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A KANNAPPAN-COSINE FUNCTIONAL EQUATION
ON SEMIGROUPS

Ahmed Jafar, Omar Ajebbar , Elhoucien Elqorachi

Abstract. In this paper we determine the complex-valued solutions of the
Kannappan-cosine functional equation g(xyz0) = g(x)g(y) − f(x)f(y), x, y ∈
S, where S is a semigroup and z0 is a fixed element in S.

1. Introduction

The addition law for cosine is

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), x, y ∈ R.

This gives the origin of the following functional equation on any semigroup S:

(1.1) g(xy) = g(x)g(y)− f(x)f(y), x, y ∈ S,

for the unknown functions f, g : S → C, which is called the cosine addition
law. In Aczél’s monograph [1, Section 3.2.3] we find continuous real valued
solutions of (1.1) in case S = R.
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The functional equation (1.1) has been solved on groups by Poulsen and
Stetkær [10], on semigroups generated by their squares by Ajebbar and Elqo-
rachi [3], and recently by Ebanks [5] on semigroups.

In [12, Theorem 3.1], Stetkær solved the following functional equation

(1.2) g(xy) = g(x)g(y)− f(y)f(x) + αf(xy), x, y ∈ S,

where α is a fixed constant in C. He expressed the solutions in terms of
multiplicative functions and the solution of the special case of the sine addition
law. In [13, Proposition 16], he solved the functional equation

(1.3) f(xyz0) = f(x)f(y), x, y ∈ S,

on semigroups, and where z0 is a fixed element in S. We shall use these results
in our computations.

In this paper, we deal with the following Kannappan-cosine addition law

(1.4) g(xyz0) = g(x)g(y)− f(x)f(y), x, y ∈ S,

on a semigroup S. The functional equation (1.4) is called Kannappan func-
tional equation because it brings up a fixed element z0 in S as in the paper
of Kannappan [9].

In the special case, where {f, g} is linearly dependent and g 6= 0, we get
that there exists a constant λ ∈ C such that the function (1 − λ2)g satisfies
the functional equation (1.3).

If S is a monoid with an identity element e, and f(e) = 0 and g(e) 6= 0,
or g(e) = 0 and f(e) 6= 0, the last functional equation is the cosine addition
law which was solved recently on general semigroups by Ebanks [5].

Now, if α := f(e) 6= 0 and β := g(e) 6= 0 we get that the pair
(
g
β ,

f
β

)
satisfies the following functional equation

g

β
(xy) =

g

β
(x)

g

β
(y)− f

β
(x)

f

β
(y) +

α

β

f

β
(xy),

which is of the form (1.2), and then explicit formulas for f and g on groups
exist in the literature (see for example [8, Corollary 3.2.]).

The natural general setting of the functional equation (1.4) is for S being
a semigroup, because the formulation of (1.4) requires only an associative
composition in S, not an identity element and inverses. Thus we study in the
present paper Kannappan-cosine functional equation (1.4) on semigroups S,
generalizing previous works in which S is a group. So, the result of the present
paper is a natural continuation of results contained in the literature.



A Kannappan-cosine functional equation on semigroups

The purpose of the present paper is to show how the relations between (1.4)
and (1.2)–(1.3) on monoids extend to much wider framework, in which S is
a semigroup. We find explicit formulas for the solutions, expressing them in
terms of homomorphisms and additive maps from a semigroup into C (Theo-
rem 4.1). The continuous solutions on topological semigroups are also found.

2. Set up, notations and terminology

Throughout this paper, S is a semigroup (a set with an associative com-
position) and z0 is a fixed element in S. If S is topological, we denote by C(S)
the algebra of continuous functions from S to the field of complex numbers C.

