y is an i-set of G adjacent
to X; say, X uw∼ Y , so that Y = {v, w}. Then, in G, f = vw is an edge,
and so in L(G), f ∈ V (L(G)). Since e and f are both incident with v in G,
ef ∈ E(L(G)). That is, for i-sets X and Y of a well-covered graph G with
i(G) = α(G) = 2, X ∼ Y if and only if X and Y correspond to adjacent
vertices in L(G). Thus I (G) ∼= L(G).

In the example illustrated in Figure 3 below, H is the house graph, where
X = {a, c} and Y = {c, e} are i-sets with X ae∼ Y . In L(H), the two vertices
in each of these i-sets are likewise adjacent.
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a

b d

e

c

H

a

b d

e

c

H

{c, e}

{b, e} {a, d}

{a, c}

L(H) ∼= I (H)

Figure 3. The complement and line graphs complement of the well-covered
house graph H

The connection between graphs with i(G) = 2 and line graphs helps us
not only understand the structure of I (G), but also lends itself towards some
interesting realizability results. We follow this thread for the remainder of this
section, and build towards determining the i-graph realizability of line graphs
and claw-free graphs. The straightforward proof of the following lemma can
be found in [9] and is omitted here.

Lemma 4.1. The line graph of a connected graph G of order at least 4
contains D as an induced subgraph if and only if G contains a triangle. (See
Figure 4.)

a

d

c b

H

ad

ac

bc

ab

L(H) ∼= D

Figure 4. The “paw” H with L(H) ∼= D

Theorem 4.2. Let H be a connected line graph. Then H is an i-graph if
and only if H is D-free.

Proof. Suppose H is an i-graph. By Proposition 3.7 and Corollary 3.11,
H is D-free.

Conversely, suppose that H is D-free. If H is complete, then H is the i-
graph of itself. So, assume that H is not complete. Say H is the line graph of
some graph F , where we may assume F has no isolated vertices (as isolated
vertices do not affect line graphs). Since H is D-free and connected, F has
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no triangles by Lemma 4.1. Since F has edges (which it does since H exists),
α(F ) ≤ 2. Moreover, as F is connected, F has no universal vertices, and so
i(F ) ≥ 2. Thus, i(F ) = α(F ) and F is well-covered. It follows that every edge
of F corresponds to an i-set of F . Since H is the line graph of F , it is the
i-graph of F . �

Finally, if we examine Beineke’s forbidden subgraph characterization of
line graphs (see [1] or [3, Theorem 6.26]), we note that eight of the nine
minimal non-line graphs contain an induced D and are therefore not i-graphs.
The ninth minimal non-line graph is the claw, K1,3. Thus, D-free claw-free
graphs are D-free line graphs, hence i-graphs.

Corollary 4.3. Let H be a connected claw-free graph. Then H is an
i-graph if and only if H is D-free.

While Theorem 4.2 and Corollary 4.3 reveal the i-graph realizability of
many famous graph families (including another construction for cycles, which
are connected, claw-free, and D-free), the realizability problem for graphs
containing claws remains unresolved. Moreover, among clawed graphs are the
theta graphs which we first alluded to in Section 2 as containing three of the
small known non-i-graphs. In the next section we apply similar techniques
with graph complements to construct all theta graphs that are i-graphs.

5. Theta graphs from graph complements

Consider a graph G with i(G) = 3. Each i-set of G is represented as a
triangle (a K3) in G. If X and Y are two i-sets of G with X

uv∼ Y , then
G[X] and G[Y ] are triangles in G, and have |X ∩ Y | = 2. Although it is
technically the induced subgraphs G[X] and G[Y ] that are the triangles of G,
for notational simplicity we refer to X and Y as triangles. In G, the triangle X
can be transformed into the triangle Y by removing the vertex u and adding
in the vertex v (where u 6∼G v). Thus, we say that two triangles are adjacent
if they share exactly one edge. Moreover, since two i-sets of a graph G with
i(G) = 3 are adjacent if and only if their associated triangles in G are adjacent,
we use the same notation for i-set adjacency in G as triangle adjacency in G;
that is, the notation X ∼ Y represents both i-sets X and Y of G being
adjacent, and triangles X and Y of G being adjacent.

In the following sections we use triangle adjacency to construct complement
seed graphs for the i-graphs that are theta graphs; that is, a graph G such
that I (G) is isomorphic to some desired theta graph. Before proceeding with
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these constructions, we note some observations which will help us with this
process.

Observation 5.1. A graph G has i(G) = 2 if and only if G is nonempty
and has an edge that does not lie on a triangle.

If G has an edge uv that does not lie on a triangle, then {u, v} is indepen-
dent and dominating in G, and so i(G) ≤ 2. When building our seed graphs
G with i(G) = 3, it is therefore necessary to ensure that every edge of the
complement G belongs to a triangle.

Observation 5.2. Let G be a graph with i(G) = 3. If S with |S| ≥ 4 is
a (possibly non-maximal) clique in G, then no 3-subset of S is an i-set of G.

Suppose that S = {u, v, w, x} is such a clique of G. Then, for example,
x is undominated by {u, v, w} in G, and so {u, v, w} is not an i-set of G.
Conversely, suppose that {u, v, w} is a triangle in a graph G with i(G) = 3.
By attaching a new vertex x to all of {u, v, w} in G, we remove {u, v, w} as
an i-set of G, while keeping all other i-sets of G. This observation proves to
be very useful in the constructions in the following section: we now have a
technique to eliminate any unwanted triangles in G (and hence i-sets of G)
that may arise. Note that this technique is an application of the Deletion
Lemma (Lemma 3.10) in G instead of in G.

The use of triangle adjacency in a graph G to determine i-set adjacency in
G provides a key technique to resolve the question of which theta graphs are i-
graphs. In our main result, Theorem 5.3, we show that all theta graphs except
the seven listed exceptions are i-graphs. Using this method of complement
triangles, the proofs of the lemmas for the affirmative cases make up most of
the remainder of Section 5. The proofs of the lemmas for the seven negative
cases are given in Section 6.

Theorem 5.3. A theta graph is an i-graph if and only if it is not one of
the seven exceptions listed below:

Θ 〈1, 2, 2〉 ,

Θ 〈2, 2, 2〉 , Θ 〈2, 2, 3〉 , Θ 〈2, 2, 4〉 , Θ 〈2, 3, 3〉 , Θ 〈2, 3, 4〉 ,

Θ 〈3, 3, 3〉 .

