$\frac{\text { Annales Mathematicae Silesianae (2024), }}{\text { DOI: } 10.2478 / \text { amsil-2024-0015 }}$

FIBONACCI SUMS MODULO 5

Kunle Adegoke, Robert Frontczak, Taras Goy (id

Abstract

We develop closed form expressions for various finite binomial Fi bonacci and Lucas sums depending on the modulo 5 nature of the upper summation limit. Our expressions are inferred from some trigonometric identities.

1. Preliminaries

As usual, the Fibonacci numbers F_{n} and the Lucas numbers L_{n} are defined, for $n \in \mathbb{Z}$, by the following recurrence relations for $n \geq 2$:

$$
\begin{aligned}
& F_{n}=F_{n-1}+F_{n-2}, \quad F_{0}=0, \quad F_{1}=1 \\
& L_{n}=L_{n-1}+L_{n-2}, \\
& L_{0}=2, \quad L_{1}=1
\end{aligned}
$$

For negative subscripts we have $F_{-n}=(-1)^{n-1} F_{n}$ and $L_{-n}=(-1)^{n} L_{n}$.
Throughout this paper, we denote the golden ratio by $\alpha=\frac{1+\sqrt{5}}{2}$ and write $\beta=\frac{1-\sqrt{5}}{2}=-\frac{1}{\alpha}$. The Fibonacci and Lucas numbers possess the explicit formulas (Binet formulas)

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad L_{n}=\alpha^{n}+\beta^{n}, \quad n \in \mathbb{Z}
$$

[^0]The sequences $\left\{F_{n}\right\}_{n \geq 0}$ and $\left\{L_{n}\right\}_{n \geq 0}$ are indexed in the On-Line Encyclopedia of Integer Sequences [17] as entries A000045 and A000032, respectively. For more information we refer to Koshy [12] and Vajda [18] who have written excellent books dealing with Fibonacci and Lucas numbers.

There exists a countless number of binomial sums involving Fibonacci and Lucas numbers. For some new articles in this field we refer to the papers [1, 5, 2, 6.

In this paper, we introduce closed form expressions for finite Fibonacci and Lucas sums involving different kinds of binomial coefficients and depending on the modulo 5 nature of the upper summation limit. Our expressions are derived from various trigonometric identities, particularly utilizing Waring formulas and Chebyshev polynomials of the first and second kinds. We also present some series involving Bernoulli polynomials.

We note that some of our results were announced without proofs in [4].

2. Fibonacci sums modulo 5 from the $\sin n x$ and $\cos n x$ expansions

We begin with a known lemma [9, 1.331(3) and 1.331(1)].
Lemma 2.1. If n is a positive integer, then

$$
\begin{equation*}
\sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1} n}{k}\binom{n-k-1}{k-1} 2^{n-2 k-1} \cos ^{n-2 k} x=2^{n-1} \cos ^{n} x-\cos n x \tag{2.1}
\end{equation*}
$$

$$
\sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\binom{n-k-1}{k} 2^{n-2 k-1} \cos ^{n-2 k-1} x=\frac{\sin n x}{\sin x}
$$

Lemma 2.2. If n is an integer, then

$$
\begin{align*}
& \cos \left(\frac{n \pi}{5}\right)= \begin{cases}(-1)^{n}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
(-1)^{n-1} \alpha / 2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
(-1)^{n-1} \beta / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \tag{2.3}\\
& \cos \left(\frac{2 n \pi}{5}\right)= \begin{cases}1, & \text { if } n \equiv 0 \quad(\bmod 5), \\
-\beta / 2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
-\alpha / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{align*}
$$

Proof. Relations stated in (2.3) can be proved easily by elementary methods. For instance, they follow by applying the addition theorem for the cosine function

$$
\cos (a+b)=\cos a \cos b-\sin a \sin b
$$

combined with the special values

$$
\cos \left(\frac{\pi}{5}\right)=\frac{\alpha}{2}, \quad \cos \left(\frac{2 \pi}{5}\right)=-\frac{\beta}{2}, \quad \cos \left(\frac{3 \pi}{5}\right)=\frac{\beta}{2}, \quad \cos \left(\frac{4 \pi}{5}\right)=-\frac{\alpha}{2}
$$

Relations stated in (2.4) follow directly from (2.3).
In our first main results we state Lucas (Fibonacci) identities involving binomial coefficient and additional parameter.