Let f : S → C be a function. We say that f is central if f(xy) = f(yx) for
all x, y ∈ S, and that f is abelian if f(x1x2, . . . , xn) = f(xσ(1)xσ(2), . . . , xσ(n))
for all x1, x2, . . . , xn ∈ S, all permutations σ of n elements and all n ∈ N. A
map A : S → C is said to be additive if A(xy) = A(x) +A(y), for all x, y ∈ S
and a map χ : S → C is multiplicative if χ(xy) = χ(x)χ(y), for all x, y ∈ S.
If χ 6= 0, then the nullspace Iχ := {x ∈ S |χ(x) = 0} is either empty or
a proper subset of S and Iχ is a two sided ideal in S if not empty and S \ Iχ
is a subsemigroup of S. Note that additive and multiplicative functions are
abelian.

For any subset T ⊆ S let T 2 := {xy |x, y ∈ T} and for any fixed element
z0 in S we let T 2z0 := {xyz0 |x, y ∈ T}.

To express solutions of our functional equations studied in this paper we
will use the set Pχ := {p ∈ Iχ \ I2χ | up, pv, upv ∈ Iχ \ I2χ for all u, v ∈ S \ Iχ}.
For more details about Pχ we refer the reader to [4], [5] and [6].

3. Preliminaries

In this section, we give useful results to solve the functional equation (1.4).

Lemma 3.1. Let S be a semigroup, n ∈ N, and χ, χ1, χ2, . . . , χn : S → C
be different non-zero multiplicative functions. Then
(a) {χ1, χ2, · · ·, χn} is linearly independent.
(b) If A : S \ Iχ → C is a non-zero additive function, then the set {χA, χ} is

linearly independent on S \ Iχ.

Proof. (a) See [11, Theorem 3.18]. (b) See [2, Lemma 4.4]. �
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The proposition below gives the solutions of the functional equation

(3.1) f(xyz0) = χ(z0)f(x)χ(y) + χ(z0)f(y)χ(x), x, y ∈ S.

Proposition 3.2. Let S be a semigroup, and χ : S → C be a multiplicative
function such that χ(z0) 6= 0. If f : S → C is a solution of (3.1), then

(3.2) f(x) =


χ(x)(A(x) +A(z0)) for x ∈ S\Iχ,
ρ(x) for x ∈ Pχ,
0 for x ∈ Iχ \ Pχ,

where A : S\ Iχ → C is additive and ρ : Pχ → C is the restriction of f to Pχ.
In addition, f is abelian and satisfies the following conditions:

(I) f(xy) = f(yx) = 0 for all x ∈ Iχ \ Pχ and y ∈ S \ Iχ.
(II) If x ∈ {up, pv, upv} with p ∈ Pχ and u, v ∈ S \ Iχ, then x ∈ Pχ

and we have respectively ρ(x) = ρ(p)χ(u), ρ(x) = ρ(p)χ(v) or ρ(x) =
ρ(p)χ(uv).

Conversely, the function f of the form (3.2) define a solution of (3.1).
Moreover, if S is a topological semigroup and f ∈ C(S), then χ ∈ C(S),
A ∈ C(S \ Iχ) and ρ ∈ C(Pχ).

Proof. See [7, Proposition 4.3]. �

To shorten the way to finding the solutions of functional equation (1.4),
we prove the following lemma that contains some key properties.

Lemma 3.3. Let S be a semigroup and let f, g : S → C be the solutions of
the functional equation (1.4) with g 6= 0. Then
(i) If f(z0) = 0 then

(1) for all x, y ∈ S,

(3.3) g(z20)g(xy) = g(z0)[g(x)g(y)− f(x)f(y)] + f(z20)f(xy),

(2) g(z20)2 = g(z0)3 + f(z20)2.
(3) If f and g are linearly independent then g(z0) 6= 0.

