A KANNAPPAN-COSINE FUNCTIONAL EQUATION ON SEMIGROUPS

Ahmed Jafar, Omar Ajebbar © ${ }^{\text {(}}$, Elhoucien Elqorachi

Abstract. In this paper we determine the complex-valued solutions of the Kannappan-cosine functional equation $g\left(x y z_{0}\right)=g(x) g(y)-f(x) f(y), x, y \in$ S, where S is a semigroup and z_{0} is a fixed element in S.

1. Introduction

The addition law for cosine is

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y), \quad x, y \in \mathbb{R}
$$

This gives the origin of the following functional equation on any semigroup S :

$$
\begin{equation*}
g(x y)=g(x) g(y)-f(x) f(y), \quad x, y \in S \tag{1.1}
\end{equation*}
$$

for the unknown functions $f, g: S \rightarrow \mathbb{C}$, which is called the cosine addition law. In Aczél's monograph [1, Section 3.2.3] we find continuous real valued solutions of (1.1) in case $S=\mathbb{R}$.

[^0]The functional equation (1.1) has been solved on groups by Poulsen and Stetkær [10], on semigroups generated by their squares by Ajebbar and Elqorachi [3], and recently by Ebanks [5] on semigroups.

In 12, Theorem 3.1], Stetkær solved the following functional equation

$$
\begin{equation*}
g(x y)=g(x) g(y)-f(y) f(x)+\alpha f(x y), \quad x, y \in S \tag{1.2}
\end{equation*}
$$

where α is a fixed constant in \mathbb{C}. He expressed the solutions in terms of multiplicative functions and the solution of the special case of the sine addition law. In [13, Proposition 16], he solved the functional equation

$$
\begin{equation*}
f\left(x y z_{0}\right)=f(x) f(y), \quad x, y \in S \tag{1.3}
\end{equation*}
$$

on semigroups, and where z_{0} is a fixed element in S. We shall use these results in our computations.

In this paper, we deal with the following Kannappan-cosine addition law

$$
\begin{equation*}
g\left(x y z_{0}\right)=g(x) g(y)-f(x) f(y), \quad x, y \in S \tag{1.4}
\end{equation*}
$$

on a semigroup S. The functional equation (1.4) is called Kannappan functional equation because it brings up a fixed element z_{0} in S as in the paper of Kannappan [9].

In the special case, where $\{f, g\}$ is linearly dependent and $g \neq 0$, we get that there exists a constant $\lambda \in \mathbb{C}$ such that the function $\left(1-\lambda^{2}\right) g$ satisfies the functional equation (1.3).

If S is a monoid with an identity element e, and $f(e)=0$ and $g(e) \neq 0$, or $g(e)=0$ and $f(e) \neq 0$, the last functional equation is the cosine addition law which was solved recently on general semigroups by Ebanks [5].

Now, if $\alpha:=f(e) \neq 0$ and $\beta:=g(e) \neq 0$ we get that the pair $\left(\frac{g}{\beta}, \frac{f}{\beta}\right)$ satisfies the following functional equation

$$
\frac{g}{\beta}(x y)=\frac{g}{\beta}(x) \frac{g}{\beta}(y)-\frac{f}{\beta}(x) \frac{f}{\beta}(y)+\frac{\alpha}{\beta} \frac{f}{\beta}(x y)
$$

which is of the form $\sqrt{1.2}$, and then explicit formulas for f and g on groups exist in the literature (see for example [8, Corollary 3.2.]).

The natural general setting of the functional equation (1.4) is for S being a semigroup, because the formulation of (1.4) requires only an associative composition in S, not an identity element and inverses. Thus we study in the present paper Kannappan-cosine functional equation (1.4) on semigroups S, generalizing previous works in which S is a group. So, the result of the present paper is a natural continuation of results contained in the literature.

The purpose of the present paper is to show how the relations between (1.4) and $1.2-1.3$ on monoids extend to much wider framework, in which S is a semigroup. We find explicit formulas for the solutions, expressing them in terms of homomorphisms and additive maps from a semigroup into \mathbb{C} (Theorem 4.1). The continuous solutions on topological semigroups are also found.

2. Set up, notations and terminology

Throughout this paper, S is a semigroup (a set with an associative composition) and z_{0} is a fixed element in S. If S is topological, we denote by $\mathcal{C}(S)$ the algebra of continuous functions from S to the field of complex numbers \mathbb{C}.

Let $f: S \rightarrow \mathbb{C}$ be a function. We say that f is central if $f(x y)=f(y x)$ for all $x, y \in S$, and that f is abelian if $f\left(x_{1} x_{2}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)} x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in S$, all permutations σ of n elements and all $n \in \mathbb{N}$. A map $A: S \rightarrow \mathbb{C}$ is said to be additive if $A(x y)=A(x)+A(y)$, for all $x, y \in S$ and a map $\chi: S \rightarrow \mathbb{C}$ is multiplicative if $\chi(x y)=\chi(x) \chi(y)$, for all $x, y \in S$. If $\chi \neq 0$, then the nullspace $I_{\chi}:=\{x \in S \mid \chi(x)=0\}$ is either empty or a proper subset of S and I_{χ} is a two sided ideal in S if not empty and $S \backslash I_{\chi}$ is a subsemigroup of S. Note that additive and multiplicative functions are abelian.

For any subset $T \subseteq S$ let $T^{2}:=\{x y \mid x, y \in T\}$ and for any fixed element z_{0} in S we let $T^{2} z_{0}:=\left\{x y z_{0} \mid x, y \in T\right\}$.

