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RECIPROCAL MONOGENIC
SEPTINOMIALS OF DEGREE 2n3

Lenny Jones

Abstract. We prove a new irreducibility criterion for certain septinomials in
Z[x], and we use this result to construct infinite families of reciprocal septino-
mials of degree 2n3 that are monogenic for all n ≥ 1.

1. Introduction

Let f(x) ∈ Z[x]. When we say that f(x) is “irreducible” or “reducible”,
without reference to a particular field, we mean that f(x) is “irreducible” or
“reducible” over the rational numbers Q. We call f(x) reciprocal if f(x) =
xdeg(f)f (1/x). We let ∆(f) and ∆(K) denote the discriminants over Q, re-
spectively, of f(x) and a number field K. If f(x) is irreducible, with f(θ) = 0
and K = Q(θ), then we have the well-known equation [1]

(1.1) ∆(f) = [ZK : Z[θ]]
2

∆(K),

where ZK is the ring of integers of K. We define f(x) to be monogenic if f(x)
is irreducible and ZK = Z[θ], or equivalently from (1.1), that ∆(f) = ∆(K).
When f(x) is monogenic, we have that {1, θ, θ2, . . . , θdeg f−1} is a basis for
ZK , commonly referred to as a power basis. The existence of a power basis

Received: 11.06.2023. Accepted: 24.01.2024.
(2020) Mathematics Subject Classification: 11R04, 11R09, 12F05.
Key words and phrases: reciprocal, monogenic, septinomial, irreducible.
c©2024 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
CC BY (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0001-7661-4226
http://creativecommons.org/licenses/by/4.0/


Lenny Jones

makes computations in ZK easier, as in the case of the cyclotomic polyno-
mials Φn(x) [12]. We see from (1.1) that if ∆(f) is squarefree, then f(x) is
monogenic. However, the converse is false in general, and when ∆(f) is not
squarefree, it can be quite difficult to determine whether f(x) is monogenic.

Recently [9], a procedure was presented to manufacture infinite families
of reciprocal quintinomials of degree 2n that are monogenic for all n ≥ 2. In
this article, we use similar methods to construct infinite families of reciprocal
septinomials in Z[x] of degree 2n3 that are monogenic for all n ≥ 1. We
should point out that, using different methods, infinite families of reciprocal
monogenic septinomials of degree 6 were given in [8]. Our main results here
are the following:

Theorem 1.1. Let n,A,B ∈ Z with n ≥ 1. Define the reciprocal polyno-
mial

(1.2) Fn,A,B(x) := x2
n·3 + 9Ax2

n−1·5 + (27A2 + 3)x2
n+1

+ 3Bx2
n−1·3 + (27A2 + 3)x2

n

+ 9Ax2
n−1

+ 1.

If B 6≡ 0 (mod 3), (Â, B̂) ∈ Ψ := {(1, 1), (3, 3)}, where ∗̂ ∈ {0, 1, 2, 3} is the
reduction modulo 4 of ∗, and

D := (3B + 54A2 + 18A+ 8)(3B − 54A2 + 18A− 8)(B − 9A3 − 6A)

is squarefree, then the septinomial Fn,A,B(x) is monogenic for all n ≥ 1.

Corollary 1.2. Let Fn,A,B(x) be as defined in (1.2). Then, for any
u ∈ Z,
(1) there exist infinitely many primes q such that Fn,4u+1,12q+1(x) is mono-

genic for all n ≥ 1,
(2) there exist infinitely many primes q such that Fn,4u+3,12q+7(x) is mono-

genic for all n ≥ 1.

2. Preliminaries

Definition 2.1 ([1]). Let R be an integral domain with quotient field K,
and let K be an algebraic closure of K. Let f(x), g(x) ∈ R[x], and suppose



Reciprocal monogenic septinomials of degree 2n3

that f(x) = a
∏M

i=1 (x− αi) ∈ K[x] and g(x) = b
∏N

i=1 (x− βi) ∈ K[x]. Then
the resultant R(f, g) of f and g is:

R(f, g) = aN
M∏
i=1

g (αi) = (−1)MNbM
N∏
i=1

f (βi) .

Theorem 2.2. Let f(x) and g(x) be polynomials in Q[x], with respective
leading coefficients a and b, and respective degrees M and N . Then

∆(f ◦ g) = (−1)M
2N(N−1)/2 · aN−1bM(MN−N−1)∆(f)NR(f ◦ g, g′).