(ii) If f(z0) 6= 0, then there exists µ ∈ C such that

(3.4) f(xyz0) = f(x)g(y) + f(y)g(x) + µf(x)f(y), x, y ∈ S.
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Proof. (i) Suppose that f(z0) = 0.
(1) Making the substitutions (xy, z20) and (xyz0, z0) in (1.4) we get

g(xyz30) = g(xy)g(z20)−f(xy)f(z20) and g(xyz30) = g(xyz0)g(z0)−f(xyz0)f(z0)
= g(z0)g(x)g(y) − g(z0)f(x)f(y), respectively. Comparing these expressions,
we deduce that g(xy)g(z20)−f(z20)f(xy) = g(z0)g(x)g(y)−g(z0)f(y)f(x). This
proves the desired identity.

(2) It follows directly by putting x = y = z0 in the equation (3.3).
(3) For a contradiction we suppose that g(z0) = 0. Then using (1.4), we

get g(xyz20) = g(x)g(yz0) − f(x)f(yz0) = g(xy)g(z0) − f(xy)f(z0) = 0 since
f(z0) = g(z0) = 0. Then we deduce that

(3.5) g(x)g(yz0) = f(x)f(yz0), x, y ∈ S.

If g(yz0) = 0 for all y ∈ S then 0 = g(xyz0) = g(x)g(y)− f(x)f(y), x, y ∈ S.
So, g(x)g(y) = f(x)f(y), x, y ∈ S. Hence, f = g or f = −g, which contradicts
the fact that f and g are linearly independent. So g 6= 0 on Sz0, and from (3.5)
we get that g = c1f with c1 := f(az0)/g(az0) for some a ∈ S such that
g(az0) 6= 0. This is also a contradiction, since f and g are linearly independent.
So we conclude that g(z0) 6= 0.

(ii) Suppose that f(z0) 6= 0. By the substitutions (x, yz20) and (xyz0, z0)
in (1.4) we get g(xyz30) = g(x)g(yz20) − f(x)f(yz20) = g(z0)g(x)g(y) −
g(x)f(z0)f(y) − f(x)f(yz20) and g(xyz30) = g(xyz0)g(z0) − f(xyz0)f(z0) =
g(z0)g(x)g(y)− g(z0)f(x)f(y)− f(xyz0)f(z0), respectively. Then, by the as-
sociativity of the operation in S we obtain

(3.6) f(z0)[f(xyz0)− f(x)g(y)− f(y)g(x)]

= f(x)[f(yz20)− f(y)g(z0)− f(z0)g(y)].

Since f(z0) 6= 0, dividing (3.6) by f(z0) we get

(3.7) f(xyz0) = f(x)g(y) + f(y)g(x) + f(x)ψ(y),

where ψ(y) := f(z0)−1[f(yz20)−f(y)g(z0)−f(z0)g(y)]. Substituting (3.7) back
into (3.6), we find out that f(z0)f(x)ψ(y) = f(x)f(y)ψ(z0), which implies that
ψ(y) = µf(y) with µ := ψ(z0)/f(z0). Therefore, (3.7) becomes f(xyz0) =
f(x)g(y)+f(y)g(x)+µf(x)f(y). This completes the proof of Lemma 3.3. �
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4. Main results

Now, we are ready to describe the solutions of the functional equation (1.4).
Let ΨAχ,ρ : S → C denote the function of the form in [6, Theorem 3.1

(B)], i.e.,

ΨAχ,ρ(x) =


χ(x)A(x) for x ∈ S\Iχ,
ρ(x) for x ∈ Pχ,
0 for x ∈ Iχ \ Pχ,

where χ : S → C is a non-zero multiplicative function, A : S \ Iχ → C is
additive, ρ : Pχ → C is the restriction of ΨAχ,ρ, and the following conditions
hold.
(i) ΨAχ,ρ(qt) = ΨAχ,ρ(tq) = 0 for all q ∈ Iχ and t ∈ S \ Iχ.
(ii) If x ∈ {up, pv, upv} for p ∈ Pχ and u, v ∈ S\Iχ, then x ∈ Pχ and we have

ρ(x) = ρ(p)χ(u), ρ(x) = ρ(p)χ(v), or ρ(x) = ρ(p)χ(uv), respectively.