Table 1 summarizes the cases used to establish Theorem 5.3 and their
associated results.
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Table 1. i-graph realizability of theta graphs

Θ 〈j, k, `〉 Realizability Result
Θ 〈1, 2, 2〉 non-i-graph D. Proposition 3.7
Θ 〈1, 2, `〉, ` ≥ 3 i-graph Lemma 5.4
Θ 〈1, k, `〉, 3 ≤ k ≤ ` i-graph Lemma 5.6

Θ 〈2, 2, 2〉 non-i-graph K2,3. Proposition 3.7
Θ 〈2, 2, 3〉 non-i-graph κ. Proposition 3.7
Θ 〈2, 2, 4〉 non-i-graph Proposition 6.1
Θ 〈2, 2, `〉, ` ≥ 5 i-graph Lemma 5.10
Θ 〈2, 3, 3〉 non-i-graph Proposition 6.2
Θ 〈2, 3, 4〉 non-i-graph Proposition 6.3
Θ 〈2, 3, `〉, ` ≥ 5 i-graph Lemma 5.12
Θ 〈2, 4, 4〉 i-graph Lemma 5.14
Θ 〈2, k, 5〉, 4 ≤ k ≤ 5 i-graph Lemma 5.16
Θ 〈2, k, `〉, k ≥ 4, ` ≥ 6, ` ≥ k i-graph Lemma 5.18

Θ 〈3, 3, 3〉 non-i-graph Proposition 6.4
Θ 〈3, 3, 4〉 i-graph Lemma 5.19
Θ 〈3, 3, 5〉 i-graph Lemma 5.21
Θ 〈3, 3, `〉, ` ≥ 6 i-graph Lemma 5.23
Θ 〈3, 4, 4〉 i-graph Lemma 5.25
Θ 〈3, 4, `〉, ` ≥ 5 i-graph Lemma 5.27
Θ 〈3, 5, 5〉 i-graph Lemma 5.29

Θ 〈4, 4, 4〉 i-graph Lemma 5.31
Θ 〈j, k, 5〉, 4 ≤ j ≤ k ≤ 5. i-graph Lemma 5.33
Θ 〈j, k, `〉, 3 ≤ j ≤ k ≤ `, and ` ≥ 6. i-graph Lemma 5.35

5.1. Θ 〈1, k, `〉

We have already seen that the house graph H = Θ 〈1, 2, 3〉 is an i-graph
(Proposition 3.8). We can further exploit previous results to see that all graphs
Θ 〈1, 2, `〉 for ` ≥ 3 are i-graphs by taking a cycle Cn with n ≥ 4, and replac-
ing one of its maximal cliques (i.e. an edge) with a K3. By the Max Clique
Replacement Lemma (Lemma 3.9), the resultant Θ 〈1, 2, n− 1〉 is also an i-
graph. For reference, we explicitly state this result as a lemma.

Lemma 5.4. For ` ≥ 3, the theta graph Θ 〈1, 2, `〉 is an i-graph.
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5.1.1. Construction of G for Θ 〈1, k, `〉, 3 ≤ k ≤ `. In Figure 5 below, we
provide a first example of the technique we employ repeatedly throughout this
section to construct our theta graphs. To the left is a graph G, where each of
its nine triangles corresponds to an i-set of its complement G. The resultant
i-graph of G, I (G) = Θ 〈1, 4, 5〉, is presented on the right. For consistency,
we use X and Y to denote the triangles corresponding to the degree 3 vertices
in the theta graphs in this example, as well as all constructions to follow.

w0

w1

w3

w4

w5

w2

v1

v2

v3

X

Y

A1

A2

A3

B1

B2

B3

B4

X

Y

A1

A2

A3

B1

B2

B3

B4

Figure 5. A graph G (left) such that I (G) = Θ 〈1, 4, 5〉 (right)

We proceed now to the general construction of a graph G with I (G) =
Θ 〈1, k, `〉 for 3 ≤ k ≤ `. As it is our first construction using this triangle
technique, we provide the construction and proof for Lemma 5.6 with an
abundance of detail.

Construction 5.5 (See Figure 6). Let H ∼= Wk+2 = Ck+1 ∨K1, where
Ck+1 = (w1, . . . , wk+1, w1) and w0 is the central hub, i.e., the vertex with
degree k+ 1. Add a path P`−2 : (v1, . . . , v`−2), joining each vi, i = 1, ..., `− 2,
to w2. Join v1 to w1 and v`−2 to w3. (If ` = 3, then v1 = v`−2, hence v1 is
adjacent to w1, w2 and w3.) This is the (planar) graph G.

w0

w1

w3

w4

w5

wk

wk+1

w2

v1

v2

v`−3

v`−2

X

Y

A1A2

Ak−2 Ak−1

B1

B`−1

B2

B`−2

Figure 6. The graph G from Construction 5.5
such that I (G) = Θ 〈1, k, `〉 for 3 ≤ k ≤ `
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Lemma 5.6. If G is the graph constructed by Construction 5.5, then
I (G) = A (G) = Θ 〈1, k, `〉, 3 ≤ k ≤ `.

Proof. To begin, notice that since in G, the vertices W = {w0, w1, . . . ,
wk, wk+1} form a wheel on at least five vertices, H � K4. Likewise, the graph
induced by {w0, w1, w2, w3, v1, v2, . . . , v`−2} in G is also a wheel on ` + 2
vertices, where w2 is the central hub, and so it too contains no K4. Therefore,
G is K4-free and the triangles of G are precisely the maximal cliques of G,
and so ω(G) = i(G) = α(G) = 3. Since the i-sets of G are identical to its
α-sets, I (G) = A (G), and so for ease of notation, we will refer only to I (G)
throughout the remainder of this proof.

We label the triangles as in Figure 6 by dividing them into two col-
lections. The first are the triangles composed only of the vertices from W
and each containing w0: let X = {w0, w1, w2}, Y = {w0, w2, w3}, A1 =
{w0, wk+1, w1}, A2 = {w0, wk, wk+1}, . . . , Ak−2 = {w0, w4, w5}, Ak−1 =
{w0, w3, w4}. The remainder are the triangles with vertex sets not fully con-
tained in H: B1 = {w2, w1, v1}, B2 = {w2, v1, v2}, B3 = {w2, v2, v3}, . . . ,
B`−2 = {w2, v`−3, v`−2}, and B`−1 = {w2, v`−2, w3}. We refer to these collec-
tions as S = {X,Y }, A = {A1, A2, . . . , Ak−1}, and B = {B1, B2, . . . , B`−1}.
It is clear from Figure 6 that these are the only triangles of G. Therefore
V (I (G)) = {X,Y,A1, A2, . . . , Ak−1, B1, B2, . . . , B`−1}.

We now show that the required adjacencies hold. From the construction
of G, the following are immediate for I (G):
(i) X w1w3∼ Y ,
(ii) X w0v1∼ B1

w1v2∼ B2
v1v3∼ B3 . . . B`−2

v`−3w3∼ B`−1
v`−2w0∼ Y ,

(iii) X
w2wk+1∼ A1

w1wk∼ A2 . . . Ak−2
w5w3∼ Ak−1

w4w2∼ Y .
Hence, we need only show that there are no additional unwanted edges gen-
erated in the construction of I (G).

Since G is a planar graph and all of its triangles are facial (that is, the
edges of the K3 form a face in the plane embedding in Figure 6), each tri-
angle is adjacent to at most three others. From (i)–(iii) above, triangles X
and Y are both adjacent to the maximum three (and hence degI (G)(X) =

degI (G)(Y ) = 3).
Recall that to be adjacent, two triangles share exactly two vertices. Notice

that the triangles of A are composed entirely of vertices from W −{w2}, and
that for 2 ≤ i ≤ `− 2, Bi ∩W = {w2}; furthermore, B1 ∩W = {w1, w2} and
B`−2∩W = {w2, w3}. Therefore no triangle of B is adjacent to any triangle of
A. It is similarly easy to see that there are no additional unwanted adjacencies
between two triangles of A or two triangles of B.