To express solutions of our functional equations studied in this paper we will use the set $P_{\chi}:=\left\{p \in I_{\chi} \backslash I_{\chi}^{2} \mid u p, p v, u p v \in I_{\chi} \backslash I_{\chi}^{2}\right.$ for all $\left.u, v \in S \backslash I_{\chi}\right\}$. For more details about P_{χ} we refer the reader to [4], [5] and [6].

3. Preliminaries

In this section, we give useful results to solve the functional equation 1.4.
Lemma 3.1. Let S be a semigroup, $n \in \mathbb{N}$, and $\chi, \chi_{1}, \chi_{2}, \ldots, \chi_{n}: S \rightarrow \mathbb{C}$ be different non-zero multiplicative functions. Then
(a) $\left\{\chi_{1}, \chi_{2}, \cdots, \chi_{n}\right\}$ is linearly independent.
(b) If $A: S \backslash I_{\chi} \rightarrow \mathbb{C}$ is a non-zero additive function, then the set $\{\chi A, \chi\}$ is linearly independent on $S \backslash I_{\chi}$.

Proof. (a) See [11, Theorem 3.18]. (b) See [2, Lemma 4.4].

The proposition below gives the solutions of the functional equation

$$
\begin{equation*}
f\left(x y z_{0}\right)=\chi\left(z_{0}\right) f(x) \chi(y)+\chi\left(z_{0}\right) f(y) \chi(x), \quad x, y \in S \tag{3.1}
\end{equation*}
$$

Proposition 3.2. Let S be a semigroup, and $\chi: S \rightarrow \mathbb{C}$ be a multiplicative function such that $\chi\left(z_{0}\right) \neq 0$. If $f: S \rightarrow \mathbb{C}$ is a solution of (3.1), then

$$
f(x)= \begin{cases}\chi(x)\left(A(x)+A\left(z_{0}\right)\right) & \text { for } x \in S \backslash I_{\chi} \tag{3.2}\\ \rho(x) & \text { for } x \in P_{\chi} \\ 0 & \text { for } x \in I_{\chi} \backslash P_{\chi}\end{cases}
$$

where $A: S \backslash I_{\chi} \rightarrow \mathbb{C}$ is additive and $\rho: P_{\chi} \rightarrow \mathbb{C}$ is the restriction of f to P_{χ}. In addition, f is abelian and satisfies the following conditions:
(I) $f(x y)=f(y x)=0$ for all $x \in I_{\chi} \backslash P_{\chi}$ and $y \in S \backslash I_{\chi}$.
(II) If $x \in\{u p, p v, u p v\}$ with $p \in P_{\chi}$ and $u, v \in S \backslash I_{\chi}$, then $x \in P_{\chi}$ and we have respectively $\rho(x)=\rho(p) \chi(u), \rho(x)=\rho(p) \chi(v)$ or $\rho(x)=$ $\rho(p) \chi(u v)$.
Conversely, the function f of the form (3.2) define a solution of (3.1). Moreover, if S is a topological semigroup and $f \in \mathcal{C}(S)$, then $\chi \in \mathcal{C}(S)$, $A \in \mathcal{C}\left(S \backslash I_{\chi}\right)$ and $\rho \in \mathcal{C}\left(P_{\chi}\right)$.

Proof. See [7, Proposition 4.3].
To shorten the way to finding the solutions of functional equation 1.4, we prove the following lemma that contains some key properties.

Lemma 3.3. Let S be a semigroup and let $f, g: S \rightarrow \mathbb{C}$ be the solutions of the functional equation (1.4) with $g \neq 0$. Then
(i) If $f\left(z_{0}\right)=0$ then
(1) for all $x, y \in S$,

$$
\begin{equation*}
g\left(z_{0}^{2}\right) g(x y)=g\left(z_{0}\right)[g(x) g(y)-f(x) f(y)]+f\left(z_{0}^{2}\right) f(x y) \tag{3.3}
\end{equation*}
$$

(2) $g\left(z_{0}^{2}\right)^{2}=g\left(z_{0}\right)^{3}+f\left(z_{0}^{2}\right)^{2}$.
(3) If f and g are linearly independent then $g\left(z_{0}\right) \neq 0$.
(ii) If $f\left(z_{0}\right) \neq 0$, then there exists $\mu \in \mathbb{C}$ such that

$$
\begin{equation*}
f\left(x y z_{0}\right)=f(x) g(y)+f(y) g(x)+\mu f(x) f(y), \quad x, y \in S \tag{3.4}
\end{equation*}
$$

Proof. (i) Suppose that $f\left(z_{0}\right)=0$.
(1) Making the substitutions $\left(x y, z_{0}^{2}\right)$ and $\left(x y z_{0}, z_{0}\right)$ in (1.4) we get $g\left(x y z_{0}^{3}\right)=g(x y) g\left(z_{0}^{2}\right)-f(x y) f\left(z_{0}^{2}\right)$ and $g\left(x y z_{0}^{3}\right)=g\left(x y z_{0}\right) g\left(z_{0}\right)-f\left(x y z_{0}\right) f\left(z_{0}\right)$ $=g\left(z_{0}\right) g(x) g(y)-g\left(z_{0}\right) f(x) f(y)$, respectively. Comparing these expressions, we deduce that $g(x y) g\left(z_{0}^{2}\right)-f\left(z_{0}^{2}\right) f(x y)=g\left(z_{0}\right) g(x) g(y)-g\left(z_{0}\right) f(y) f(x)$. This proves the desired identity.
(2) It follows directly by putting $x=y=z_{0}$ in the equation (3.3).
(3) For a contradiction we suppose that $g\left(z_{0}\right)=0$. Then using (1.4), we get $g\left(x y z_{0}^{2}\right)=g(x) g\left(y z_{0}\right)-f(x) f\left(y z_{0}\right)=g(x y) g\left(z_{0}\right)-f(x y) f\left(z_{0}\right)=0$ since $f\left(z_{0}\right)=g\left(z_{0}\right)=0$. Then we deduce that