Remark 2.3. As far as we can determine, Theorem 2.2 is originally due
to John Cullinan [2]. A proof of Theorem 2.2 can be found in [5].

The following theorem, known as Dedekind’s Index Criterion, or simply
Dedekind’s Criterion if the context is clear, is a standard tool used in deter-
mining the monogenicity of a polynomial.

Theorem 2.4 (Dedekind [1]). Let K = Q(θ) be a number field, T (x) ∈
Z[x] the monic minimal polynomial of θ, and ZK the ring of integers of K.
Let q be a prime number and let ∗ denote reduction of ∗ modulo q (in Z, Z[x]
or Z[θ]). Let

T (x) =

k∏
i=1

τi(x)ei

be the factorization of T (x) modulo q in Fq[x], and set

g(x) =
k∏

i=1

τi(x),

where the τi(x) ∈ Z[x] are arbitrary monic lifts of the τi(x). Let h(x) ∈ Z[x]
be a monic lift of T (x)/g(x) and set

F (x) =
g(x)h(x)− T (x)

q
∈ Z[x].

Then

[ZK : Z[θ]] 6≡ 0 (mod q)⇐⇒ gcd
(
F , g, h

)
= 1 in Fq[x].

The next theorem follows from Corollary 2.10 in [10].
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Theorem 2.5. Let K and L be number fields with K ⊂ L. Then

∆(K)[L:K]
∣∣ ∆(L).

Theorem 2.6. Let G(t) ∈ Z[t], and suppose that G(t) factors into a prod-
uct of distinct irreducibles, such that the degree of each irreducible is at most 3.
Define

NG (X) = |{p ≤ X : p is prime and G(p) is squarefree}| .

Then,

NG(X) ∼ CG
X

log(X)
,

where

CG =
∏

` prime

(
1−

ρG
(
`2
)

`(`− 1)

)

and ρG
(
`2
)
is the number of z ∈

(
Z/`2Z

)∗ such that G(z) ≡ 0 (mod `2).

Remark 2.7. Theorem 2.6 follows from work of Helfgott, Hooley and
Pasten [6, 7, 11]. For more details, see [8].

Definition 2.8. In the context of Theorem 2.6, for G(t) ∈ Z[t] and
a prime `, if G(z) ≡ 0 (mod `2) for all z ∈

(
Z/`2Z

)∗, we say that G(t)
has a local obstruction at `.

The following immediate corollary of Theorem 2.6 is used to establish
Corollary 1.2.

Corollary 2.9. Let G(t) ∈ Z[t], and suppose that G(t) factors into
a product of distinct irreducibles, such that the degree of each irreducible is at
most 3. To avoid the situation when CG = 0, we suppose further that G(t)
has no local obstructions. Then there exist infinitely many primes q such that
G(q) is squarefree.

We make the following observation concerning G(t) from Corollary 2.9 in
the special case when each of the distinct irreducible factors of G(t) is of the
form ait+bi with gcd(ai, bi) = 1. In this situation, it follows that the minimum
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number of distinct factors required in G(t) so that G(t) has a local obstruction
at the prime ` is 2(`− 1). More precisely, in this minimum scenario, we have

G(t) =

2(`−1)∏
i=1

(ait+ bi) ≡ C(t− 1)2(t− 2)2 · · · (t− (`− 1))2 (mod `),

where C 6≡ 0 (mod `). Then each zero r of G(t) modulo ` lifts to the ` distinct
zeros

r, r + `, r + 2`, . . . . . . , r + (`− 1)` ∈
(
Z/`2Z

)∗
of G(t) modulo `2 [3, Theorem 4.11]. That is, G(t) has exactly `(` − 1) =

φ(`2) distinct zeros z ∈
(
Z/`2Z

)∗. Therefore, if the number of factors k of
G(t) satisfies k < 2(` − 1), then there must exist z ∈

(
Z/`2Z

)∗ for which
G(z) 6≡ 0 (mod `2), and we do not need to check such primes ` for a local
obstruction. Consequently, only finitely many primes need to be checked for
local obstructions. They are precisely the primes ` such that ` ≤ (k + 2)/2.