Theorem 4.1. The solutions f, g : S → C of the functional equation (1.4)
are the following pairs of functions.
(1) f = g = 0.
(2) S 6= S2z0 and we have

f = ±g and g(x) =

{
gz0(x) for x ∈ S \ S2z0,

0 for x ∈ S2z0,

where gz0 : S \ S2z0 → C is an arbitrary non-zero function.
(3) There exist a constant d ∈ C \ {±1} and a multiplicative function χ on S

with χ(z0) 6= 0, such that

f =
dχ(z0)

1− d2
χ and g =

χ(z0)

1− d2
χ.

(4) There exist a constant c ∈ C∗ \ {±i} and two different multiplicative
functions χ1 and χ2 on S, with χ1(z0) 6= 0 and χ2(z0) 6= 0 such that

f = −χ1(z0)χ1 − χ2(z0)χ2

i(c−1 + c)
and g =

c−1χ1(z0)χ1 + cχ2(z0)χ2

c−1 + c
.
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(5) There exist constants q, γ ∈ C∗ and two different non-zero multiplicative
functions χ1 and χ2 on S, with

χ1(z0) =
q2 − (1 + ξ)2

2γq
, χ2(z0) = −q

2 − (1− ξ)2

2γq
,

and ξ := ±
√

1 + q2 such that

f =
χ1 + χ2

2γ
+ ξ

χ1 − χ2

2γ
and g = q

χ1 − χ2

2γ
.

(6) There exist constants q ∈ C\{±α}, γ ∈ C∗ \{±α} and δ ∈ C\{±1}, and
two different non-zero multiplicative functions χ1 and χ2 on S, with

χ1(z0) =
(1 + δ)2 − (α+ q)2

2γ(1 + δ)
, χ2(z0) =

(1− δ)2 − (α− q)2

2γ(1− δ)
,

and δ := ±
√

1 + q2 − α2 such that

f = α
χ1 + χ2

2γ
+ q

χ1 − χ2

2γ
and g =

χ1 + χ2

2γ
+ δ

χ1 − χ2

2γ
.

(7) There exist a constant β ∈ C∗, a non-zero multiplicative function χ on
S, an additive function A : S \ Iχ → C and a function ρ : Pχ → C with
χ(z0) = 1/β and A(z0) = 0 such that

f =
1

β
ΨAχ,ρ and g =

1

β
(χ±ΨAχ,ρ) .

(8) There exist a multiplicative function χ on S with χ(z0) 6= 0, an additive
function A : S \ Iχ → C and a function ρ : Pχ → C such that

f = A(z0)χ+ ΨAχ,ρ and g = (χ(z0)±A(z0))χ+ ΨAχ,ρ.

Moreover, if S is a topological semigroup and f ∈ C(S) then g ∈ C(S) in
cases (1), (2), (4)–(8), and if d 6= 0 then also in (3).

Proof. If g = 0, then (1.4) reduces to f(x)f(y) = 0 for all x, y ∈ S. This
implies that f = 0, so we get the first part of solutions. From now we may
assume that g 6= 0.

If f and g are linearly dependent, then there exists d ∈ C such that f = dg.
Substituting this into (1.4) we get the following functional equation

g(xyz0) = (1− d2)g(x)g(y), x, y ∈ S.
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If d2 = 1, then g(xyz0) = 0 for all x, y ∈ S. Therefore, S 6= S2z0 because
g 6= 0. So, we are in solution family (2) with gz0 an arbitrary non-zero function.

If d2 6= 1, then by [13, Proposition 16] there exists a multiplicative function
χ on S such that χ(z0)χ := (1 − d2)g and χ(z0) 6= 0. Then we deduce that

g =
χ(z0)

1− d2
χ and f = d g =

dχ(z0)

1− d2
χ, so we have the solution family (3).