Theorem 2.3. If n is a positive integer and t is any integer, then

$$
\begin{aligned}
& n \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1}}{k}\binom{n-k-1}{k-1} L_{n-2 k+t} \\
& \\
& = \begin{cases}L_{n+t}-(-1)^{n} 2 L_{t}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
L_{n+t}+(-1)^{n} L_{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
L_{n+t}-(-1)^{n} L_{t-1}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& n \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1}}{k}\binom{n-k-1}{k-1} F_{n-2 k+t}
\end{aligned} \quad \begin{aligned}
& = \begin{cases}F_{n+t}-(-1)^{n} 2 F_{t}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
F_{n+t}+(-1)^{n} F_{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
F_{n+t}-(-1)^{n} F_{t-1}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5) .\end{cases}
\end{aligned}
$$

Proof. Set $x=\pi / 5$ in (2.1) and use (2.3) and the fact that

$$
\begin{equation*}
2 \alpha^{r}=L_{r}+F_{r} \sqrt{5}, \quad 2 \beta^{r}=L_{r}-F_{r} \sqrt{5} \tag{2.5}
\end{equation*}
$$

for any integer r.
We proceed with some corollaries.

Corollary 2.4. If n is a positive integer, then

$$
\begin{aligned}
& n \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1}}{k}\binom{n-k-1}{k-1} F_{2 k}= \begin{cases}-2 F_{n}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
-F_{n-1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
F_{n+1}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& n \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1}}{k}\binom{n-k-1}{k-1} F_{n-2 k+\delta}=F_{n+\delta},
\end{aligned}
$$

where

$$
\delta= \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\ -1, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\ 1, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

Corollary 2.5. If n is a positive integer, then

$$
\begin{aligned}
& n \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1}}{k}\binom{n-k-1}{k-1} L_{n-2 k-1} \\
& = \begin{cases}L_{n-1}-(-1)^{n} 3, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5), \\
L_{n-1}+(-1)^{n} 2, & \text { otherwise, }\end{cases} \\
& n \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1}}{k}\binom{n-k-1}{k-1} L_{n-2 k+1} \\
& = \begin{cases}L_{n+1}+(-1)^{n} 3, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
L_{n+1}-(-1)^{n} 2, & \text { otherwise, }\end{cases} \\
& \\
& = \begin{cases}L_{n}-(-1)^{n} 4, & \text { if } n \equiv 0 \quad(\bmod 5), \\
L_{n}+(-1)^{n}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Lemma 2.6. If n is an integer, then
(2.6) $\quad \frac{\sin (n \pi / 5)}{\sin (\pi / 5)}= \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5), \\ (-1)^{\lfloor n / 5\rfloor}, & \text { if } n \equiv 1 \text { or } 4(\bmod 5), \\ (-1)^{\lfloor n / 5\rfloor} \alpha, & \text { if } n \equiv 2 \text { or } 3(\bmod 5),\end{cases}$

$$
\frac{\sin (3 n \pi / 5)}{\sin (3 \pi / 5)}= \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \tag{2.7}\\ (-1)^{\lfloor n / 5\rfloor}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\ (-1)^{\lfloor n / 5\rfloor} \beta, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

From Lemma 2.6 we can deduce the following Lucas and Fibonacci binomial identities modulo 5 .

ThEOREM 2.7. If n is a positive integer and t is any integer, then
(2.8) $\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} L_{n-2 k+t}$

$$
= \begin{cases}(-1)^{\lfloor(n+1) / 5\rfloor} L_{t}, & \text { if } n \equiv 0 \text { or } 3 \quad(\bmod 5), \\ (-1)^{\lfloor(n+1) / 5\rfloor} L_{t+1}, & \text { if } n \equiv 1 \text { or } 2 \quad(\bmod 5), \\ 0, & \text { if } n \equiv 4 \quad(\bmod 5),\end{cases}
$$

(2.9) $\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} F_{n-2 k+t}$

$$
= \begin{cases}(-1)^{\lfloor(n+1) / 5\rfloor} F_{t}, & \text { if } n \equiv 0 \text { or } 3 \quad(\bmod 5) \\ (-1)^{\lfloor n / 5\rfloor} F_{t+1}, & \text { if } n \equiv 1 \text { or } 2 \quad(\bmod 5) \\ 0, & \text { if } n \equiv 4 \quad(\bmod 5)\end{cases}
$$

Proof. Set $x=\pi / 5$ in (2.2), use (2.6), (2.5) and simplify.
A variant of the Lucas and Fibonacci sums with even subscripts is stated as the next corollary.