The following proposition, which follows from a generalization of a theorem
of Capelli, is a special case of the results in [4], and gives simple necessary and
sufficient conditions for the irreducibility of polynomials of the form w(x2

k

) ∈
Z[x], when w(x) is monic and irreducible.

Proposition 2.10 ([4]). Let w(x) ∈ Z[x] be monic and irreducible, with
deg(w) = m. Then w

(
x2

k)
is reducible if and only if there exist S0(x), S1(x) ∈

Z[x] such that either

(−1)mw(x) =
(
S0(x)

)2 − x(S1(x)
)2
,

or

k ≥ 2 and w
(
x2
)

=
(
S0(x)

)2 − x(S1(x)
)2
.

3. The proof of Theorem 1.1

For the proof of Theorem 1.1, we require the following lemma, which is of
some independent interest.
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Lemma 3.1. Let n,A,B ∈ Z, with n ≥ 1, and let Fn,A,B(x) be as defined
in (1.2). Then Fn,A,B(x) is irreducible for all n ≥ 1 if and only if

(Â, B̂) ∈ Γ = {(0, 2), (1, 1), (2, 2), (3, 3)},

where ∗̂ ∈ {0, 1, 2, 3} is the reduction modulo 4 of ∗.

Proof. Suppose first that (Â, B̂) ∈ Γ. This direction of the proof is com-
posed of several steps, each of which involves a proof by contradiction. For
most of the steps, the procedure is the same. We assume that two particular
polynomials are equal, equate coefficients on the two polynomials and show
that there is no solution to the resulting system of equations. To see that
there is no solution, we view the system of equations arising from equating
the coefficients of the two polynomials as a system of congruences modulo
4. We then use a computer to verify, for every possible viable set of values
of the variables modulo 4, that there is always at least one congruence that
is impossible. Because there are so many possibilities, we do not provide all
details of the computer calculations.

We begin by showing that

(3.1) F1,A,B(x) = x6 +9Ax5 +(27A2 +3)x4 +3Bx3 +(27A2 +3)x2 +9Ax+1

is irreducible. Assume, by way of contradiction, that F1,A,B(x) is reducible.
Observe that if

F1,A,B(1) = 54A2 + 18A+ 3B + 8 = 0,

then B = −18A2−6A−8/3 6∈ Z. Similarly, F1,A,B(−1) 6= 0. Hence, F1,A,B(x)
has no linear factors by the Rational Zero Theorem. Suppose then that

F1,A,B(x) = (x2 + a1x+ a0)(x4 + b3x
3 + b2x

2 + b1x+ b0),(3.2)

for some ai, bi ∈ Z. Expanding the right-hand side of (3.2) and equating
coefficients with F1,A,B(x) in (3.1), we arrive at the system of equations:

constant term : a0b0 = 1

x : a0b1 + a1b0 = 9A

x2 : b0 + a1b1 + a0b2 = 27A2 + 3

x3 : b1 + a1b2 + a0b3 = 3B

x4 : a0 + a1b3 + b2 = 27A2 + 3

x5 : a1 + b3 = 9A.

(3.3)
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As previously mentioned, to see that the system (3.3) has no solutions, we
view (3.3) as a system of congruences modulo 4. Then we use a computer to
check every (Â, B̂) ∈ Γ and every possible value for âi and b̂i, noting that
either a0 = b0 = 1 or a0 = b0 = −1. In every situation, there is at least one
impossible congruence. For example, if

(Â, B̂) = (0, 2) and (â0, â1, b̂0, b̂1, b̂2, b̂3) = (3, 0, 3, 0, 2, 1),

then the left-hand side of the congruence corresponding to x2 reduces to
1 (mod 4), while the right-hand side reduces to 3 (mod 4). Also, the left-
hand side of the congruence corresponding to x3 reduces to 3 (mod 4), while
the right-hand side reduces to 2 (mod 4).

Hence, it must be that

F1,A,B(x) = (x3 + a2x
2 + a1x+ a0)(x3 + b2x

2 + b1x+ b0),(3.4)

for some ai, bi ∈ Z. However, when we apply the same procedure to (3.4), we
also arrive at a contradiction in every possible scenario. For example, if

(Â, B̂) = (2, 2) and (â0, â1, â2, b̂0, b̂1, b̂2) = (1, 1, 1, 1, 1, 1),

then the left-hand side of the congruence corresponding to x3, which is

a0 + a1b2 + a2b1 + b0 ≡ 3B (mod 4),

reduces to 0 (mod 4), while the right-hand side reduces to 2 (mod 4). We
remark that this is the only contradictory congruence for this example. Thus,
we deduce that F1,A,B(x) is irreducible.