$$
\begin{equation*}
g(x) g\left(y z_{0}\right)=f(x) f\left(y z_{0}\right), \quad x, y \in S . \tag{3.5}
\end{equation*}
$$

If $g\left(y z_{0}\right)=0$ for all $y \in S$ then $0=g\left(x y z_{0}\right)=g(x) g(y)-f(x) f(y), x, y \in S$. So, $g(x) g(y)=f(x) f(y), x, y \in S$. Hence, $f=g$ or $f=-g$, which contradicts the fact that f and g are linearly independent. So $g \neq 0$ on $S z_{0}$, and from (3.5) we get that $g=c_{1} f$ with $c_{1}:=f\left(a z_{0}\right) / g\left(a z_{0}\right)$ for some $a \in S$ such that $g\left(a z_{0}\right) \neq 0$. This is also a contradiction, since f and g are linearly independent. So we conclude that $g\left(z_{0}\right) \neq 0$.
(ii) Suppose that $f\left(z_{0}\right) \neq 0$. By the substitutions $\left(x, y z_{0}^{2}\right)$ and $\left(x y z_{0}, z_{0}\right)$ in (1.4 we get $g\left(x y z_{0}^{3}\right)=g(x) g\left(y z_{0}^{2}\right)-f(x) f\left(y z_{0}^{2}\right)=g\left(z_{0}\right) g(x) g(y)-$ $g(x) f\left(z_{0}\right) f(y)-f(x) f\left(y z_{0}^{2}\right)$ and $g\left(x y z_{0}^{3}\right)=g\left(x y z_{0}\right) g\left(z_{0}\right)-f\left(x y z_{0}\right) f\left(z_{0}\right)=$ $g\left(z_{0}\right) g(x) g(y)-g\left(z_{0}\right) f(x) f(y)-f\left(x y z_{0}\right) f\left(z_{0}\right)$, respectively. Then, by the associativity of the operation in S we obtain

$$
\begin{align*}
f\left(z_{0}\right)\left[f\left(x y z_{0}\right)-f(x) g(y)-\right. & f(y) g(x)] \tag{3.6}\\
& =f(x)\left[f\left(y z_{0}^{2}\right)-f(y) g\left(z_{0}\right)-f\left(z_{0}\right) g(y)\right] .
\end{align*}
$$

Since $f\left(z_{0}\right) \neq 0$, dividing (3.6) by $f\left(z_{0}\right)$ we get

$$
\begin{equation*}
f\left(x y z_{0}\right)=f(x) g(y)+f(y) g(x)+f(x) \psi(y), \tag{3.7}
\end{equation*}
$$

where $\psi(y):=f\left(z_{0}\right)^{-1}\left[f\left(y z_{0}^{2}\right)-f(y) g\left(z_{0}\right)-f\left(z_{0}\right) g(y)\right]$. Substituting (3.7) back into (3.6), we find out that $f\left(z_{0}\right) f(x) \psi(y)=f(x) f(y) \psi\left(z_{0}\right)$, which implies that $\psi(y)=\mu f(y)$ with $\mu:=\psi\left(z_{0}\right) / f\left(z_{0}\right)$. Therefore, (3.7) becomes $f\left(x y z_{0}\right)=$ $f(x) g(y)+f(y) g(x)+\mu f(x) f(y)$. This completes the proof of Lemma 3.3.

4. Main results

Now, we are ready to describe the solutions of the functional equation 1.4. Let $\Psi_{A \chi, \rho}: S \rightarrow \mathbb{C}$ denote the function of the form in [6, Theorem 3.1 (B)], i.e.,

$$
\Psi_{A \chi, \rho}(x)= \begin{cases}\chi(x) A(x) & \text { for } x \in S \backslash I_{\chi} \\ \rho(x) & \text { for } x \in P_{\chi} \\ 0 & \text { for } x \in I_{\chi} \backslash P_{\chi}\end{cases}
$$

where $\chi: S \rightarrow \mathbb{C}$ is a non-zero multiplicative function, $A: S \backslash I_{\chi} \rightarrow \mathbb{C}$ is additive, $\rho: P_{\chi} \rightarrow \mathbb{C}$ is the restriction of $\Psi_{A \chi, \rho}$, and the following conditions hold.
(i) $\Psi_{A \chi, \rho}(q t)=\Psi_{A \chi, \rho}(t q)=0$ for all $q \in I_{\chi}$ and $t \in S \backslash I_{\chi}$.
(ii) If $x \in\{u p, p v, u p v\}$ for $p \in P_{\chi}$ and $u, v \in S \backslash I_{\chi}$, then $x \in P_{\chi}$ and we have $\rho(x)=\rho(p) \chi(u), \rho(x)=\rho(p) \chi(v)$, or $\rho(x)=\rho(p) \chi(u v)$, respectively.