Corollary 2.8. If n is a positive integer, then

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k}\binom{n-k}{k} L_{2 k}= \begin{cases}(-1)^{\lfloor(n+1) / 5\rfloor} L_{n}, & \text { if } n \equiv 0 \text { or } 3(\bmod 5), \\
(-1)^{\lfloor(n+1) / 5\rfloor+1} L_{n-1}, & \text { if } n \equiv 1 \text { or } 2(\bmod 5), \\
0, & \text { if } n \equiv 4(\bmod 5),\end{cases} \\
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k}\binom{n-k}{k} F_{2 k}= \begin{cases}(-1)^{\lfloor(n+1) / 5\rfloor} F_{n}, & \text { if } n \equiv 0 \text { or } 3(\bmod 5), \\
(-1)^{\lfloor(n+1) / 5\rfloor+1} F_{n-1}, & \text { if } n \equiv 1 \text { or } 2(\bmod 5), \\
0, & \text { if } n \equiv 4(\bmod 5) .\end{cases}
\end{aligned}
$$

Corollary 2.9. If n is a positive integer, then

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} F_{n-2 k+1}= \begin{cases}0, & \text { if } n \equiv 4 \quad(\bmod 5), \\
(-1)^{\lfloor(n+1) / 5\rfloor}, & \text { otherwise },\end{cases} \\
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} F_{n-2 k-\delta}=0,
\end{aligned}
$$

where

$$
\delta= \begin{cases}0, & \text { if } n \equiv 0 \text { or } 3 \quad(\bmod 5), \\ 1, & \text { if } n \equiv 1 \text { or } 2 \quad(\bmod 5)\end{cases}
$$

3. Fibonacci sums modulo 5 from Waring formulas

This section is based on utilizing the following trigonometric identities with the use of Waring formulas.

Lemma 3.1. If n is a positive integer, then

$$
\begin{align*}
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k} 2^{n-2 k-1} \cos ^{n-2 k} x=\cos n x \tag{3.1}\\
& \sum_{k=0}^{(n-1) / 2}(-1)^{(n-1) / 2-k} \frac{n}{n-k}\binom{n-k}{k} 2^{n-2 k-1} \sin ^{n-2 k} x \tag{3.2}\\
&=\sin n x, \quad n \text { odd }
\end{align*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n / 2}(-1)^{n / 2-k} \frac{n}{n-k}\binom{n-k}{k} 2^{n-2 k-1} \sin ^{n-2 k} x=\cos n x, \quad n \text { even } . \tag{3.3}
\end{equation*}
$$

Proof. Consider the Waring formula

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k}\left(x_{1}+x_{2}\right)^{n-2 k}\left(x_{1} x_{2}\right)^{k}=x_{1}^{n}+x_{2}^{n}
$$

Let i be the imaginary unit. The choice $x_{1}=e^{i x} / 2, x_{2}=e^{-i x} / 2$ produces (3.1), while the choice $x_{1}=e^{i x} /(2 i), x_{2}=-e^{-i x} /(2 i)$ gives $x_{1}+x_{2}=\sin x$, $x_{1} x_{2}=1 / 4$, and

$$
x_{1}^{n}+x_{2}^{n}= \begin{cases}(-1)^{(n-1) / 2} 2^{1-n} \sin n x, & \text { if } n \text { is odd } \\ (-1)^{n / 2} 2^{1-n} \cos n x, & \text { if } n \text { is even }\end{cases}
$$

and hence 3.2 and (3.3).
Lemma 3.2. If n is a positive integer, then
(3.4) $\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} 2^{n-2 k} \cos ^{n-2 k} x=\frac{\sin ((n+1) x)}{\sin x}$,

