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SPEED OF LIGHT OR COMPOSITION OF VELOCITIES

MACIEJ SABLIK

Dedicated to Professor Kazimierz Nikodem on the occasion of his 70th birthday

Abstract. We analyze in our paper questions of the theory of relativity. We
approach this theory from the point of view of velocities and their composition.
This is where the functional equations appear. Solving them leads to a world
where velocities are bounded from above, the upper bound being exactly the
“speed of light”.

1. Introduction

Consider two inertial frames of reference U and U’. For simplicity we admit
that points of U (resp. U’) are “one dimensional”, i.e. they are of the form
(tu,zu) (resp. (tys,xy+)) where tyy denotes the time variable, and zy denotes
the space (one-dimensional) variable. Assume that the frame U’ moves with
the velocity v with respect to the frame U. Analyzing the relations between the
variables, and taking into account the first Newton’s law of motion we conclude
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that the change is linear, i.e. there exist functions a, b, ¢ and d, depending on
v and such that

ty = a(v)ty + b(v)zy,
zy = c(v)tyr + d(v)zyr.
In other words we get
7] = M7y,

where M : A — GL2(R) is a matrix function, defined on an interval A, Zy =
(tu,zy) and Zy» = (tyr,zy ). Following A. Szymacha [I10], see also R.D.
Sard [8] or A. Sommerfeld [9] or W. Benz [2], we speak about “addition” or
“composition” of velocities. Suppose u and v are velocities from A. Then we
call “sum” of the two velocities an operation @, which is commutative, but
not necessarily we have

u@®uv e A.

We assume also that 0 @ v = v, whenever 0 € A, and (cf. commutativity of
@) u®0 = u, for all u,v € A. It is noteworthy to observe that a(0) = 1 =
d(0),b(0) = ¢(0) = 0, because v = 0 means that both frames stay at the same
position.

We introduce some new notation right now. Let denote by Ag the set
{(u,v) € A x A : u®v € A}. Further, denote by A? the set {u € A :
(u,v) € Ag}.

Let us consider the implication

(1.1) (u,v) € Ag = M(u)M(v) = M(u@v).

Equation (I.1)) implies that

(1.2) a(uw)a(v) + b(w)e(v) = alu @ v),
(1.3) a(u)b(v) + b(w)d(v) = b(u ® ),
(1.4) c(w)a(v) + d(w)e(v) = c(u® ),

c(wb(v) + d(w)d(v) = d(u@v),
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for all (u,v) € Ag. Thus either ¢ = 0 or there exists a vy € A such that
(15) bu) = fe(u)

for some S € R and all ©v € AY. Similarly, commutativity of @ together

with (1.4]) yield
or

for all (u,v) € Ag. Thus again, either ¢ = 0 or there is an « € R such that
(1.6) d(u) = a(u) + ac(u),

for all uw e A", where ¢(vg) # 0.

2. Functional equations

Let us consider the following cases, based on our observations from the
Introduction.
I)e=0.
It is enough to deal with the two following subcases:
1°b6=0
2°b#0.
The case 1° gives

d(u)d(v) = du @ v),

for all (u,v) € Ag, and will not be discussed in the sequel.
The case 2°, and the equation ([1.3]) allow us to calculate d with the aid of
a and b for all (u,v) € Ag, at present we also have ¢ =0 - b.
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1) ¢ # 0.
The present case leads to the following, taking into account (1.3)), (1.4),

and ([L.6):
(2.1)

if (u, U) € A@.

Let us proceed to determine the operation ®.

A) Sometimes it is easy to calculate u @ v. For instance, suppose that
a(u) # 0, ue A, and c(u) = ua(u), u € A (note that this corresponds to the
definition of speed as the ratio f—g if we consider the frame U’ with zyr = 0).
Then

{ a(uw)a(v) (1 + puv) = a(u P v),
a(u)a(v) (u+ v+ auww) = (S v) a(lu®v),

for all for all (u,v) € Ag, whence (because a(u) # 0, u € A)

U+ v+ auv

udv= 14 puv

whenever u®v € A. Of course, we see that 1+ Suv # 0 for for all (u,v) € Ag
(otherwise we would have a(u @ v) = 0, contrary to our assumption).

B) On the other hand, assume that a and ¢ are continuous, and c¢ is invert-
ible (then c is a homeomorphism), and reconsider . It turns out from the
second equation in that @ is continuous. Let us assume also that 0 € A.
Since 0 = 0@ 0 € A by continuity we get that there exists an interval Ay ¢ A
such that A; x A; © Ag. Let us define

(2.2) fi=aoct:c(Ar) - R
Denote @ := c(u), y := c(v), for (u,v) € Ay x A,
We get from
(2.3) FU @y + f(y)z +axy] = f(2)f(y) + Bry, z,y€ c(Ar).
Substituting
(2.4) p(@) == @)+ 5



Speed of light or composition of velocities 115

we transform ([2.3)) into

2

L) +up(@)] = @) + (5 +5) o zyecan

or, denoting by K := %2 + 8,

(2.5) e ro(y) +ye(@)] = p()p(y) + Kzy, z,y€ c(Ay),

whence with x := ¢(u), y := ¢(v) it follows from that
(26) w@v=c (@) @c(y) = (Ap(r,y)) = 7 (Ay(c(u), c(v)))

where A, (z,y) = zo(y) + yo(z), z,y € c(Ar).