For the rest of the proof, we assume that f and g are linearly independent.
We split the proof into two cases according to whether f(z0) = 0 or f(z0) 6= 0.

Case I. Suppose f(z0) = 0. Then by Lemma 3.3 (i)-(3) and (i)-(1), we have
g(z0) 6= 0 and

(4.1) g(z20)g(xy) = g(z0)g(x)g(y)− g(z0)f(x)f(y) + f(z20)f(xy), x, y ∈ S,

respectively.
Subcase I.1. Assume that g(z20) = 0. Then by Lemma 3.3 (i)-(2) and (i)-(3),

we get f(z20) 6= 0 since f and g are linearly independent and then (4.1) can be

rewritten as f(xy) = γf(x)f(y)− γg(x)g(y), x, y ∈ S, where γ :=
g(z0)

f(z20)
6= 0.

Consequently, the pair (γf, γg) satisfies the cosine addition formula (1.1). So,
according to [12, Theorem 6.1] and taking into account that f and g are
linearly independent, we know that there are only the following possibilities.

(I.1.i) There exist a constant q ∈ C∗ and two different non-zero mul-

tiplicative functions χ1 and χ2 on S such that γg = q
χ1 − χ2

2
and γf =

χ1 + χ2

2
±
(√

1 + q2
)χ1 − χ2

2
, which gives f =

χ1 + χ2

2γ
±
(√

1 + q2
)χ1 − χ2

2γ

and g = q
χ1 − χ2

2γ
. By putting ξ := ±

√
1 + q2 and using (1.4) we get

1

4γ2
(
q2 − (1 + ξ)

2 )
χ1(xy) +

1

4γ2
(
q2 − (1− ξ)2

)
χ2(xy)

=
q

2γ
χ1(z0)χ1(xy)− q

2γ
χ2(z0)χ2(xy),

which implies by Lemma 3.1 (i) that
q

2γ
χ1(z0) =

1

4γ2
(
q2 − (1 + ξ)

2 ) and

q

2γ
χ2(z0) = − 1

4γ2
(
q2− (1− ξ)2

)
, since χ1 and χ2 are different and non-zero.

Then we deduce that

χ1(z0) =
1

2γq

(
q2 − (1 + ξ)

2 ) and χ2(z0) = − 1

2γq

(
q2 − (1− ξ)2

)
.

So, we are in part (5).
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(I.1.ii) There exist a non-zero multiplicative function χ on S, an additive
function A on S \ Iχ and a function ρ on Pχ such that γg = ΨAχ,ρ and
γf = χ±ΨAχ,ρ.

If z0 ∈ Iχ \ Pχ we have γg(z0) = ΨAχ,ρ(z0) = 0 by definition of ΨAχ,ρ. If
z0 ∈ Pχ we have χ(z0) = 0 and |γg(z0)|=|ρ(z0)|=|χ(z0)± ρ(z0)|=|γf(z0)|= 0.
So, if z0 ∈ Iχ we get that γg(z0) = 0, which is a contradiction because

g(z0) 6= 0 and γ =
g(z0)

f(z20)
.

Hence, z0 ∈ S \ Iχ and we have χ(z0) 6= 0. Since f(z0) = 0, by the

assumption, we get f(z0) =
1

γ
[χ(z0) ± A(z0)χ(z0)] = 0, which implies that

A(z0) = −1. Now for all x, y ∈ S \ Iχ, we have xyz0 ∈ S \ Iχ, then by using

(1.4) we get
(1

γ
− χ(z0)

)
χ(xy) +

(1

γ
+ χ(z0)

)
χ(xy)A(xy) = 0, which implies

according to Lemma 3.1(i), that
1

γ
−χ(z0) = 0 and

1

γ
+χ(z0) = 0, since A 6= 0.