$$
\begin{aligned}
& \sum_{k=0}^{(n-1) / 2}(-1)^{(n-1) / 2-k}\binom{n-k}{k} 2^{n-2 k} \sin ^{n-2 k} x=\frac{\sin ((n+1) x)}{\cos x}, \quad n \text { odd } \\
& \sum_{k=0}^{n / 2}(-1)^{n / 2-k}\binom{n-k}{k} 2^{n-2 k} \sin ^{n-2 k} x=\frac{\cos ((n+1) x)}{\cos x}, \quad n \text { even. }
\end{aligned}
$$

Proof. Similar to the proof of Lemma 3.1. We use the dual to the Waring formula

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k}\left(x_{1}+x_{2}\right)^{n-2 k}\left(x_{1} x_{2}\right)^{k}=\frac{x_{1}^{n+1}-x_{2}^{n+1}}{x_{1}-x_{2}}
$$

Theorem 3.3. If n is a positive integer and t is any integer, then

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} F_{n-2 k+t}= \begin{cases}2 F_{t}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
-F_{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
F_{t-1}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} L_{n-2 k+t}= \begin{cases}2 L_{t}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
-L_{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
L_{t-1}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

Proof. We apply equation (3.1). Inserting $x=\pi / 5$ and $x=3 \pi / 5$, respectively, and keeping in mind the trigonometric identity $\cos 3 x=4 \cos ^{3} x-3 \cos x$ we end with

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} \alpha^{n-2 k+t}= \begin{cases}2 \alpha^{t}, & \text { if } n \equiv 0 \quad(\bmod 5) \\ -\alpha^{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\ \alpha^{t-1}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

and

$$
\begin{aligned}
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} & \beta^{n-2 k+t} \\
& = \begin{cases}2 \beta^{t}, & \text { if } n \equiv 0(\bmod 5) \\
-\beta^{t}\left(\alpha^{3}-3 \alpha\right), & \text { if } n \equiv 1 \operatorname{or} 4(\bmod 5) \\
-\beta^{t}\left(\beta^{3}-3 \beta\right), & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

To complete the proof simplify the terms in brackets and combine according the Binet formulas.

From Theorem 3.3 we can immediately obtain the following finite binomial sums.

Corollary 3.4. If n is a positive integer, then

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} F_{n-2 k}= \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\
-1, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
1, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} L_{n-2 k}= \begin{cases}4, & \text { if } n \equiv 0 \quad(\bmod 5) \\
-1, & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} F_{n+1-2 k}= \begin{cases}2, & \text { if } n \equiv 0 \quad(\bmod 5), \\
-1, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
0, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} L_{n+1-2 k}= \begin{cases}2, & \text { if } n \equiv 0,2 \text { or } 3 \quad(\bmod 5), \\
-3, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Remark. Identities 2.8 and 2.9 in Theorem 2.7 can also be obtained straightforwardly by evaluating the trigonometric identity (3.4) at $x=\pi / 5$ and $x=3 \pi / 5$, respectively, while using 2.6 and 2.7 .

4. Fibonacci sums modulo 5 from Chebyshev polynomials

For any integer $n \geq 0$, the Chebyshev polynomials $\left\{T_{n}(x)\right\}_{n \geq 0}$ of the first kind are defined by the second-order recurrence relation [16]

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n \geq 2, \quad T_{0}(x)=1, \quad T_{1}(x)=x
$$

while the Chebyshev polynomials $\left\{U_{n}(x)\right\}_{n \geq 0}$ of the second kind are defined by

$$
U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x), \quad n \geq 2, \quad U_{0}(x)=1, \quad U_{1}(x)=2 x
$$

The Chebyshev polynomials possess the representations

$$
\begin{aligned}
& T_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}\left(x^{2}-1\right)^{k} x^{n-2 k} \\
& U_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n+1}{2 k+1}\left(x^{2}-1\right)^{k} x^{n-2 k}
\end{aligned}
$$

and have the exact Binet-like formulas

$$
\begin{aligned}
& T_{n}(x)=\frac{1}{2}\left(\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right) \\
& U_{n}(x)=\frac{1}{2 \sqrt{x^{2}-1}}\left(\left(x+\sqrt{x^{2}-1}\right)^{n+1}-\left(x-\sqrt{x^{2}-1}\right)^{n+1}\right)
\end{aligned}
$$

The properties of Chebyshev polynomials of the first and second kinds have been studied extensively in the literature. The reader can find in the recent papers [7, 8, 11, 14, 15, 19] additional information about them, especially about their products, convolutions, power sums as well as their connections to Fibonacci numbers and polynomials.