The functional equation has been considered earlier by several au-
thors. Let us mention e.g. P. Volkmann and H. Weigel [11], N. Brillouét and
J. Dhombres [3], to some extent it is connected with associativity equation
(see J. Aczél [I] and R. Craigen, Zs. Pales [4]). Moreover, it has very much
in common with the celebrated Abel’s equation, proposed by Hilbert to solve
in his Fifth Problem (cf., eg. [5] and [7]). There is a paper by the author of
the present note ([6]) where exactly the situation like present is treated, we
deal with conditional associativity, which leads to . In [6] we proved a
theorem on the general continuous solution of . We will not present the
whole theorem, it contains 14 possible cases, and each case has its so called
conjugate case. The number can be reduced to 5, if we assume that ¢(0) = 1.
Let us observe that this is actually the case in our present situation: since

obviously M (0) = I then a(0) = 1, ¢(0) = 0, whence f(0) = ¢(0) = 1.

THEOREM 2.1. Let I < R be an interval containing 0 and let ¢: I — R be
a continuous function such that ¢(0) = 1. Then A, is locally assocz'atz'v(ﬂ if
and only if ¢ has one of the following forms:
(S1) o(x) =1+ Az for x € I where I is arbitrary and A € R is an arbitrary
constant,
(S2) ¢(x) =|Ax—(1/2)| +(1/2) for x € I, where I is arbitrary and A € R\{0}
is an arbitrary constant such that 1/2A € I,

We say that Ay is locally associative if the following condition is satisfied:

(xel)a(yel)a(zel) r(Ap(z,y)el) A (Ap(y,2) e ]) =
ALP (x,Atp(:%Z)) = ALP (Aﬁﬂ(m7y)az) .
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(S3) p(@) = v 1 (%) for x € I where E # 0 is an arbitrary constant,
o [%,—koo) — R is defined by v(u) =ulnu and I E[— L —l—oo),

2+/e’
(S1) () = g7 (Az) + Az for x € I, where A # 0 and o # 1 are arbitrary
constants, go: Ko — R is given by go(u) = “a2_“ with
(0, +00) for a <0,
KOL = @
(alfa,—i-oo) for a € (0, +00)\{1},

and I is contained in I,, where

R for a <0,
Io=4 (%) (=0.3) fora =0,
() ga (@) (—00,1]  for a € (0, +o0)\{1},

(Ss5)

Ax
L I\{0}
_ (@) T E )
x) = D
o(z) { Peco

where A # 0 and D € R are arbitrary constants, and rp: Rp — R is
1 u

a function given by rp(u) = (Z) (m) exp(D arctanu) for u € Rp
with Ry = R and Rp = (%) [-1,= ), for D % 0. Moreover, the
interval I < rp ([D —+v1+ D%, D ++/1+ D?]).

2.1. Some examples

Taking into account Theorem as well as formulae (2.2), (2.4]), and,
above all, (2.6), we get some specific formulae for composition of velocities.

EXAMPLE 1. In the case (S1) we have A, (x,y) = v+y+2Azy, z,y e Ry =
[0, +00). Taking a(u) = 1, and c(u) = u, u € R4, we get ¢ 1(z) = z,2 € R;..
Thus, taking x := c(u), y := c(v), we get (cf. (2.6))
u@v = Ay(u,v) =u+v+24Auw,

which, with A = 0, is just the Galilean way to add the velocities.
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EXAMPLE 2. In the case (S7), let us take A = 1, and let / < R be an
arbitrary interval containing 0 and % We have

T for x = %,
p(z) = L
l—x forz<s3.
Such a definition leads to
2xy for z,y = %,
x forz>1>y
2 )
AW('CC) y) - 1
Y fory = 5 >z,
T +y—2xy forx,y<%.
Now, putting ¢(u) = u, we obtain
2uv for u,v = %,
U for u > % > v,
udv = 1
v forv = 5 > u,
U+ v — 2uv foru,v<%.

EXAMPLE 3. In the case (S3), let us take E =1, and let I < [ — 2%/2, +0)
be an arbitrary interval containing 0. We have

p(x) =~ (z),

for all z € I. We see that v(1) = 0, whence ¢(0) = y~(0) = 1. For any =,y € [
we have (admitting that x = y(u), y = v(v) for some u,v € Ay C [%, +oo))

Az, y) = zo(y) + yo(r) = y(u)v +y(v)u

= w(lnu + Inv) = wwln(uww) = y(w) =y (v (z)v 7 (y)) .
Defining ¢: A; — R by ¢(u) = ulnu = v(u) we obtain (cf. (2.6))

u@v=(coy)((y " oc)(u) (v o) (v)) = uv.
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EXAMPLE 4. In the case (S4), put A =1. For any o # 1 and I < I, with
0 € I, we have ¢: I — R of the form p(z) = g5 (z) + z. It follows that for
every x,y € I the following formula holds

Ap(z,y) = 22y + 295" (y) +yga " (),
which means that substituting = := g, (u) and y := g,(v), we get
Ap(9a (1), ga(v)) = 29a(u)ga(v) + vga(u) + uga(v).
Put ¢ := g,, then taking into account we get
u®v=g3" ((9a(w), 9a(v))) = 95" (29a(u)ga(v) +vga(u) + uga(v)).

EXAMPLE 5. In the case (S5), let us take D = 0. We have

Az for ¢ e 1\{0},
pla) =4 o @
1 for x = 0,

_ Ax

or, since 75 ! () = A
o(x) = /1 + (Ax)2.

Denote C' := A2. Then

Ay(z,y) =214+ Cy2 +yV1+Ca2, xyel.

Put a(u) := \/ﬁ, c(u) := Jitem Using (2.6) again we obtain
u+v
uov=9 + Cuv’

or the Einstein addition of velocities.

REMARK 2.1. Actually, Theorem [2.1] yields large families of possible com-
position of velocities. However, even if they are mathematically correct, we do
not know whether they have any physical meaning.
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