ThEOREM 4.1. The solutions $f, g: S \rightarrow \mathbb{C}$ of the functional equation 1.4 are the following pairs of functions.
(1) $f=g=0$.
(2) $S \neq S^{2} z_{0}$ and we have

$$
f= \pm g \quad \text { and } \quad g(x)= \begin{cases}g_{z_{0}}(x) & \text { for } x \in S \backslash S^{2} z_{0} \\ 0 & \text { for } x \in S^{2} z_{0}\end{cases}
$$

where $g_{z_{0}}: S \backslash S^{2} z_{0} \rightarrow \mathbb{C}$ is an arbitrary non-zero function.
(3) There exist a constant $d \in \mathbb{C} \backslash\{ \pm 1\}$ and a multiplicative function χ on S with $\chi\left(z_{0}\right) \neq 0$, such that

$$
f=\frac{d \chi\left(z_{0}\right)}{1-d^{2}} \chi \quad \text { and } \quad g=\frac{\chi\left(z_{0}\right)}{1-d^{2}} \chi
$$

(4) There exist a constant $c \in \mathbb{C}^{*} \backslash\{ \pm i\}$ and two different multiplicative functions χ_{1} and χ_{2} on S, with $\chi_{1}\left(z_{0}\right) \neq 0$ and $\chi_{2}\left(z_{0}\right) \neq 0$ such that

$$
f=-\frac{\chi_{1}\left(z_{0}\right) \chi_{1}-\chi_{2}\left(z_{0}\right) \chi_{2}}{i\left(c^{-1}+c\right)} \quad \text { and } \quad g=\frac{c^{-1} \chi_{1}\left(z_{0}\right) \chi_{1}+c \chi_{2}\left(z_{0}\right) \chi_{2}}{c^{-1}+c}
$$

(5) There exist constants $q, \gamma \in \mathbb{C}^{*}$ and two different non-zero multiplicative functions χ_{1} and χ_{2} on S, with

$$
\chi_{1}\left(z_{0}\right)=\frac{q^{2}-(1+\xi)^{2}}{2 \gamma q}, \quad \chi_{2}\left(z_{0}\right)=-\frac{q^{2}-(1-\xi)^{2}}{2 \gamma q}
$$

and $\xi:= \pm \sqrt{1+q^{2}}$ such that

$$
f=\frac{\chi_{1}+\chi_{2}}{2 \gamma}+\xi \frac{\chi_{1}-\chi_{2}}{2 \gamma} \quad \text { and } \quad g=q \frac{\chi_{1}-\chi_{2}}{2 \gamma}
$$

(6) There exist constants $q \in \mathbb{C} \backslash\{ \pm \alpha\}, \gamma \in \mathbb{C}^{*} \backslash\{ \pm \alpha\}$ and $\delta \in \mathbb{C} \backslash\{ \pm 1\}$, and two different non-zero multiplicative functions χ_{1} and χ_{2} on S, with

$$
\chi_{1}\left(z_{0}\right)=\frac{(1+\delta)^{2}-(\alpha+q)^{2}}{2 \gamma(1+\delta)}, \quad \chi_{2}\left(z_{0}\right)=\frac{(1-\delta)^{2}-(\alpha-q)^{2}}{2 \gamma(1-\delta)}
$$

and $\delta:= \pm \sqrt{1+q^{2}-\alpha^{2}}$ such that

$$
f=\alpha \frac{\chi_{1}+\chi_{2}}{2 \gamma}+q \frac{\chi_{1}-\chi_{2}}{2 \gamma} \quad \text { and } \quad g=\frac{\chi_{1}+\chi_{2}}{2 \gamma}+\delta \frac{\chi_{1}-\chi_{2}}{2 \gamma}
$$

(7) There exist a constant $\beta \in \mathbb{C}^{*}$, a non-zero multiplicative function χ on S, an additive function $A: S \backslash I_{\chi} \rightarrow \mathbb{C}$ and a function $\rho: P_{\chi} \rightarrow \mathbb{C}$ with $\chi\left(z_{0}\right)=1 / \beta$ and $A\left(z_{0}\right)=0$ such that

$$
f=\frac{1}{\beta} \Psi_{A \chi, \rho} \quad \text { and } \quad g=\frac{1}{\beta}\left(\chi \pm \Psi_{A \chi, \rho}\right)
$$

(8) There exist a multiplicative function χ on S with $\chi\left(z_{0}\right) \neq 0$, an additive function $A: S \backslash I_{\chi} \rightarrow \mathbb{C}$ and a function $\rho: P_{\chi} \rightarrow \mathbb{C}$ such that

$$
f=A\left(z_{0}\right) \chi+\Psi_{A \chi, \rho} \quad \text { and } \quad g=\left(\chi\left(z_{0}\right) \pm A\left(z_{0}\right)\right) \chi+\Psi_{A \chi, \rho}
$$

Moreover, if S is a topological semigroup and $f \in \mathcal{C}(S)$ then $g \in \mathcal{C}(S)$ in cases (1), (2), (4)-(8), and if $d \neq 0$ then also in (3).

Proof. If $g=0$, then (1.4) reduces to $f(x) f(y)=0$ for all $x, y \in S$. This implies that $f=0$, so we get the first part of solutions. From now we may assume that $g \neq 0$.