Lemma 4.1. For all $x \in \mathbb{C}$ and a positive integer n, we have the following identities:

$$
\begin{align*}
& n \sum_{k=0}^{n}(-1)^{k} \frac{4^{k}}{n+k}\binom{n+k}{n-k} \sin ^{2 k}\left(\frac{x}{2}\right)=\cos n x \tag{4.1}\\
& n \sum_{k=0}^{n}(-1)^{n-k} \frac{4^{k}}{n+k}\binom{n+k}{n-k} \cos ^{2 k}\left(\frac{x}{2}\right)=\cos n x \tag{4.2}
\end{align*}
$$

Proof. Identities 4.1 and 4.2 are consequences of the identity

$$
\begin{equation*}
n \sum_{k=0}^{n} \frac{(-2)^{k}}{n+k}\binom{n+k}{n-k}(1 \mp x)^{k}=(\pm 1)^{n} T_{n}(x) \tag{4.3}
\end{equation*}
$$

derived in [3].
Lemma 4.2. If n is a non-negative integer, then

$$
\begin{aligned}
T_{n}\left(-\frac{\alpha}{2}\right) & = \begin{cases}1, & \text { if } n \equiv 0 \quad(\bmod 5) \\
-\alpha / 2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
-\beta / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases} \\
T_{n}\left(-\frac{\beta}{2}\right) & = \begin{cases}1, & \text { if } n \equiv 0 \quad(\bmod 5) \\
-\beta / 2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
-\alpha / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

Proof. Evaluate the identity $T_{n}(\cos x)=\cos n x$ at $x=4 \pi / 5$ and $x=$ $2 \pi / 5$, in turn.

Theorem 4.3. If n is a positive integer and t is any integer, then

$$
\begin{equation*}
\sum_{k=1}^{\lceil n / 2\rceil} \frac{n}{n+2 k-1}\binom{n+2 k-1}{n-2 k+1} 5^{k} F_{2 k+t-1} \tag{4.4}
\end{equation*}
$$

$$
-\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{n}{n+2 k}\binom{n+2 k}{n-2 k} 5^{k} L_{2 k+t}= \begin{cases}-L_{t}, & \text { if } n \equiv 0 \quad(\bmod 5) \\ L_{t+1} / 2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\ -L_{t-1} / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

$\sum_{k=1}^{\lceil n / 2\rceil} \frac{n}{n+2 k-1}\binom{n+2 k-1}{n-2 k+1} 5^{k-1} L_{2 k+t-1}$
$-\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{n}{n+2 k}\binom{n+2 k}{n-2 k} 5^{k} F_{2 k+t}= \begin{cases}-F_{t}, & \text { if } n \equiv 0 \quad(\bmod 5), \\ F_{t+1} / 2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\ -F_{t-1} / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5) .\end{cases}$
Proof. Using $x=-\alpha / 2$ and $x=-\beta / 2$, in turn, in 4.3 with the upper sign gives, in view of Lemma 4.2,

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{n}{n+k}\binom{n+k}{n-k} & (\sqrt{5})^{k}\left((-1)^{k+1} \lambda \alpha^{k+t}-\beta^{k+t}\right) \\
& = \begin{cases}-\left(\lambda \alpha^{t}+\beta^{t}\right), & \text { if } n \equiv 0 \quad(\bmod 5) \\
\left(\lambda \alpha^{t+1}+\beta^{t+1}\right) / 2, & \text { if } n \equiv 1 \operatorname{or} 4 \quad(\bmod 5) \\
-\left(\lambda \alpha^{t-1}+\beta^{t-1}\right) / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

from which (4.4) and 4.5 now follow upon setting $\lambda=1$ and $\lambda=-1$, in turn, and using the Binet formulas and the summation identity

$$
\sum_{j=0}^{n} f_{j}=\sum_{j=0}^{\lfloor n / 2\rfloor} f_{2 j}+\sum_{j=1}^{\lceil n / 2\rceil} f_{2 j-1}
$$