Observing that Fn,A,B(x) = F1,A,B(x2
n−1

) for n ≥ 1, we apply Proposi-
tion 2.10 with w(x) = F1,A,B(x) and m = 6. We first address the case n = 2,
which corresponds to k = 1 in Proposition 2.10. By way of contradiction, we
assume that F2,A,B(x) = F1,A,B(x2) is reducible. Then, by Proposition 2.10,
we have that there exist S0(x), S1(x) ∈ Z[x] such that

F1,A,B(x) =
(
S0(x)

)2 − x(S1(x)
)2
.

Since deg(F1,A,B) = 6, it follows that

S0(x) = x3 + a2x
2 + a1x+ a0 and S1(x) = b2x

2 + b1x+ b0
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for some ai, bi ∈ Z. Then

(3.5) (S0(x))
2 − x (S1(x))

2
= x6 + (2a2 − b22)x5

+ (2a1 − 2b1b2 + a22)x4 + (2a0 − b21 − 2b0b2 + 2a1a2)x3

+ (a21 + 2a0a1 − 2b0b1)x2 + (2a0a1 − b20)x+ a20.

We equate coefficients on (3.5) and (3.1), which yields the system of equations:

constant term : a20 = 1

x : 2a0a1 − b20 = 9A

x2 : a21 + 2a0a2 − 2b0b1 = 27A2 + 3

x3 : 2a0 − b21 + 2a1a2 − 2b0b2 = 3B

x4 : 2a1 + a22 − 2b1b2 = 27A2 + 3

x5 : 2a2 − b22 = 9A.

(3.6)

Noting that a0 = ±1, and applying the same procedure as before to the system
(3.6), we see that every possibility provides a contradiction. For example, if

(Â, B̂) = (3, 3) and (â0, â1, â2, b̂0, b̂1, b̂2) = (1, 0, 0, 0, 1, 1),

then the left-hand side of the congruence corresponding to x reduces to
0 (mod 4), while the right-hand side reduces to 3 (mod 4).

Now suppose that n ≥ 3, which corresponds to k ≥ 2 in Proposition 2.10.
Assume, by way of contradiction, that Fn,A,B(x) is reducible. Then, by Propo-
sition 2.10, there exist S0(x), S1(x) ∈ Z[x] such that

(3.7) w(x2) = F1,A,B(x2) = F2,A,B(x) =
(
S0(x)

)2 − x(S1(x)
)2
,

where

S0(x) = x6 +
5∑

j=0

cjx
j and S1(x) =

5∑
j=0

djx
j ,

for some cj , dj ∈ Z. Noting that c0 = ±1, we equate the other coefficients in
(3.7) and use the same procedure as before to verify that there is no solution
to the resulting system of equations. For example, if (Â, B̂) = (1, 1) and

(ĉ0, ĉ1, ĉ2, ĉ3, ĉ4, ĉ5, d̂0, d̂1, d̂2, d̂3, d̂3, d̂3) = (1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 1),
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Table 1. Examples for (3.8) and their factorizations

(Â, B̂) (A,B) Factorization of Fn,A,B(x)

(0, 0) (4, 24) (x2n+1

+ 36x2n−13 + 434x2n + 36x2n−1

+ 1)Φ2n+1(x)

(0, 1) (4, 357) (x2n + 3x2n−1

+ 1)(x2n+1

+ 33x2n−13 + 335x2n + 33x2n−1

+ 1)

(0, 3) (4, 591) (x2n + 9x2n−1

+ 1)(x2n+1

+ 27x2n−13 + 191x2n + 27x2n−1

+ 1)

(1, 0) (1, 24) (x2n + 6x2n−1

+ 1)(x2n+1

+ 3x2n−13 + 11x2n + 3x2n−1

+ 1)

(1, 2) (1, 6) (x2n+1

+ 9x2n−13 + 29x2n + 92n−1

+ 1)Φ2n+1(x)