Therefore, χ(z0) =
1

γ
= −1

γ
, which is a contradiction because

1

γ
6= 0 by the

assumption. So we do not have a solution corresponding to this possibility.
Subcase I.2. Suppose that g(z20) 6= 0, then (4.1) can be rewritten as follows

βg(xy) = β2g(x)g(y)− β2f(x)f(y) + αβf(xy), x, y ∈ S with β :=
g(z0)

g(z20)
6= 0

and α :=
f(z20)

g(z20)
. This shows that the pair (βg, βf) satisfies the functional

equation (1.2). So, according to [12, Theorem 3.1], and taking into account
that f and g are linearly independent, there are only the following possibilities.

(I.2.i) There exist a constant q ∈ C\{±α} and two different non-zero

multiplicative functions χ1 and χ2 on S such that βf = α
χ1 + χ2

2
+q

χ1 − χ2

2

and βg =
χ1 + χ2

2
±
√

1 + q2 − α2
χ1 − χ2

2
. Introducing δ := ±

√
1 + q2 − α2

we find that f = α
χ1 + χ2

2β
+q

χ1 − χ2

2β
and g =

χ1 + χ2

2β
+δ

χ1 − χ2

2β
. By using

(1.4), we get

1

4β2

(
(1 + δ)

2 − (α+ q)2
)
χ1(xy) +

1

4β2

(
(1− δ)2 − (α− q)2

)
χ2(xy)

=
1

2β
(1 + δ)χ1(z0)χ1(xy) +

1

2β
(1− δ)χ2(z0)χ2(xy).

So, by Lemma 3.1(i) we obtain
1

2β
(1 + δ)χ1(z0) =

1

4β2

(
(1 + δ)2 − (α+ q)2

)
and

1

2β
(1 − δ)χ2(z0) =

1

4β2

(
(1 − δ)2− (α − q)2

)
, since χ1 and χ2 are dif-

ferent non-zero multiplicative functions. Notice that δ 6= ±1 because q 6=
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±α. Therefore we deduce that χ1(z0) =
(1 + δ)2 − (α+ q)2

2β(1 + δ)
and χ2(z0) =

(1− δ)2 − (α− q)2

2β(1− δ)
. Hence, by writing γ instead of β we get part (6).

(I.2.ii) α 6= 0 and there exist two different non-zero multiplicative functions
χ1 and χ2 on S such that βf = αχ1 and βg = χ2. By using (1.4) again we get
1

β

(
χ2(z0) − 1

β

)
χ2(xy) +

α2

β2
χ1(xy) = 0, which gives χ2(z0) =

1

β
and α = 0,

since χ1 and χ2 are different. This possibility is excluded because α 6= 0.
(I.2.iii) There exist a non-zero multiplicative function χ on S, an additive

function A on S \ Iχ and a function ρ on Pχ such that βf = αχ+ ΨAχ,ρ and

βg = χ±ΨAχ,ρ, which gives f =
1

β
(αχ+ ΨAχ,ρ) and g =

1

β
(χ±ΨAχ,ρ).

If g =
1

β
(χ+ΨAχ,ρ) then z0 /∈ Iχ\Pχ. Indeed, otherwise we have χ(z0) = 0

and ΨAχ,ρ(z0) = 0. Then βg(z0) = χ(z0) + ΨAχ,ρ(z0) = 0. This contradicts
the fact that g(z0) 6= 0.

On the other hand z0 /∈ Pχ. Indeed, otherwise we have χ(z0) = 0. Then
βg(z0) = ΨAχ,ρ(z0) = βf(z0) = 0, which is a contradiction because g(z0) 6= 0.
So, z0 ∈ S \ Iχ and then χ(z0) 6= 0. Since f(z0) = 0 we get that f(z0) =
χ(z0)

β
[α+ A(z0)] = 0, which implies that A(z0) = −α. Now, let x, y ∈ S \ Iχ

be arbitrary. We have xyz0 ∈ S \ Iχ. By using (1.4), we get

(4.2)
(1− α2

β2
+
α− 1

β
χ(z0)

)
χ(xy) +

(1− α
β2

− 1

β
χ(z0)

)
χ(xy)A(xy) = 0.