We conclude that the graph G generated by Construction 5.5 yields
I (G) = A (G) = Θ 〈1, k, `〉. �
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Before we proceed with the remainder of the theta graph constructions, let
us return to Figure 6 to notice the prominence of the wheel subgraph in the
complement seed graph G. In the constructions throughout this paper, this
wheel subgraph will appear repeatedly; indeed, all of the complement seed
graphs for the i-graphs of theta graphs have a similar basic form: begin with
a wheel, add a path of some length, and then add some collection of edges
between them. As stated without proof in Lemma 5.7, Figure 7 below demon-
strates that a wheel in a triangle-based complement seed graph G corresponds
to a cycle in the i-graph of G. Using this result, in our later constructions
with a wheel subgraph, we already have two of the three paths of a theta
graph formed. Hence, we need only confirm that whatever unique additions
are present in a given construction form the third path in the i-graph.

w0

w1

w2

w3

w4

w5

wk A1

A2

A3A4

Ak

Figure 7. The wheel Hk = Wk+1, with
the i-graph of its complement, I (Hk) ∼=
A (Hk) ∼= Ck, embedded in red

Lemma 5.7. For k ≥ 4, let Hk be the wheel Wk+1 = Ck ∨ K1. Then
I (Hk) ∼= A (Hk) ∼= Ck.

We note the following analogous – although less frequently applied – result
for fans of the form K1 + Pk, as illustrated in Figure 8.

Lemma 5.8. For k ≥ 2, let Hk be the k-fan K1 ∨ Pk. Then I (Hk) ∼=
A (Hk) ∼= Pk−1.
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v0

v1

v2

v3

v4

vk−1

vk

A1

A2

A3

Ak−1

Figure 8. The fan Hk = K1 ∨ Pk, with
the i-graph of its complement, I (Hk) ∼=
A (Hk) ∼= Pk−1, embedded in red

5.2. Θ 〈2, k, `〉 for 2 ≤ k ≤ `

5.2.1. Construction of G for Θ 〈2, 2, `〉, ` ≥ 5. As stated in Proposition 3.7,
K2,3

∼= Θ 〈2, 2, 2〉 and κ ∼= Θ 〈2, 2, 3〉 are not i-graphs. Extending these results,
we find that the length of the third path in Θ 〈2, 2, `〉 has a transition point
between ` = 4 and ` = 5; while ` = 4 is still too short to form an i-graph (see
Lemma 6.1), for ` ≥ 5, Θ 〈2, 2, `〉 is i-graph realizable.

Construction 5.9. See Figures 9 and 10. Begin with the graph H ∼=
W5 = C4∨K1, labelling the degree 3 vertices as w1, w2, w3, w4 and the central
degree 4 vertex as w0.
(a) If ` ≥ 6 (as in Figure 9), attach to H a path P`−3 : (v1, v2, . . . , v`−3) by

joining w1 to v1, v2, . . . , v`−4. Join v`−5 to v`−3. Next, join w2 to v1, and
w3 to v`−3. Then, join w4 to v`−4 and v`−3. Add a new vertex z, joined
to w1, w4, and v`−4.

(b) If ` = 5 (as in Figure 10), attach to H a path of P2 : (v1, v2), by joining
w1 to v1, and w2 to v1 and v2. Then join w3 to v2, and w4 to both v1 and
v2. Add two new vertices, z1 and z2, joining z1 to v1, w1, and w4, and z2
to v2, w2 and w3.
We label the resultant (planar) graph G.
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w0

w1

w2w4

w3

v1

v2

v`−5

v`−4

v`−3

z

X

Y A

B

D1

D2

D`−3

D`−2

D`−1

Figure 9. The graph G from Construction 5.9 such that
I (G) = Θ 〈2, 2, `〉 for ` ≥ 6

w0 w2w4

w1

w3

v1

v2

z2

z1

XB

Y A

D1

D2

D3

D4

Figure 10. The graph G from Construction 5.9 such that
I (G) = Θ 〈2, 2, 5〉, with Θ 〈2, 2, 5〉 overlaid in red

As with our other constructions, the triangles of G are its smallest maximal
cliques, and so i(G) = 3. However, we now employ a technique of adding ver-
tices to create K4’s in G and eliminate any “unwanted” triangles that might
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arise in our construction. In (b), the addition of z1 and z2 eliminate trian-
gles {w1, w4, v1} and {w2, w3, v2}, respectively. Similarly, in (a), z prevents
{w1, w4, v`−3} from being a maximal clique of G and hence an i-set of G. The
unfortunate trade-off in this triangle-elimination technique is that the remain-
ing triangles are no longer α-sets; the constructions work only for i-graphs,
not α-graphs.

Lemma 5.10. If G is the graph constructed by Construction 5.9, then
I (G) = Θ 〈2, 2, `〉, for ` ≥ 5.

Proof. We only prove the lemma for case where ` ≥ 6; the single case
where ` = 5 is adequately illustrated in Figure 10 and details can be found
in [9].

As in the previous constructions, since each edge of G belongs to a triangle
and some triangles are not contained in K4’s, these triangles of G form the
smallest maximal cliques of G. We label these triangles as in Figure 9; in
particular,

X = {w0, w1, w2},
Y = {w0, w3, w4},
A = {w0, w2, w3},
B = {w0, w1, w4},

D1 = {w1, w2, v1},
Di = {w1, vi−1, vi} for 2 ≤ i ≤ `− 4,

D`−3 = {v`−5, v`−4, v`−3},
D`−2 = {w4, v`−4, v`−3},
D`−1 = {w3, w4, v`−3}.

It is straightforward to verify that these `+3 sets are precisely the maximal
cliques of G of order 3 and, hence, the i-sets of G. Therefore they form the
vertex set of I (G). Moving to the edges of I (G), the following adjacencies
are clear from Figure 9:
(i) X w1w3∼ A

w2w4∼ Y ,
(ii) X w2w4∼ B

w1w3∼ Y ,
(iii) X w0v1∼ D1

w2v2∼ D2
v1v3∼ D3 . . . D`−3

w1v`−2∼ D`−2
v`−4w4∼ D`−1

v`−2w0∼ Y .
As for its vertex set, it is straightforward to verify that the edge set of I (G)

consists of precisely the edges listed in (i)–(iii). We conclude that I (G) =
Θ 〈2, 2, `〉. �

5.2.2. Construction of G for Θ 〈2, 3, `〉 for ` ≥ 5. For many of the results
going forward, we apply small modifications to previous constructions. In the
first of these, we begin with the graphs from Construction 5.9, which were used
to find i-graphs for Θ 〈2, 2, 5〉 and Θ 〈2, 2, `〉 for ` ≥ 6, and expand the central
wheel used in there to build i-graphs for Θ 〈2, 3, 5〉 and Θ 〈2, 3, `〉 for ` ≥ 6.
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Construction 5.11. Refer to Figures 11 and 12.
(a) If ` ≥ 6, begin with a copy of the graph G from Construction 5.9. Sub-

divide the edge w1w4, adding the new vertex w5. Join w5 to w0, so that
w0, w1, . . . , w5 forms a wheel. Delete the vertex z.