(1, 3) (1, 15) (x2n + 3x2n−1

+ 1)3

(2, 0) (2, 12) (x2n+1

+ 18x2n−13 + 110x2n + 18x2n−1

+ 1)Φ2n+1(x)

(2, 1) (2, 93) (x2n + 9x2n−1

+ 1)(x2n+1

+ 9x2n−13 + 29x2n + 9x2n−1

+ 1)

(2, 3) (2, 75) (x2n + 3x2n−1

+ 1)(x2n+1

+ 15x2n−13 + 65x2n + 15x2n−1

+ 1)

(3, 0) (3, 252) (x2n + 6x2n−1

+ 1)(x2n+1

+ 21x2n−13 + 119x2n + 21x2n−1

+ 1)

(3, 1) (3, 189) (x2n + 3x2n−1

+ 1)(x2n+1

+ 24x2n−13 + 173x2n + 24x2n−1

+ 1)

(3, 2) (3, 18) (x2n+1

+ 27x2n−13 + 245x2n + 27x2n−1

+ 1)Φ2n+1(x)

then the left-hand side of the congruence corresponding to x3, which is

c21 + 2c0c2 − 2d0d1 ≡ 9A (mod 4),

reduces to 0 (mod 4), while the right-hand side reduces to 1 (mod 4). Hence,
we conclude, by Proposition 2.10, that Fn,A,B(x) is irreducible for all n ≥ 1,
and the proof of the lemma is complete in this direction.

For the other direction of the proof, suppose that (Â, B̂) 6∈ Γ. That is,
assume (Â, B̂) is an element of the set

(3.8) {(0, 0), (0, 1), (0, 3), (1, 0), (1, 2), (1, 3),

(2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)}.

For each (Â, B̂) in (3.8), we provide in Table 1 an explicit example of (A,B)
such that Fn,A,B(x) is reducible, not only for some n, but for all n ≥ 1. In
Table 1, we let ΦN (x) denote the cyclotomic polynomial of index N . �

Proof of Theorem 1.1. Observe first that since Ψ ⊂ Γ, Fn,A,B(x) is
irreducible for all n ≥ 1 by Lemma 3.1. To complete the proof of monogenicity,
we examine the prime divisors of ∆(Fn,A,B).
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We begin with the case n = 1. Suppose that F1,A,B(θ) = 0. A computation
in Maple produces

(3.9) ∆(F1,A,B)=310(3B+54A2+18A+8)(3B−54A2+18A−8)(B−9A3−6A)4.

We use Theorem 2.4 with T (x) := F1,A,B(x) to show that [ZK : Z[θ]] 6≡ 0
(mod q), for every prime q dividing ∆(F1,A,B), where ZK is the ring of integers
of K = Q(θ). Because D is squarefree, it follows from (3.9) and (1.1) that no
prime dividing

(3B + 54A2 + 18A+ 8)(3B − 54A2 + 18A− 8)

can divide [ZK : Z[θ]]. Hence, we only need to focus on the prime 3 and primes
dividing B − 9A3 − 6A.

Suppose first that q = 3. Then, in Theorem 2.4, we have T (x) = (x2 + 1)3,
so that we can let

g(x) = x2 + 1 and h(x) = (x2 + 1)2.

Then

F (x) =

(
(x2 + 1)3 − T (x)

3

)
= 2Bx3 6≡ 0 (mod 3)

since B 6≡ 0 (mod 3). Thus, it is easy to see that gcd(F , g) = 1, and conse-
quently, [ZK : Z[θ]] 6≡ 0 (mod 3) by Theorem 2.4.

Next, suppose that q 6= 3 is a prime divisor of B − 9A3 − 6A. Then

T (x) = (x2 + 3Ax+ 1)3 = τ(x)3.

By the quadratic formula, there are three cases to consider:
(1) τ(x) ≡ (x+ 3A/2)2 (mod q),
(2) τ(x) is irreducible over Fq,
(3) τ(x) ≡ (x− (−3A+ w)/2)(x− (−3A− w)/2) (mod q),

where w2 ≡ 9A2 − 4 (mod q).
Case (1) occurs if ∆(x2 + 3Ax + 1) = 9A2 − 4 ≡ 0 (mod q). Then, A ≡

±(2/3) (mod q) and, respectively, B ≡ ±(20/3) (mod q) since B ≡ 9A3 +
6A (mod q). But then, respectively,

3B ∓ 54A2 + 18A∓ 8 ≡ 0 (mod q),

contradicting, in either situation, the fact that D is squarefree. Hence, case (1)
cannot happen.
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Suppose next that we are in case (2), so that we can let

g(x) = x2 + 3Ax+ 1 and h(x) = (x2 + 3Ax+ 1)2.