If f and g are linearly dependent, then there exists $d \in \mathbb{C}$ such that $f=d g$. Substituting this into 1.4 we get the following functional equation

$$
g\left(x y z_{0}\right)=\left(1-d^{2}\right) g(x) g(y), \quad x, y \in S
$$

If $d^{2}=1$, then $g\left(x y z_{0}\right)=0$ for all $x, y \in S$. Therefore, $S \neq S^{2} z_{0}$ because $g \neq 0$. So, we are in solution family (2) with $g_{z_{0}}$ an arbitrary non-zero function.

If $d^{2} \neq 1$, then by [13, Proposition 16] there exists a multiplicative function χ on S such that $\chi\left(z_{0}\right) \chi:=\left(1-d^{2}\right) g$ and $\chi\left(z_{0}\right) \neq 0$. Then we deduce that $g=\frac{\chi\left(z_{0}\right)}{1-d^{2}} \chi$ and $f=d g=\frac{d \chi\left(z_{0}\right)}{1-d^{2}} \chi$, so we have the solution family (3).

For the rest of the proof, we assume that f and g are linearly independent. We split the proof into two cases according to whether $f\left(z_{0}\right)=0$ or $f\left(z_{0}\right) \neq 0$.

Case I. Suppose $f\left(z_{0}\right)=0$. Then by Lemma 3.3 (i)-(3) and (i)-(1), we have $g\left(z_{0}\right) \neq 0$ and
(4.1) $g\left(z_{0}^{2}\right) g(x y)=g\left(z_{0}\right) g(x) g(y)-g\left(z_{0}\right) f(x) f(y)+f\left(z_{0}^{2}\right) f(x y), \quad x, y \in S$, respectively.

Subcase I.1. Assume that $g\left(z_{0}^{2}\right)=0$. Then by Lemma3.3(i)-(2) and (i)-(3), we get $f\left(z_{0}^{2}\right) \neq 0$ since f and g are linearly independent and then 4.1) can be rewritten as $f(x y)=\gamma f(x) f(y)-\gamma g(x) g(y), x, y \in S$, where $\gamma:=\frac{g\left(z_{0}\right)}{f\left(z_{0}^{2}\right)} \neq 0$. Consequently, the pair $(\gamma f, \gamma g)$ satisfies the cosine addition formula 1.1. So, according to [12, Theorem 6.1] and taking into account that f and g are linearly independent, we know that there are only the following possibilities.
(I.1.i) There exist a constant $q \in \mathbb{C}^{*}$ and two different non-zero multiplicative functions χ_{1} and χ_{2} on S such that $\gamma g=q \frac{\chi_{1}-\chi_{2}}{2}$ and $\gamma f=$ $\frac{\chi_{1}+\chi_{2}}{2} \pm\left(\sqrt{1+q^{2}}\right) \frac{\chi_{1}-\chi_{2}}{2}$, which gives $f=\frac{\chi_{1}+\chi_{2}}{2 \gamma} \pm\left(\sqrt{1+q^{2}}\right) \frac{\chi_{1}-\chi_{2}}{2 \gamma}$ and $g=q \frac{\chi_{1}-\chi_{2}}{2 \gamma}$. By putting $\xi:= \pm \sqrt{1+q^{2}}$ and using 1.4 we get

$$
\begin{aligned}
\frac{1}{4 \gamma^{2}}\left(q^{2}-(1+\xi)^{2}\right) \chi_{1}(x y)+\frac{1}{4 \gamma^{2}} & \left(q^{2}-(1-\xi)^{2}\right) \chi_{2}(x y) \\
& =\frac{q}{2 \gamma} \chi_{1}\left(z_{0}\right) \chi_{1}(x y)-\frac{q}{2 \gamma} \chi_{2}\left(z_{0}\right) \chi_{2}(x y)
\end{aligned}
$$

which implies by Lemma 3.1 (i) that $\frac{q}{2 \gamma} \chi_{1}\left(z_{0}\right)=\frac{1}{4 \gamma^{2}}\left(q^{2}-(1+\xi)^{2}\right)$ and $\frac{q}{2 \gamma} \chi_{2}\left(z_{0}\right)=-\frac{1}{4 \gamma^{2}}\left(q^{2}-(1-\xi)^{2}\right)$, since χ_{1} and χ_{2} are different and non-zero. Then we deduce that

$$
\chi_{1}\left(z_{0}\right)=\frac{1}{2 \gamma q}\left(q^{2}-(1+\xi)^{2}\right) \quad \text { and } \quad \chi_{2}\left(z_{0}\right)=-\frac{1}{2 \gamma q}\left(q^{2}-(1-\xi)^{2}\right)
$$

So, we are in part (5).
(I.1.ii) There exist a non-zero multiplicative function χ on S, an additive function A on $S \backslash I_{\chi}$ and a function ρ on P_{χ} such that $\gamma g=\Psi_{A \chi, \rho}$ and $\gamma f=\chi \pm \Psi_{A \chi, \rho}$.

If $z_{0} \in I_{\chi} \backslash P_{\chi}$ we have $\gamma g\left(z_{0}\right)=\Psi_{A \chi, \rho}\left(z_{0}\right)=0$ by definition of $\Psi_{A \chi, \rho}$. If $z_{0} \in P_{\chi}$ we have $\chi\left(z_{0}\right)=0$ and $\left|\gamma g\left(z_{0}\right)\right|=\left|\rho\left(z_{0}\right)\right|=\left|\chi\left(z_{0}\right) \pm \rho\left(z_{0}\right)\right|=\left|\gamma f\left(z_{0}\right)\right|=0$. So, if $z_{0} \in I_{\chi}$ we get that $\gamma g\left(z_{0}\right)=0$, which is a contradiction because $g\left(z_{0}\right) \neq 0$ and $\gamma=\frac{g\left(z_{0}\right)}{f\left(z_{0}^{2}\right)}$.