(b) If ` = 5, begin with a copy of the graph G from Construction 5.9. Sub-
divide the edge w1w4, adding the new vertex w5. Join w5 to w0, so that
w0, w1, . . . , w5 forms a wheel. Delete the vertex z1.
We rename the resultant (planar) graph G2,3,` for ` ≥ 5.

w0

w1

w2w4

w3

w5

v1

v2

v`−5

v`−4

v`−3

X

Y A

B1

B2

D1

D2

D`−3

D`−2

D`−1

Figure 11. The graph G2,3,` from Construction 5.11 (a)
such that I (G2,3,`) = A (G2,3,`) = Θ 〈2, 3, `〉 for ` ≥ 6

w0

w1

w2

w3

w4

w5

v1

v2

z2

X

Y A

B1

B2

D1

D2

D3

D4

Figure 12. The graph G2,3,5 from Construction 5.11 (b)
such that I (G2,3,5) = Θ 〈2, 3, 5〉, with I (G2,3,5) over-
laid in red
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In Construction 5.11 (a), notice that the vertex z is deleted from G. In
the original Construction 5.9 for a graph G with I (G) = Θ 〈2, 2, `〉 for ` ≥ 6,
z served to eliminate the unwanted triangle formed by {w1, w4, v`−4}. Now
with the expanded wheel including w5, {w1, w4, v`−4} is not a triangle in
G2,3,` (` ≥ 6), and z is not needed. Indeed, as G2,3,` now has α(G2,3,`) = 3,
its triangles are also α-sets in G, and so we can immediately extend the
construction from i-graphs to α-graphs.

The extension, however, does not apply to Construction 5.11 (b) for the
graph G2,3,5. Here, we no longer require z1 (which served to eliminate the
unwanted triangle formed by {w1, w4, v1}), but z2 remains and forms the
clique {w2, w3, z2, v2}; thus, α(G2,3,5) = 4.

The proof for the following Lemma 5.12 is otherwise very similar to the
proof of Lemma 5.10, and so is omitted.

Lemma 5.12. If G2,3,5 is the graph constructed in Construction 5.11 (b),
then I (G2,3,5) = Θ 〈2, 3, 5〉. For ` ≥ 6, if G2,3,` is the graph constructed in
Construction 5.11 (a), then I (G2,3,`) = A (G2,3,`) = Θ 〈2, 3, `〉 for ` ≥ 6.

5.2.3. Construction of G for Θ 〈2, 4, 4〉. In the following construction for
a graph G with I (G) = Θ 〈2, 4, 4〉, we again apply the technique of adding
vertices to eliminate unwanted triangles.

w0

w1

w2

w3

w4

w5

w6

vzz′

X

A

Y

B1

B2

B3

D1
D2

D3

Figure 13. A graph G such that I (G) = Θ 〈2, 4, 4〉

Construction 5.13. Refer to Figure 13. Begin with a copy of the graph
H ∼= W7 = C6 ∨K1, labelling the degree 3 vertices as w1, w2, . . . , w6 and the
central degree 6 vertex as w0. Join w1 to w4. Add a new vertex v to H, joining
v to w1, . . . , w4. Then, add the new vertex z, joined to v, w2 and w3, and the
new vertex z′, joined to w0, w1, and w4. We label the resultant (non-planar)
graph G.
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Lemma 5.14. If G is the graph constructed by Construction 5.13, then
I (G) = Θ 〈2, 4, 4〉.

Proof. As shown in Figure 13, the triangles of G forming maximal cliques
of G, and therefore the i-sets of G, are labelled them as follows:

X = {w0, w1, w2},
Y = {w0, w3, w4},
A = {w0, w2, w3},

B1 = {w0, w1, w6},
B2 = {w0, w5, w6}
B3 = {w0, w4, w5},

D1 = {w1, w2, v},
D2 = {w1, w4, v},
D3 = {w3, w4, v}.

Similarly to the construction for Θ 〈2, 2, 5〉 in the proof of Lemma 5.10,
the vertices z and z′ are added to ensure that {v, w2, w3} and {w0, w1, w4},
respectively, are not maximal cliques in G, and hence are not i-sets of G.

It can be seen that there are no other triangles in G beyond the nine listed
above; we omit the details, which can be found in [9, Lemma 5.19].

From Figure 13, the following triangle adjacencies are immediate:
(i) X w1w3∼ A

w2w4∼ Y ,
(ii) X w2w6∼ B1

w1w5∼ B2
w6w4∼ B3

w5w3∼ Y ,
(iii) X w0v∼ D1

w2w4∼ D2
w1w3∼ D3

vw0∼ Y .
It is again straightforward to verify that there are no additional edges

in I (G) than those listed above. We conclude that I (G) = Θ 〈2, 4, 4〉 as
required. �

Notice that Construction 5.13 is our first theta graph construction that is
not planar as it has a K3,3 minor. Indeed, with the exception of the construc-
tions that are based upon Construction 5.13, all of our i-graph constructions
use planar complement seed graphs.

Problem 1.
(i) Find a planar graph-complement construction for Θ 〈2, 4, 4〉.
(ii) Do all i-graphs with largest induced stars of K1,3, always have a planar

graph-complement construction?
A large target graph requires a large seed graph in order to generate a

sufficient number of unique i-sets. Can a target graph become too dense
to allow for a planar graph-complement construction?

Moving forward, we will no longer explicitly check that there are no addi-
tional unaccounted for triangles in our constructions. Should the construction
indeed result in triangles of G that produce extraneous vertices in I (G), we
can easily remove them using the Deletion Lemma (Lemma 3.10).
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5.2.4. Constructions of G for Θ 〈2, 4, 5〉 and Θ 〈2, 5, 5〉.

Construction 5.15. Refer to Figure 14.
(a) Begin with a copy of the graph G2,3,5 from Construction 5.11 (b) for

Θ 〈2, 3, 5〉. Subdivide the edge w1w5, adding the new vertex w6. Join w6

to w0, so that w0, w1, . . . , w6 forms a wheel. Call this graph G2,4,5.
(b) Begin with a copy of the graph G2,4,5 from Construction 5.15 (a). Sub-

divide the edge w1w6, adding the new vertex w7. Join w7 to w0, so that
w0, w1, . . . , w7 forms a wheel. Call this graph G2,5,5.

w0

w1

w2w4

w3

w5

w6

w7

v1

v2

z2

X

Y A

B1B2
B3

B4

D1

D2

D3

D4

Figure 14. The graph G2,5,5 from Construction 5.15 such
that I (G) = Θ 〈2, 5, 5〉, with I (G) overlaid in red.

Lemma 5.16. If G2,k,5 is the graph constructed by Construction 5.15, then
I (G2,k,5) = Θ 〈2, k, 5〉, for 4 ≤ k ≤ 5.

Lemma 5.16 follows readily from Figure 14 and we omit the proof.

5.2.5. Construction of G for Θ 〈2, k, `〉 for ` ≥ k ≥ 4 and ` ≥ 6.

Construction 5.17. See Figure 15. Begin with a copy of the graph G2,3,`

from Construction 5.11 (a) for ` ≥ 5. Subdivide the edge w1w5 k − 3 times
(for k ≤ `), adding the new vertices w6, w7, . . . , wk+2. Join w6, w7, . . . , wk+2

to w0, so that w0, w1, . . . , wk+2 forms a wheel. Call this graph G2,k,`.