If A = 0 then ρ 6= 0 because ΨAχ,ρ 6= 0, α = 0, and χ(z0) =
1

β
by (4.2).

This is a special case of solution part (7).
If A 6= 0 then by Lemma 3.1 (ii) we get from (4.2) that

1− α2

β2
+
α− 1

β
χ(z0) = 0 and

1− α
β2

− 1

β
χ(z0) = 0.

As α 6= 1, because χ(z0) 6= 0, we deduce that χ(z0) =
1− α
β

and χ(z0) =

1 + α

β
. So, we obtain that α = 0 and χ(z0) =

1

β
, and the form of f reduces

to f =
1

β
ΨAχ,ρ. So we are in part (7).

If g =
1

β
(χ − ΨAχ,ρ), by using a similar computation as above, we show

that we are also in part (7).
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Case II. Suppose f(z0) 6= 0. By using system (1.4) and (3.4), we deduce
by an elementary computation that for any λ ∈ C

(4.3) (g − λf)(xyz0)

= (g − λf)(x)(g − λf)(y)− (λ2 + µλ+ 1)f(x)f(y), x, y ∈ S.

Let λ1 and λ2 be the two roots of the equation λ2+µλ+1 = 0. Then λ1λ2 = 1
which gives λ1 6= 0 and λ2 6= 0. According to [13, Proposition 16] we deduce
from (4.3) that g−λ1f := χ1(z0)χ1 and g−λ2f := χ2(z0)χ2, where χ1 and χ2

are two multiplicative functions such that χ1(z0) 6= 0 and χ2(z0) 6= 0, because
f and g are linearly independent.

If λ1 6= λ2, then χ1 6= χ2 and we get g =
λ2χ1(z0)χ1 − λ1χ2(z0)χ2

λ2 − λ1
and

f =
χ1(z0)χ1 − χ2(z0)χ2

λ2 − λ1
. By putting λ1 = ic, we get the solution of cate-

gory (4).
If λ1 = λ2 =: λ, then g−λf =: χ(z0)χ where χ is a multiplicative function

on S such that χ(z0) 6= 0, because f and g are linearly independent. Hence,

(4.4) g = χ(z0)χ+ λ f.

Substituting this in (3.4), an elementary computation shows that

f(xyz0) = χ(z0)f(x)χ(y) + χ(z0)f(y)χ(x) + (2λ+ µ)f(x)f(y),

for all x, y ∈ S.
Moreover λ = 1 or λ = −1 because λ1λ2 = 1. Hence, (λ, µ) = (1,−2) or

(λ, µ) = (−1, 2) since λ2 + µλ + 1 = 0 and λ ∈ {−1, 1}. So, the functional
equation above reduces to

f(xyz0) = χ(z0)f(x)χ(y) + χ(z0)f(y)χ(x),

for all x, y ∈ S. Thus, the function f satisfies (3.1). Hence, in view of Propo-
sition 3.2, we get f = A(z0)χ + ΨAχ,ρ. Then, by (4.4), we derive that g =
χ(z0)χ + λ f = (χ(z0) + λA(z0))χ + λ2ΨAχ,ρ = (χ(z0) ± A(z0))χ + ΨAχ,ρ.
This is part (8).

Conversely, it is easy to check that the formulas for f and g listed in
Theorem 4.1 define solutions of (1.4).

Finally, suppose that S is a topological semigroup. The continuity of the
solutions of the forms (1)–(6) follows directly from [11, Theorem 3.18], and
for the ones of the forms (7) and (8) it is parallel to the proof used in [5,
Theorem 2.1] for categories (7) and (8). This completes the proof of Theo-
rem 4.1. �
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