Hence, $z_{0} \in S \backslash I_{\chi}$ and we have $\chi\left(z_{0}\right) \neq 0$. Since $f\left(z_{0}\right)=0$, by the assumption, we get $f\left(z_{0}\right)=\frac{1}{\gamma}\left[\chi\left(z_{0}\right) \pm A\left(z_{0}\right) \chi\left(z_{0}\right)\right]=0$, which implies that $A\left(z_{0}\right)=-1$. Now for all $x, y \in S \backslash I_{\chi}$, we have $x y z_{0} \in S \backslash I_{\chi}$, then by using 1.4 we get $\left(\frac{1}{\gamma}-\chi\left(z_{0}\right)\right) \chi(x y)+\left(\frac{1}{\gamma}+\chi\left(z_{0}\right)\right) \chi(x y) A(x y)=0$, which implies according to Lemma 3.1 (i), that $\frac{1}{\gamma}-\chi\left(z_{0}\right)=0$ and $\frac{1}{\gamma}+\chi\left(z_{0}\right)=0$, since $A \neq 0$. Therefore, $\chi\left(z_{0}\right)=\frac{\bar{\gamma}}{\gamma}=-\frac{1}{\gamma}$, which is a contradiction because $\frac{1}{\gamma} \neq 0$ by the assumption. So we do not have a solution corresponding to this possibility.

Subcase I.2. Suppose that $g\left(z_{0}^{2}\right) \neq 0$, then 4.1) can be rewritten as follows $\beta g(x y)=\beta^{2} g(x) g(y)-\beta^{2} f(x) f(y)+\alpha \beta f(x y), x, y \in S$ with $\beta:=\frac{g\left(z_{0}\right)}{g\left(z_{0}^{2}\right)} \neq 0$ and $\alpha:=\frac{f\left(z_{0}^{2}\right)}{g\left(z_{0}^{2}\right)}$. This shows that the pair $(\beta g, \beta f)$ satisfies the functional equation (1.2). So, according to [12, Theorem 3.1], and taking into account that f and g are linearly independent, there are only the following possibilities.
(I.2.i) There exist a constant $q \in \mathbb{C} \backslash\{ \pm \alpha\}$ and two different non-zero multiplicative functions χ_{1} and χ_{2} on S such that $\beta f=\alpha \frac{\chi_{1}+\chi_{2}}{2}+q \frac{\chi_{1}-\chi_{2}}{2}$ and $\beta g=\frac{\chi_{1}+\chi_{2}}{2} \pm \sqrt{1+q^{2}-\alpha^{2}} \frac{\chi_{1}-\chi_{2}}{2}$. Introducing $\delta:= \pm \sqrt{1+q^{2}-\alpha^{2}}$ we find that $f=\alpha \frac{\chi_{1}+\chi_{2}}{2 \beta}+q \frac{\chi_{1}-\chi_{2}}{2 \beta}$ and $g=\frac{\chi_{1}+\chi_{2}}{2 \beta}+\delta \frac{\chi_{1}-\chi_{2}}{2 \beta}$. By using (1.4), we get

$$
\begin{aligned}
\frac{1}{4 \beta^{2}}\left((1+\delta)^{2}-(\alpha\right. & \left.+q)^{2}\right) \chi_{1}(x y)+\frac{1}{4 \beta^{2}}\left((1-\delta)^{2}-(\alpha-q)^{2}\right) \chi_{2}(x y) \\
& =\frac{1}{2 \beta}(1+\delta) \chi_{1}\left(z_{0}\right) \chi_{1}(x y)+\frac{1}{2 \beta}(1-\delta) \chi_{2}\left(z_{0}\right) \chi_{2}(x y)
\end{aligned}
$$

So, by Lemma 3.1 (i) we obtain $\frac{1}{2 \beta}(1+\delta) \chi_{1}\left(z_{0}\right)=\frac{1}{4 \beta^{2}}\left((1+\delta)^{2}-(\alpha+q)^{2}\right)$ and $\frac{1}{2 \beta}(1-\delta) \chi_{2}\left(z_{0}\right)=\frac{1}{4 \beta^{2}}\left((1-\delta)^{2}-(\alpha-q)^{2}\right)$, since χ_{1} and χ_{2} are different non-zero multiplicative functions. Notice that $\delta \neq \pm 1$ because $q \neq$
$\pm \alpha$. Therefore we deduce that $\chi_{1}\left(z_{0}\right)=\frac{(1+\delta)^{2}-(\alpha+q)^{2}}{2 \beta(1+\delta)}$ and $\chi_{2}\left(z_{0}\right)=$ $\frac{(1-\delta)^{2}-(\alpha-q)^{2}}{2 \beta(1-\delta)}$. Hence, by writing γ instead of β we get part (6).
(I.2.ii) $\alpha \neq 0$ and there exist two different non-zero multiplicative functions χ_{1} and χ_{2} on S such that $\beta f=\alpha \chi_{1}$ and $\beta g=\chi_{2}$. By using (1.4) again we get $\frac{1}{\beta}\left(\chi_{2}\left(z_{0}\right)-\frac{1}{\beta}\right) \chi_{2}(x y)+\frac{\alpha^{2}}{\beta^{2}} \chi_{1}(x y)=0$, which gives $\chi_{2}\left(z_{0}\right)=\frac{1}{\beta}$ and $\alpha=0$, since χ_{1} and χ_{2} are different. This possibility is excluded because $\alpha \neq 0$.
(I.2.iii) There exist a non-zero multiplicative function χ on S, an additive function A on $S \backslash I_{\chi}$ and a function ρ on P_{χ} such that $\beta f=\alpha \chi+\Psi_{A \chi, \rho}$ and $\beta g=\chi \pm \Psi_{A \chi, \rho}$, which gives $f=\frac{1}{\beta}\left(\alpha \chi+\Psi_{A \chi, \rho}\right)$ and $g=\frac{1}{\beta}\left(\chi \pm \Psi_{A \chi, \rho}\right)$.