Lemma 5.18. If G2,k,` is the graph constructed by Construction 5.17, then
I (G2,k,`) = A (G2,k,`) = Θ 〈2, k, `〉, for ` ≥ k ≥ 4 and ` ≥ 6.

Lemma 5.18 follows from Figure 15.
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w0

w1

w2w4

w3

w5

wk−3

v1

v2

v`−5

v`−4

v`−3

X

Y A

B1

Bk−1

D1

D2

D`−3

D`−2

D`−1

Figure 15. The graph G2,k,` from Construction 5.17 such
that I (G2,k,`) = Θ 〈2, k, `〉 for ` ≥ k ≥ 4 and ` ≥ 6

5.3. Θ 〈3, k, `〉

In the rest of Section 5 we only give the constructions and their associ-
ated figures, and state the lemmas without proof. Details can be found in [9,
Chapter 5].

5.3.1. The graph G for Θ 〈3, 3, 4〉. The trianglesX,A1, A2, Y, B2, B1, D1,D2,
D3 in Figure 16, and the obvious paths formed by them, illustrate the following
lemma.

Lemma 5.19. Θ 〈3, 3, 4〉 is an i-graph.

w0

v2

v6

v1

v3

v5

v4

v7

v0
X

Y

A1

A2

B1

B2

D1

D2

D3

Figure 16. A graph G such that I (G) = Θ 〈3, 3, 4〉
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5.3.2. Construction of G for Θ 〈3, 3, 5〉.

Construction 5.20. Refer to Figure 17. Begin with a copy of the graph
H ∼= W7 = C6 ∨K1, labelling the degree 3 vertices as w1, w2, . . . , w6 and the
central degree 6 vertex as w0. Add new vertices v1 and v2 to H, joined to each
other. Then, join v1 to each of {w1, w2, w5}, and v2 to each of {w2, w4, w5}.
Call this graph G3,3,5.

w0

w1

w4

w5

w6

w2

w3

v1

v2

X

Y

A1

A2

B1

B2

D1

D2

D3

D4

Figure 17. A graph G3,3,5 from Construction 5.20 such
that I (G3,3,5) = Θ 〈3, 3, 5〉.

Lemma 5.21. If G3,3,5 is the graph constructed by Construction 5.20, then
I (G3,3,5) = A (G3,3,5) = Θ 〈3, 3, 5〉.

5.3.3. Construction of G for Θ 〈3, 3, `〉 for ` ≥ 6.

Construction 5.22. Refer to Figure 19. Begin with a copy of the graph
H ∼= W7 = C6 ∨ K1, labelling the degree 3 vertices as w1, w2, . . . , w6 and
the central degree 4 vertex as w0. For ` ≥ 6, add to H a new path of ` − 3
vertices labelled as v1, v2, . . . , v`−3. Then, join w1 to each of {v1, v2, . . . , v`−4},
w4 to v`−3, and w5 to v`−4 and v`−3. Finally, join v`−5 to v`−3, so that
{v`−5, v`−4, v`−3} form a K3. Call this graph G3,3,` for ` ≥ 6.

Although the general construction still applies for the case when ` = 6, we
include a separate figure for the construction of Θ 〈3, 3, 6〉 for reference below,
because of the additional complication that now v1 = v`−5, and so the single
vertex now has dual roles in the construction.

Lemma 5.23. If G3,3,` is the graph constructed by Construction 5.22, then
I (G3,3,`) = A (G3,3,`) = Θ 〈3, 3, `〉 for ` ≥ 6.
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Figure 18. The graph G3,3,6 from Construction 5.22 such
that I (G3,3,6) = A (G3,3,6) = Θ 〈3, 3, 6〉
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Figure 19. The graph G3,3,` from Construction 5.22 such
that I (G) = A (G) = Θ 〈3, 3, `〉 for ` ≥ 6

5.3.4. Construction of G for Θ 〈3, 4, 4〉.

Construction 5.24. See Figure 20. Begin with a copy of the graph G
from Construction 5.13 for Θ 〈2, 4, 4〉, which we rename here as G2,4,4. Subdi-
vide the edge w2w3, adding a new vertex u1, and joining u1 to w0. Delete the
vertex z. Call this graph G3,4,4.

Lemma 5.25. If G3,4,4 is the graph constructed by Construction 5.24, then
I (G3,4,4) = Θ 〈3, 4, 4〉.
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Figure 20. The graph G3,4,4 from Construction 5.24
such that I (G3,4,4) = Θ 〈3, 4, 4〉

5.3.5. Construction of G for Θ 〈3, 4, `〉, ` ≥ 5.

Construction 5.26. Begin with a copy of the graph G3,4,4 from Con-
struction 5.24 for Θ 〈3, 4, 4〉. Subdivide the edge w1w6 `− 4 times (for ` ≥ 5),
adding the new vertices w7, w8, . . . , w`+2. Join w7, w8, . . . , w`+2 to w0, so that
w0, w1, . . . , w`+2 forms a wheel. Call this graph G3,4,`.

Lemma 5.27. If G3,4,` is the graph constructed by Construction 5.26, then
I (G3,4,`) = Θ 〈3, 4, `〉 for ` ≥ 5.

5.3.6. Construction of G for Θ 〈3, 5, 5〉.

Construction 5.28. Refer to Figure 21. Begin with a copy of the graph
G3,3,5 from Construction 5.20. Subdivide the edge w1w6 twice, adding the
new vertices w7 and w8. Join w7 and w8 to w0, so that w0, w1, . . . , w8 forms
a wheel. Call this graph G3,5,5.
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Figure 21. A graph G3,5,5 from Construction 5.28 such
that I (G3,5,5) = Θ 〈3, 5, 5〉.
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Lemma 5.29. If G3,5,5 is the graph constructed by Construction 5.28, then
I (G3,5,5) = A (G3,5,5) = Θ 〈3, 5, 5〉.

Notice that subdividing only once in Construction 5.28 (adding only w7

and not w8) gives an alternative (planar) construction for Θ 〈3, 4, 5〉.

5.4. Θ 〈j, k, `〉 for 4 ≤ j ≤ k ≤ ` and 3 ≤ j ≤ k ≤ `, ` ≥ 6

5.4.1. Construction of G for Θ 〈j, k, `〉 for 4 ≤ j ≤ k ≤ ` ≤ 5.

Construction 5.30. Refer to Figure 22. Begin with a copy of the graph
G3,4,4 from Construction 5.24. Subdivide the edge u1w3, adding the new vertex
u2. Join u2 to w0, so that

w0, w1, w2, u1, u2, w3, . . . , w6

forms a wheel. Call this graph G4,4,4.
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D3

Figure 22. The graph G4,4,4 from Construction 5.30
such that I (G4,4,4) = Θ 〈4, 4, 4〉

Lemma 5.31. If G4,4,4 is the graph constructed by Construction 5.30, then
I (G4,4,4) = Θ 〈4, 4, 4〉.