Then

F (x) =

(
g(x)h(x)− T (x)

q

)
= −3

(
B − 9A3 − 6A

q

)
x2 6≡ 0 (mod q),

since B − 9A3 − 6A is squarefree and q 6= 3. Then it is easy to see that
gcd(F , g) = 1. Hence, [ZK : Z[θ]] 6≡ 0 (mod q) by Theorem 2.4, and F1,A,B(x)
is monogenic in this case.

Finally, suppose that we are in case (3). Without loss of generality, assume
that w ≡ 1 (mod 2). Since w2 ≡ 9A2 − 4 (mod q), we can write

(3.10) w2 = 9A2 − 4 + qk,

for some k ∈ Z. Note that k ≡ 0 (mod 4). Then −3A± w ≡ 0 (mod 2) since
A ≡ 1 (mod 2). Thus, we can let

g(x) = h(x) = (x− (−3A+ w)/2)(x− (−3A− w)/2),

so that

g(x)h(x) = x2 + 3Ax+ (9/4)A2 − w2/4 = x2 + 3Ax+ 1− qk/4 ∈ Z[x]

by (3.10). Therefore, to prove that gcd(F , g) = 1, we only have to show that
F ((−3A±w)/2) 6= 0. Because the methods are the same, we give details only
for x = (−3A+ w)/2. Noting that

F ((−3A+ w)/2) 6= 0 if and only if qF ((−3A+ w)/2) 6≡ 0 (mod q2),

we examine qF ((−3A+w)/2). Then, using (3.10) and the fact that q divides
B − 9A3 − 6A, a straightforward calculation in Maple yields

(3.11) 64qF ((−3A+ w)/2) = −k3q3 − 24k(9A− w)(9A3 + 6A−B)q

− 96(27A3 − 9A− w(9A2 − 1))(9A3 + 6A−B)

≡ −96(27A3 − 9A− w(9A2 − 1))(9A3 + 6A−B) (mod q2).

We claim that

(3.12) 27A3 − 9A− w(9A2 − 1) 6≡ 0 (mod q).
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Assume, by way of contradiction, that

(3.13) 27A3 − 9A− w(9A2 − 1) ≡ 0 (mod q).

Then, if

(3.14) 9A2 − 1 ≡ 0 (mod q),

it follows that

27A3 − 9A ≡ −6A ≡ 0 (mod q),

which implies that A ≡ 0 (mod q) since q 6∈ {2, 3}. Consequently,

9A2 − 1 ≡ −1 (mod q),

contradicting (3.14). Hence, 9A2 − 1 6≡ 0 (mod q), and we have from (3.13)
that

w2 ≡ (27A3 − 9A)2

(9A2 − 1)2
(mod q).

Then, since w2 ≡ 9A2 − 4 (mod q), we arrive at the congruence

(27A3 − 9A)2 ≡ (9A2 − 1)2(9A2 − 4) (mod q),

which yields, after expansion, the impossible congruence 4 ≡ 0 (mod q).
Hence, (3.12) is established. Since 9A3 + 6A − B is squarefree, we deduce
from (3.11) that qF ((−3A+w)/2) 6≡ 0 (mod q2), and the proof that F1,A,B(x)
is monogenic is complete.

Next, we address the monogenicity of Fn,A,B(x) for n ≥ 2. Since
Fn,A,B(x) = F1,A,B(x2

n−1

) for n ≥ 1, we use Theorem 2.2 and Definition 2.1
to calculate

∆(Fn,A,B) = ∆
(
F1,A,B ◦ x2

n−1
)

= (−1)3
2·2n(2n−1−1)∆(F1,A,B)2

n−1

R(Fn,A,B, 2
n−1x2

n−1−1)(3.15)

= 23·2
n(n−1)∆(F1,A,B)2

n−1

.