We observe the following special cases of the prior result.
Corollary 4.4. If n is a positive integer, then

$$
\sum_{k=1}^{\lceil n / 2\rceil} \frac{n}{n+2 k-1}\binom{n+2 k-1}{n-2 k+1} 5^{k} L_{2 k+\delta-1}=\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{n}{n+2 k}\binom{n+2 k}{n-2 k} 5^{k+1} F_{2 k+\delta}
$$

where

$$
\delta= \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\ -1, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\ 1, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

TheOrem 4.5. If n is a positive integer and t is any integer, then

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{n-k} \frac{n}{n+k}\binom{n+k}{n-k} L_{2 k+t}= \begin{cases}L_{t}, & \text { if } n=0 \quad(\bmod 5) \\
L_{t-1} / 2, & \text { if } n=1 \text { or } 4 \quad(\bmod 5) \\
-L_{t+1} / 2, & \text { if } n=2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& \sum_{k=0}^{n}(-1)^{n-k} \frac{n}{n+k}\binom{n+k}{n-k} F_{2 k+t}
\end{aligned}= \begin{cases}F_{t}, & \text { if } n=0 \quad(\bmod 5) \\
F_{t-1} / 2, & \text { if } n=1 \text { or } 4 \quad(\bmod 5) \\
-F_{t+1} / 2, & \text { if } n=2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

Proof. Set $x=\pi / 5$ in (4.1) and use (2.3) and the fact that $\sin (\pi / 10)=$ $-\beta / 2$ to obtain

$$
\sum_{k=0}^{n}(-1)^{n-k} \frac{n}{n+k}\binom{n+k}{n-k} \beta^{2 k+t}= \begin{cases}\beta^{t}, & \text { if } n=0 \quad(\bmod 5) \\ \beta^{t-1} / 2, & \text { if } n=1 \text { or } 4(\bmod 5) \\ -\beta^{t+1} / 2, & \text { if } n=2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

from which the results follow by 2.5 .
Using Theorem 4.5, we have the following binomial Fibonacci identities modulo 5 .

Corollary 4.6. If n is a positive integer, then

$$
\sum_{k=0}^{n} \frac{(-1)^{k}}{n+k}\binom{n+k}{n-k} F_{2 k+\delta}=0
$$

where

$$
\delta= \begin{cases}0, & \text { if } n=0 \quad(\bmod 5) \\ 1, & \text { if } n=1 \text { or } 4 \quad(\bmod 5) \\ -1, & \text { if } n=2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

Lemma 4.7. If x is a complex variable and n is a positive integer, then

$$
\begin{align*}
& \sum_{k=1}^{n}(-1)^{k-1} \frac{4^{k} k}{n+k}\binom{n+k}{n-k} \sin ^{2 k-2}\left(\frac{x}{2}\right)=\frac{2 \sin n x}{\sin x} \tag{4.6}\\
& \sum_{k=1}^{n}(-1)^{n-k} \frac{4^{k} k}{n+k}\binom{n+k}{n-k} \cos ^{2 k-2}\left(\frac{x}{2}\right)=\frac{2 \sin n x}{\sin x} \tag{4.7}
\end{align*}
$$

Proof. Identities 4.6 and 4.7) come from the following identities derived in [3]:

$$
\begin{aligned}
& \sum_{k=1}^{n}(-1)^{n-k} \frac{2^{k} k}{n+k}\binom{n+k}{n-k}(1 \mp x)^{k-1}=(\mp 1)^{n-1} U_{n-1}(x) \\
& \sum_{k=1}^{n}(-1)^{n-k} \frac{4^{k} k}{n+k}\binom{n+k}{n-k} x^{2 k-1}=U_{2 n-1}(x)
\end{aligned}
$$