Construction 5.32. Begin with a copy of the graph G3,3,5 from Con-
struction 5.20. For k = 4 subdivide the edge w1w6 once, adding the vertex w7;
for k = 5, subdivide a second time, adding the vertex w8. For j = 4, subdivide
the edge w2w3, adding the vertex u1; for j = 5 (j ≤ k), subdivide a second
time, adding the vertex u2. Connect all new vertices to w0 to form a wheel.
Call this graph Gj,k,5 for 4 ≤ j ≤ k ≤ 5.
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An example of the construction of G5,5,5 is given in Figure 23 below.

w0

w1

w4

w5

w2

w6

w7

w8

u1

u2

w3

v1

v2

X

Y

A1

A2

A3
A4

B1
B2

B3

B4

D1

D2

D3

D4

Figure 23. A graph G5,5,5 from Construction 5.28 such
that I (G5,5,5) = Θ 〈5, 5, 5〉

Lemma 5.33. If Gj,k,5 is the graph constructed by Construction 5.32, then
I (Gj,k,5) = A (Gj,k,5) = Θ 〈j, k, 5〉 for 4 ≤ j ≤ k ≤ 5.

5.4.2. Construction of G for Θ 〈j, k, `〉 for 3 ≤ j ≤ k ≤ `, ` ≥ 6.

Construction 5.34. Begin with a copy of the graph G3,3,` from Con-
struction 5.22 for Θ 〈3, 5, `〉 for ` ≥ 6. For 3 ≤ k ≤ `, subdivide the edge
w1w6 k − 3 times, adding the new vertices w7, w8, . . . , wk+3. Join each of
w7, w8, . . . , wk+3 to w0, so that w0, w1, . . . , wk+3 forms a wheel. Then, for
3 ≤ j ≤ k, subdivide the edge w2w3 j − 3 times, adding the new vertices
u1, u2, . . . , uj−3. Again, join each of u1, u2, . . . , uj−3 to w0 to form a wheel.
Call this graph Gj,k,` for 3 ≤ j ≤ k ≤ ` and ` ≥ 6.

Lemma 5.35. If Gj,k,` for 3 ≤ j ≤ k ≤ ` and ` ≥ 6 is the graph constructed
by Construction 5.34, then I (Gj,k,`) = A (Gj,k,`) = Θ 〈j, k, `〉.

The lemmas above imply the sufficiency of Theorem 5.3: if a theta graph
is not one of seven exceptions listed, then it is an i-graph. In the next section,
we complete the proof by examining the exception cases.
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w0

w1

w3

w6

wk+3

w4

w2

w5

u1
u2

uj−3

w7

wk+2

v1

v2

v`−5

v`−4

v`−3

X

Y

A1

Aj−1

B1

Bk−1

D1

D2

D`−3

D`−2

D`−1

Figure 24. The graph Gj,k,` from Construction 5.34 such
that I (Gj,k,`) = Θ 〈j, k, `〉 for 3 ≤ j ≤ k ≤ ` and ` ≥ 6

6. Theta graphs that are not i-graphs

In this section we show that Θ 〈2, 2, 4〉, Θ 〈2, 3, 3〉, Θ 〈2, 3, 4〉, and Θ 〈3, 3, 3〉
are not i-graphs; together with Proposition 3.7, this completes the proof of
Theorem 5.3.

6.1. Θ 〈2, 2, 4〉 is not an i-graph

Proposition 6.1. The graph Θ 〈2, 2, 4〉 is not i-graph realizable.

Proof. Suppose to the contrary that Θ 〈2, 2, 4〉 is realizable as an i-graph,
and that H = Θ 〈2, 2, 4〉 ∼= I (G) for some graph G. Label the vertices of H
as in Figure 25.
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X = {x1, x2, x3, . . . , xk}

Y = {y1, y2, x3, . . . , xk}

A =
{y1, x2, x3, . . . , xk}

B = {x1, y2, x3, . . . , xk}

C1 ={x1, x2, y3, . . . , xk}

C2 = OR
{y1, x2, y3, . . . , xk}

{x1, y2, y3, . . . , xk}

C3

Figure 25. H = Θ 〈2, 2, 4〉 non-construction

From Proposition 3.6, the composition of the following i-sets of G are
immediate:

X = {x1, x2, x3, . . . , xk}, Y = {y1, y2, x3, . . . , xk},

A = {y1, x2, x3, . . . , xk}, B = {x1, y2, x3, . . . , xk},

C1 = {x1, x2, y3, . . . , xk},

where k ≥ 3 and y1, y2, y3 are three distinct vertices in G − X. These sets
are illustrated in blue in Figure 25. This leaves only the composition of C2

and C3 (in red) to be determined. As we construct C2, notice first that y3 ∈
C2; otherwise, if say some other z ∈ C2 so that C1

y3z∼ C2, then X
x3z∼ C2,

and XC2 ∈ E(H). Thus, a token on one of {x1, x2, x4, . . . , xk} moves in the
transition from C1 to C2. We consider three cases.

Case 1: The token on x1 moves. If C1
x1z∼ C2 for some z /∈ {y1, y2}, then

|C2 ∩ Y | = 3, contradicting the distance requirement between i-sets from
Observation 3.2. Moreover, from the composition of B, x1 6∼ y2, and so C1

x1y1∼
C2, so that C2 = {y1, x2, y3, . . . , xk}. However, since x3 ∼ y3, we have that
A

x3y3∼ C2, so that AC2 ∈ E(G), a contradiction.
Case 2: The token on x2 moves. An argument similar to Case 1 constructs

C2 = {x1, y2, y3, . . . , xk}, with B
x3y3∼ C2, resulting in the contradiction BC2 ∈

E(G).
Case 3: The token on xi for some i ∈ {4, 5, . . . , k} moves. From the com-

positions of X and Y , xi is not adjacent to any of {x3, y1, y2}, so the token at
xi moves to some other vertex, say z, so that C1

xiz∼ C2 and {x1, x2, y3, z} ⊆
C2. This again contradicts the distance requirement of Observation 3.2 as
|C2 ∩ Y | = 4.

In all cases, we fail to construct a graph G with I (G) ∼= Θ 〈2, 2, 4〉 and so
conclude that no such graph exists. �
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6.2. Θ 〈2, 3, 3〉 is not an i-Graph

Proposition 6.2. The graph Θ 〈2, 3, 3〉 is not i-graph realizable.

Proof. To begin, we proceed similarly to the proof of Proposition 6.1:
suppose to the contrary that Θ 〈2, 3, 3〉 is realizable as an i-graph, and that
H = Θ 〈2, 3, 3〉 ∼= I (G) for some graph G. Label the vertices of H as in
Figure 26. As before, the corresponding i-sets in blue are established from
previous results, and those in red are yet to be determined. Moreover, from
the composition of these four blue i-sets, we observe that for each i ∈ {1, 2, 3},
xi ∼ yj if and only if i = j.