If $g=\frac{1}{\beta}\left(\chi+\Psi_{A \chi, \rho}\right)$ then $z_{0} \notin I_{\chi} \backslash P_{\chi}$. Indeed, otherwise we have $\chi\left(z_{0}\right)=0$ and $\Psi_{A \chi, \rho}\left(z_{0}\right)=0$. Then $\beta g\left(z_{0}\right)=\chi\left(z_{0}\right)+\Psi_{A \chi, \rho}\left(z_{0}\right)=0$. This contradicts the fact that $g\left(z_{0}\right) \neq 0$.

On the other hand $z_{0} \notin P_{\chi}$. Indeed, otherwise we have $\chi\left(z_{0}\right)=0$. Then $\beta g\left(z_{0}\right)=\Psi_{A \chi, \rho}\left(z_{0}\right)=\beta f\left(z_{0}\right)=0$, which is a contradiction because $g\left(z_{0}\right) \neq 0$. So, $z_{0} \in S \backslash I_{\chi}$ and then $\chi\left(z_{0}\right) \neq 0$. Since $f\left(z_{0}\right)=0$ we get that $f\left(z_{0}\right)=$ $\frac{\chi\left(z_{0}\right)}{\beta}\left[\alpha+A\left(z_{0}\right)\right]=0$, which implies that $A\left(z_{0}\right)=-\alpha$. Now, let $x, y \in S \backslash I_{\chi}$ be arbitrary. We have $x y z_{0} \in S \backslash I_{\chi}$. By using (1.4), we get

$$
\begin{equation*}
\left(\frac{1-\alpha^{2}}{\beta^{2}}+\frac{\alpha-1}{\beta} \chi\left(z_{0}\right)\right) \chi(x y)+\left(\frac{1-\alpha}{\beta^{2}}-\frac{1}{\beta} \chi\left(z_{0}\right)\right) \chi(x y) A(x y)=0 \tag{4.2}
\end{equation*}
$$

If $A=0$ then $\rho \neq 0$ because $\Psi_{A \chi, \rho} \neq 0, \alpha=0$, and $\chi\left(z_{0}\right)=\frac{1}{\beta}$ by 4.2. This is a special case of solution part (7).

If $A \neq 0$ then by Lemma 3.1 (ii) we get from 4.2 that

$$
\frac{1-\alpha^{2}}{\beta^{2}}+\frac{\alpha-1}{\beta} \chi\left(z_{0}\right)=0 \quad \text { and } \quad \frac{1-\alpha}{\beta^{2}}-\frac{1}{\beta} \chi\left(z_{0}\right)=0 .
$$

As $\alpha \neq 1$, because $\chi\left(z_{0}\right) \neq 0$, we deduce that $\chi\left(z_{0}\right)=\frac{1-\alpha}{\beta}$ and $\chi\left(z_{0}\right)=$ $\frac{1+\alpha}{\beta}$. So, we obtain that $\alpha=0$ and $\chi\left(z_{0}\right)=\frac{1}{\beta}$, and the form of f reduces to $f=\frac{1}{\beta} \Psi_{A \chi, \rho}$. So we are in part (7).

If $g=\frac{1}{\beta}\left(\chi-\Psi_{A \chi, \rho}\right)$, by using a similar computation as above, we show that we are also in part (7).

Case II. Suppose $f\left(z_{0}\right) \neq 0$. By using system (1.4) and (3.4), we deduce by an elementary computation that for any $\lambda \in \mathbb{C}$

$$
\begin{align*}
& (g-\lambda f)\left(x y z_{0}\right) \tag{4.3}\\
& \quad=(g-\lambda f)(x)(g-\lambda f)(y)-\left(\lambda^{2}+\mu \lambda+1\right) f(x) f(y), \quad x, y \in S
\end{align*}
$$

Let λ_{1} and λ_{2} be the two roots of the equation $\lambda^{2}+\mu \lambda+1=0$. Then $\lambda_{1} \lambda_{2}=1$ which gives $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$. According to [13, Proposition 16] we deduce from (4.3) that $g-\lambda_{1} f:=\chi_{1}\left(z_{0}\right) \chi_{1}$ and $g-\lambda_{2} f:=\chi_{2}\left(z_{0}\right) \chi_{2}$, where χ_{1} and χ_{2} are two multiplicative functions such that $\chi_{1}\left(z_{0}\right) \neq 0$ and $\chi_{2}\left(z_{0}\right) \neq 0$, because f and g are linearly independent.