For n ≥ 1, we define

θn := θ1/2
n−1

and Kn := Q(θn),
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noting that θ1 = θ and K1 = K from the case n = 1 earlier in this proof.
Furthermore, observe that Fn,A,B (θn) = 0 and [Kn+1 : Kn] = 2. Thus,
if Fn,A,B(x) is monogenic, then ∆(Fn,A,B) = ∆(Kn), and we deduce from
Theorem 2.5 that

∆(Kn+1) ≡ 0 (mod ∆(Fn,A,B)2).

By (3.15), we have that

∆(Fn+1,A,B)/∆(Fn,A,B)2 = 23·2
n+1

.

Hence, to show that Fn+1,A,B(x) is monogenic, we only have to show that

(3.16)
[
ZKn+1

: Z[θn+1]
]
6≡ 0 (mod 2).

We apply Theorem 2.4 with T (x) := Fn+1,A,B(x). Then

T (x) = (x6 + x5 + x3 + x+ 1)2
n

= (x2 + x+ 1)3·2
n

= Φ3(x)3·2
n

,

where Φ3(x) is easily seen to be irreducible over F2. Therefore, we can let

g(x) = Φ3(x) and h(x) = Φ3(x)3·2
n−1.

A straightforward induction argument shows for n ≥ 1 that

g(x)h(x) = Φ3(x)3·2
n

≡ Q(x) (mod 4),

where

Q(x) = x12·2
n−1

+2x11·2
n−1

+x10·2
n−1

+2x9·2
n−1

+2x8·2
n−1

+2x7·2
n−1

+x6·2
n−1

+ 2x5·2
n−1

+ 2x4·2
n−1

+ 2x3·2
n−1

+ x2·2
n−1

+ 2x2
n−1

+ 1.

Then, writing g(x)h(x) = Q(x) + 4E(x) for some E(x) ∈ Z[x], we get that

F (x) =
g(x)h(x)− T (x)

2

= x11·2
n−1

+

(
1− 9A

2

)
x10·2

n−1

+ x9·2
n−1

+

(
2− (27A2 + 3)

2

)
x8·2

n−1

+ x7·2
n−1

+

(
1− 3B

2

)
x6·2

n−1

+ x5·2
n−1

+

(
2− (27A2 + 3)

2

)
x4·2

n−1

+ x3·2
n−1

+

(
1− 9A

2

)
x2·2

n−1

+ x2
n−1

+ 2E(x).
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Hence,

F (x) =


(
x(x3 + x+ 1)(x3 + x2 + 1)Φ5(x)

)2n−1

if (Â, B̂) = (1, 1),

(x+ 1)2
n (
x(x4 + x+ 1)(x4 + x3 + 1)

)2n−1

if (Â, B̂) = (3, 3).

It is then apparent that gcd(F , g) = 1 in each case of (Â, B̂) ∈ Ψ, from
which we conclude by Theorem 2.4 that (3.16) is valid. Therefore, Fn+1,A,B(x)
is monogenic, and consequently, Fn,A,B(x) is monogenic for all n ≥ 1 by
induction. �

4. The proof of Corollary 1.2

Proof. Since the methods used in the proof are the same for both parts,
we give details only for part (2). Define the polynomialG(t)=g1(t)g2(2)g3(t) ∈
Z[t], where

g1(t) = 36t+ 864u2 + 1368u+ 569,

g2(t) = 36t− 864u2 − 1224u− 419 and

g3(t) = 6t− 288u3 − 648u2 − 498u+ 127.

We wish to apply Corollary 2.9 to G(t). Note that

gcd(36, g1(0)) = gcd(36, g2(0)) = gcd(6, g3(0)) = 1.

According to the discussion following Corollary 2.9, we only need to check
for local obstructions at the primes ` satisfying ` ≤ (k + 2)/1 = 5/2. That
is, we only need to check the prime ` = 2. Since G(1) ≡ 2u + 1 (mod 4), we
see that there is no local obstruction at ` = 2. Hence, by Corollary 2.9, there
exist infinitely many primes q such that G(q) is squarefree. Then 2G(q) is
also squarefree since gi(q) ≡ 1 (mod 2) for each i. Observe that D = 2G(q)

and (Â, B̂) = (3, 3) with A = 4u + 1 and B = 12q + 7 6≡ 0 (mod 3). Thus,
for any such prime q, we deduce from Theorem 1.1 that Fn,4u+1,12q+7(x) is
monogenic for all n ≥ 1. �
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