X = {x1, x2, x3, . . . , xk}

Y

A =
{y1, x2, x3, . . . , xk}

B1 = {x1, y2, x3, . . . , xk}

B2

C1 ={x1, x2, y3, . . . , xk}

C2

Figure 26. H = Θ 〈2, 3, 3〉 non-construction

Unlike the construction for Θ 〈2, 2, 4〉, we no longer start with knowledge
of the exact composition of Y . We proceed with a series of observations on
the contents of the various i-sets:
(i) y1 ∈ Y , y2 ∈ B2, and y3 ∈ C2 by three applications of Proposition 3.6.
(ii) y1 6∈ B2 and y1 6∈ C2. If y1 ∈ B2, then B1

x1y1∼ B2 (because A shows
that y1 is not adjacent to x3, . . . , xk) so that B2 = {y1, y2, x3, . . . , xk},
and therefore A x2y2∼ B2, which is impossible. Similarly, if y1 ∈ C2, then
A

x3y3∼ C2, which is also impossible.
(iii) y3 /∈ B2. Otherwise, B2 = {x1, y2, y3, x4, . . . , xk} and so C1

x2y2∼ B2.
(iv) y2 6∈ Y and y3 /∈ Y . If y2 ∈ Y , then Y = {y1, y2, x3, . . . , xk} and so

B1
x1y1∼ Y . Likewise, if y3 ∈ Y then C1

x1y1∼ Y .
From (i) and (ii), y1 ∈ Y but y1 6∈ B2, and similarly from (iv) y2 ∈ B2 but

y2 6∈ Y ; therefore, B2
y2y1∼ Y . Now, since x1 ∼ y1, and y1 ∈ Y , we have that

x1 6∈ Y . Thus, if x1 were in B2, its token would move in the transition from
B2 to Y . However, we have already established that it is the token at y2 that
moves, and so x1 6∈ B2. We conclude that B1

x1z∼ B2 for some z 6∈ {y1, y3},
so that B2 = {z, y2, x3, . . . , xk}. Notice that since B2 is independent, and
x2 ∼ y2, it follows that z 6= x2.
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Using similar arguments, we determine that C2
y3y1∼ Y , and that C1

x1w∼ C2

for some w /∈ {y1, y2, x1}. Moreover, C2 = {w, x2, y3, x4, . . . , xk}. Again, note
that since x3 ∼ y3, w 6= x3.

From B2
y2y1∼ Y , we have that Y = {y1, z, x3, x4 . . . , xk}. However, from

C2
y3y1∼ Y , we also have that Y = {y1, x2, w, x4, . . . , xk}. As we have already

established that z 6= x2 and w 6= x3, we arrive at two contradicting composi-
tions of Y . Thus, no such graph G exists, and we conclude that Θ 〈2, 3, 3〉 is
not an i-graph. �

6.3. Θ 〈2, 3, 4〉 is not an i-Graph

Proposition 6.3. The graph Θ 〈2, 3, 4〉 is not i-graph realizable.

Proof. The construction for our contradiction begins similarly to that
of Θ 〈2, 3, 3〉 in Proposition 6.2. As before, we illustrate the graph in Fig-
ure 27, labelling the known sets in blue, and those yet to be determined in
red. Given the similarity of Θ 〈2, 3, 3〉 and Θ 〈2, 3, 4〉, many of the observations
from Proposition 6.2 carry through to our current proof. In particular, all of
(i)–(iv) hold here, including that y1 /∈ C2 from (ii). Moreover, the composi-
tions of Y and B2 also hold, where z is some vertex with z 6∈ {y1, x2, y2}.

X = {x1, x2, x3, . . . , xk}

Y = {y1, z, x3, . . . , xk}

A =
{y1, x2, x3, . . . , xk}

B1 = {x1, y2, x3, . . . , xk}

B2 = {z, y2, x3, . . . , xk}

C1 ={x1, x2, y3, . . . , xk}

C2

C3

Figure 27. H = Θ 〈2, 3, 4〉 non-construction

We now attempt to build C2. From Proposition 3.6, since X 6∼ C2, y3 ∈ C2

(and x3 6∈ C2). From the distance requirement of Observation 3.2, |X−C2| ≤
2, and so at least one of x1 or x2 is in C2. Recall from the construction for
Proposition 6.2 that A x2z∼ Y and B1

x1z∼ B2, and so z is adjacent to both x1
and x2. Hence, z 6∈ C2.

Gathering these results shows that none of {x3, z, y1} are in C2, and thus,
d(C2, Y ) ≥ 3, contradicting the distance requirement of Observation 3.2. We
conclude that no graph G exists such that I (G) = Θ 〈2, 3, 4〉. �
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6.4. Θ 〈3, 3, 3〉 is not an i-Graph

Proposition 6.4. The graph Θ 〈3, 3, 3〉 is not i-graph realizable.

Proof. Let H be the theta graph Θ 〈3, 3, 3〉, with vertices labelled as in
Figure 28. Suppose to the contrary that there exists some graph G such that
H is the i-graph of G; that is, I (G) = Θ 〈3, 3, 3〉.

X = {x1, x2, x3, . . . , xk}

Y

A1 =
{y1, x2, x3, . . . , xk}

A2

B1 = {x1, y2, x3, . . . , xk}

B2

C1 ={x1, x2, y3, . . . , xk}

C2

Figure 28. H = Θ 〈3, 3, 3〉 non-construction

Since dH(A1, Y ) = 2, by Observation 3.4, |A1 − Y | = 2. Similarly, |B1 −
Y | = 2 and |C1−Y | = 2. Suppose that, say, x4 6∈ Y . Hence, by Observation 3.2
|{x1, x2, x3} ∩ Y | ≥ 1. Without loss of generality, say x1 ∈ Y . Then since
y1 6∈ Y and x4 /∈ Y , both x2 and x3 ∈ Y to satisfy |A1 − Y | = 2. However,
then Y = {x1, x2, x3, z, x5, . . . , xk} for some vertex z ∼ x4, and so X x4z∼ Y ,
which is not so. We therefore conclude that x4 ∈ Y , and likewise xi ∈ Y for
i ≥ 4. Thus, {x1, x2, x3} ∩ Y = ∅.

Returning to A1, since d(A1, Y ) = 2 and x2, x3 /∈ Y , we have that
y1 ∈ Y . Similarly, y2, y3 ∈ Y . Thus, Y = {y1, y2, y3, x3, . . . , xk}. Moreover,
A2 is obtained from A1 by replacing one of x2 or x3, by y2 or y3, respec-
tively. Say, A1

x2y2∼ A2 so that A2 = {y1, y2, x3, . . . , xk}. Now, however, we
have that B1

x1y1∼ A2, but clearly B1 6∼ A2. It follows that Θ 〈3, 3, 3〉 is not an
i-graph. �

This completes the proof of Theorem 5.3.

7. Other results

In this section we first display a graph that is neither a theta graph nor an
i-graph, and then use the method of graph complements to show that every
cubic 3-connected bipartite planar graph is an i-graph.
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7.1. A non-theta non-i-graph

So far, every non-i-graph we have observed is either one of the seven theta
graphs from Theorem 5.3, or contains one of those seven as an induced sub-
graph (as per Corollary 3.11). This leads naturally to the question of whether
theta graphs provide a forbidden subgraph characterization for i-graphs. Un-
fortunately, this is not the case.

Consider the graph T in Figure 29: it is not a theta graph, and although
it contains several theta graphs as induced subgraphs, none of those induced
subgraphs are among the seven non-i-graph theta graphs. In Proposition 7.1
we confirm that T is not an i-graph.