If $\lambda_{1} \neq \lambda_{2}$, then $\chi_{1} \neq \chi_{2}$ and we get $g=\frac{\lambda_{2} \chi_{1}\left(z_{0}\right) \chi_{1}-\lambda_{1} \chi_{2}\left(z_{0}\right) \chi_{2}}{\lambda_{2}-\lambda_{1}}$ and $f=\frac{\chi_{1}\left(z_{0}\right) \chi_{1}-\chi_{2}\left(z_{0}\right) \chi_{2}}{\lambda_{2}-\lambda_{1}}$. By putting $\lambda_{1}=i c$, we get the solution of category (4).

If $\lambda_{1}=\lambda_{2}=: \lambda$, then $g-\lambda f=: \chi\left(z_{0}\right) \chi$ where χ is a multiplicative function on S such that $\chi\left(z_{0}\right) \neq 0$, because f and g are linearly independent. Hence,

$$
\begin{equation*}
g=\chi\left(z_{0}\right) \chi+\lambda f \tag{4.4}
\end{equation*}
$$

Substituting this in (3.4), an elementary computation shows that

$$
f\left(x y z_{0}\right)=\chi\left(z_{0}\right) f(x) \chi(y)+\chi\left(z_{0}\right) f(y) \chi(x)+(2 \lambda+\mu) f(x) f(y)
$$

for all $x, y \in S$.
Moreover $\lambda=1$ or $\lambda=-1$ because $\lambda_{1} \lambda_{2}=1$. Hence, $(\lambda, \mu)=(1,-2)$ or $(\lambda, \mu)=(-1,2)$ since $\lambda^{2}+\mu \lambda+1=0$ and $\lambda \in\{-1,1\}$. So, the functional equation above reduces to

$$
f\left(x y z_{0}\right)=\chi\left(z_{0}\right) f(x) \chi(y)+\chi\left(z_{0}\right) f(y) \chi(x)
$$

for all $x, y \in S$. Thus, the function f satisfies (3.1). Hence, in view of Proposition 3.2, we get $f=A\left(z_{0}\right) \chi+\Psi_{A \chi, \rho}$. Then, by 4.4, we derive that $g=$ $\chi\left(z_{0}\right) \chi+\lambda f=\left(\chi\left(z_{0}\right)+\lambda A\left(z_{0}\right)\right) \chi+\lambda^{2} \Psi_{A \chi, \rho}=\left(\chi\left(z_{0}\right) \pm A\left(z_{0}\right)\right) \chi+\Psi_{A \chi, \rho}$. This is part (8).

Conversely, it is easy to check that the formulas for f and g listed in Theorem 4.1 define solutions of (1.4).

Finally, suppose that S is a topological semigroup. The continuity of the solutions of the forms (1)-(6) follows directly from [11, Theorem 3.18], and for the ones of the forms (7) and (8) it is parallel to the proof used in [5] Theorem 2.1] for categories (7) and (8). This completes the proof of Theorem 4.1.

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York, 1966.
[2] O. Ajebbar and E. Elqorachi, The cosine-sine functional equation on a semigroup with an involutive automorphism, Aequationes Math. 91 (2017), no. 6, 1115-1146.
[3] O. Ajebbar and E. Elqorachi, Solutions and stability of trigonometric functional equations on an amenable group with an involutive automorphism, Commun. Korean Math. Soc. 34 (2019), no. 1, 55-82.
[4] B. Ebanks, The sine addition and subtraction formulas on semigroups, Acta Math. Hungar. 164 (2021), no. 2, 533-555.
[5] B. Ebanks, The cosine and sine addition and subtraction formulas on semigroups, Acta Math. Hungar. 165 (2021), no. 2, 337-354.
[6] B. Ebanks, Around the sine addition law and d'Alembert's equation on semigroups, Results Math. 77 (2022), no. 1, Paper No. 11, 14 pp.
[7] A. Jafar, O. Ajebbar, and E. Elqorachi, A Kannappan-sine addition law on semigroups, arXiv preprint, 2023. Available at arXiv: 2304.14146.
[8] S. Kabbaj, M. Tial, and D. Zeglami, The integral cosine addition and sine subtraction laws, Results Math. 73 (2018), no. 3, Paper No. 97, 19 pp.
[9] Pl. Kannappan, A functional equation for the cosine, Canad. Math. Bull. 11 (1968), no. 3, 495-498.
[10] T.A. Poulsen and H. Stetkær, The trigonometric subtraction and addition formulas, Aequationes Math. 59 (2000), no. 1-2, 84-92.
[11] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Company, Singapore, 2013.
[12] H. Stetkær, The cosine addition law with an additional term, Aequationes Math. 90 (2016), no. 6, 1147-1168.
[13] H. Stetkær, Kannappan's functional equation on semigroups with involution, Semigroup Forum 94 (2017), no. 1, 17-30.

Ahmed Jafar, Elhoucien Elqorachi
Ibn Zohr University
Faculty of Sciences
Department of Mathematics
Agadir
Morocco
e-mail: hamadabenali2@gmail.com, elqorachi@hotmail.com

Omar Ajebbar
Sultan Moulay Slimane University
Multidisciplinary Faculty
Department of Mathematics
Beni Mellal
Morocco
e-mail: omar-ajb@hotmail.com

[^0]: Received: 01.05.2023. Accepted: 25.03.2024.
 (2020) Mathematics Subject Classification: 39B52, 39B32.

 Key words and phrases: Kannappan, semigroups, multiplicative function, additive function, cosine-sine equation.