X = {x1, x2, x3, x4 . . . , xk}

Y = {y1, y2, y3, x4, . . . , xk}

A1 = {y1, x2, x3, . . . , xk}

A2 = {y1, x2, y3, . . . , xk}

B1 = {x1, y2, x3, . . . , xk}

B2 = {y1, y2, x3, . . . , xk}

D1

D2

D3

Figure 29. A non-theta non-i-graph T.

Proposition 7.1. The graph T in Figure 29 is not an i-graph.

Proof. We proceed similarly to the proofs for the theta non-i-graphs in
Section 6. Let T be the graph in Figure 29, with vertices as labelled, and
suppose to the contrary that there is some graph G such that I (G) ∼= T.

To begin, we determine the vertices of the two induced C4’s of T. Immedi-
ately from Proposition 3.6, the vertices of X, A1, B1, and B2 are as labelled
in Figure 29. Using a second application of Proposition 3.6, A2 differs from
A1 in exactly one position, different from B2. Without loss of generality, say,
A1

x3y3∼ A2. Then again by the proposition, Y = {y1, y2, y3, x4 . . . , xk} as in
Figure 29.

We now construct the vertices of D1 through a series of claims:
(i) x3 is not in D1.

From Lemma 3.3, D1 differs from X in one vertex, different from both
A1 and B1; moreover, x1 and x2 are inD1. Notice that {x4, x5, . . . , xk} ⊆
D1: suppose to the contrary that, say, x4 /∈ D1, so that X x4z∼ D1.
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Then z 6= y1, since y1 ∼G x1 and D1 is independent. Likewise z 6= y2
and z 6= y3. Thus D1 = {x1, x2, x3, z, x5, . . . , xk} has |Y ∩D1| = 4, but
d(D1, Y ) = 3, contradicting Observation 3.4.

(ii) y1, y2, and y3 are not in D1.
As above, y1 and y2 are not in D1, as D1 is an independent set

containing x1 and x2. Suppose to the contrary that X x3y3∼ D1, so
that D1 = {x1, x2, y3, . . . , xk}. Then, since x1 ∼G y1, we have that
D1

x1y1∼ A2, a contradiction.
(iii) D1 = {x1, x2, z, x4, . . . , xk}, where z /∈ {y1, y2, y3}.

Immediate from (i) and (ii).
A contradiction for the existence of G arises as we construct D2. Since

dT(D1, Y ) = 3 and |D1 ∩ Y | = 3, at each step along the path through
D2, D3, and Y , exactly one token departs from a vertex of D1 and moves
to one of Y − D1 = {y1, y2, y3}. However, D2 6= {y1, x2, z, x4, . . . , xk}, since
otherwise, A1

x3z∼ D2. Likewise, D2 6= {x1, y2, z, x4, . . . , xk}. Finally D2 6=
{x1, x2, y3, x4, . . . , xk} as again we have A2

y1x1∼ D2. Thus, we cannot build a
set D2 such that |D2∩Y | ≤ 2 as required. We so conclude that no such graph
G exists, and that T is not an i-graph. �

Like the seven non-i-graph realizable theta graphs of Theorem 5.3, T is a
minimal obstruction to a graph being an i-graph; every induced subgraph of
T is a theta graph.

7.2. Maximal planar graphs

We conclude this section with a result to demonstrate that certain planar
graphs are i-graphs and α-graphs. Our proof uses the following three known
results.

Theorem 7.2 ([3, Theorem 4.6]). A cubic graph is 3-connected if and only
if it is 3-edge connected.

Theorem 7.3 ([11]). A connected planar graph G is bipartite if and only
if its dual G̃ is Eulerian.

Theorem 7.4 ([6, 10]). A maximal planar graph G of order at least 3 has
χ(G) = 3 if and only if G is Eulerian.

In our proof of the following theorem, we consider a graph G that is cubic,
3-connected, bipartite, and planar. We then examine its dual G̃, and how those
specific properties of G translate to G̃. Then, we construct the complement
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of G̃, which we refer to as H. We claim that H is a seed graph of G; that is,
I (H) contains an induced copy of G.

Theorem 7.5. Every cubic 3-connected bipartite planar graph is an i-
graph and an α-graph.

Proof. Let G be a cubic 3-connected bipartite planar graph and consider
the dual G̃ of G. Since G is bridgeless, G̃ has no loops. Moreover, since G is
3-connected, Theorem 7.2 implies that no two edges separate G; hence, G̃ has
no multiple edges. Therefore, G̃ is a (simple) graph. Further, since G is cubic,
each face of G̃ is a triangle, and so G̃ is a maximal planar graph.

We note the following two key observations. First, since each face of G̃ is
a triangle,
(1) each edge of G̃ belongs to a triangle.
For the second, note that since G is bipartite, G̃ is Eulerian (by Theorem 7.3).
Then, by Theorem 7.4, χ(G̃) = 3, so G̃ does not contain a copy of K4. Thus,
(2) every triangle of G̃ is a maximal clique.

Now, by the duality of G̃ and G, there is a one-to-one correspondence be-
tween the facial triangles of G̃ and the vertices of G. Let H be the complement
of G̃. By (1) and (2), i(H) = α(H) = 3, and every maximal independent set
of G corresponds to a triangle of G̃. But again, by duality, the facial triangles
of G̃ and their adjacencies correspond to the vertices of G and their adjacen-
cies. Therefore, I (H) contains G as an induced subgraph. Any additional
unwanted vertices of I (H) can be removed by applying the Deletion Lemma
(Lemma 3.10). �

8. Open problems

We conclude with a few open problems. Although the problems are stated
here for i-graphs, many are relevant to other reconfiguration graphs pertaining
to domination-type parameters and are also mentioned in [8, 9].

Problem 2. Determine conditions on the graph G under which I (G) is
(a) connected (b) disconnected.

A graph G is well-covered if all its maximal independent sets have the
same cardinality, that is, if α(G) = i(G).
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Problem 3.
(a) Determine those i-graphs that are also α-graph realizable.
(b) Determine those i-graphs H for which there exists a well-covered seed

graph G such that I (G) ∼= H.

Problem 4. We have already seen that classes of graphs such as trees,
cycles, and, more generally, block graphs, are i-graphs.

As we build new graphs from these families of i-graphs, using tree struc-
tures, which of those are also i-graphs? For example, are cycle-trees i-graphs?
Path-trees? For which families of graphs H are H-trees i-graphs?

Problem 5. Determine the structure of i-graphs of various families of
trees. For example, consider
(a) caterpillars in which every vertex has degree 1 or 3,
(b) spiders (K1,r with each edge subdivided).

Problem 6. Find more classes of i-graphs that are Hamiltonian, or Hamil-
tonian traceable.

Problem 7. Suppose G1, G2, . . . are graphs such that I (G1) ∼= G2,
I (G2) ∼= G3, I (G3) ∼= G4, . . . . Under which conditions does there exist
an integer k such that I (Gk) ∼= G1?

As a special case of Problem 7, note that for any n ≥ 1, I (Kn) ∼= Kn,
and that for k ≡ 2 (mod 3), I (Ck) ∼= Ck.

Problem 8. Characterize the graphs G for which I (G) ∼= G.
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