ThEOREM 4.8. If n is a positive integer and n is any integer, then

$$
\begin{aligned}
\sum_{k=1}^{n}(-1)^{k-1} \frac{k}{n+k}\binom{n+k}{n-k} L_{2 k+t}
\end{aligned} \underbrace{= \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor} L_{t+2} / 2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor+1} L_{t+1} / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases} } \begin{aligned}
\sum_{k=1}^{n}(-1)^{k-1} \frac{k}{n+k}\binom{n+k}{n-k} F_{2 k+t} & \text { if } n \equiv 0 \quad(\bmod 5), \\
& = \begin{cases}0, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor} F_{t+2} / 2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor+1} F_{t+1} / 2, & \end{cases}
\end{aligned}
$$

Proof. Set $x=\pi / 5$ and $x=3 \pi / 5$, respectively, in 4.6, and use 2.6 and (2.7).

Remark. Theorem 4.8 can also be proved using 4.7). Using the trigonometric identities $\sin 2 x=2 \sin x \cos x$ and $\cos 3 x=4 \cos ^{3} x-3 \cos x$ and working with $x=2 \pi / 5$ and $x=6 \pi / 5$, respectively, we end with

$$
\begin{aligned}
2 \sum_{k=1}^{n}(-1)^{k-1} & \frac{k}{n+k}\binom{n+k}{n-k} L_{2 k-1+t} \\
& = \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor}\left(\alpha^{t+1}-\beta^{t-3}+3 \beta^{t-1}\right), & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor}\left(-\alpha^{t}+\beta^{t+4}-3 \beta^{t+2}\right), & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& 2 \sqrt{5} \sum_{k=1}^{n}(-1)^{k-1} \frac{k}{n+k}\binom{n+k}{n-k} F_{2 k-1+t} \\
& \quad= \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor}\left(\alpha^{t+1}+\beta^{t-3}-3 \beta^{t-1}\right), & \text { if } n \equiv 1 \operatorname{or} 4(\bmod 5) \\
(-1)^{\lfloor n / 5\rfloor}\left(-\alpha^{t}-\beta^{t+4}+3 \beta^{t+2}\right), & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

To get Theorem 4.8 simplify the terms in brackets and replace t by $t+1$.
Applying Theorem 4.8 yields the following two corollaries.
Corollary 4.9. If n is a positive integer, then

$$
\sum_{k=1}^{n}(-1)^{k} \frac{k}{n+k}\binom{n+k}{n-k} F_{2 k-\delta}=0
$$

where

$$
\delta= \begin{cases}2, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\ 1, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

Corollary 4.10. If n is a positive integer and t is any integer, then we have:

If $n \equiv 0(\bmod 5)$, then

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\binom{n-k-1}{k} L_{n-2 k+t}=2 \sum_{k=1}^{n}(-1)^{k-1} \frac{k}{n+k}\binom{n+k}{n-k} L_{2 k+t} \\
& \quad \sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\binom{n-k-1}{k} F_{n-2 k+t}=2 \sum_{k=1}^{n}(-1)^{k-1} \frac{k}{n+k}\binom{n+k}{n-k} F_{2 k+t}
\end{aligned}
$$

if $n \equiv 1$ or $4(\bmod 5)$, then

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\binom{n-k-1}{k} L_{n-2 k+t}=2 \sum_{k=1}^{n}(-1)^{k+1} \frac{k}{n+k}\binom{n+k}{n-k} L_{2 k-1+t} \\
& \sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\binom{n-k-1}{k} F_{n-2 k+t}=2 \sum_{k=1}^{n}(-1)^{k+1} \frac{k}{n+k}\binom{n+k}{n-k} F_{2 k-1+t}
\end{aligned}
$$

if $n \equiv 2$ or $3(\bmod 5)$, then

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\binom{n-k-1}{k} L_{n-2 k+t}=2 \sum_{k=1}^{n}(-1)^{k} \frac{k}{n+k}\binom{n+k}{n-k} L_{2 k+1+t} \\
& \sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\binom{n-k-1}{k} F_{n-2 k+t}=2 \sum_{k=1}^{n}(-1)^{k} \frac{k}{n+k}\binom{n+k}{n-k} F_{2 k+1+t}
\end{aligned}
$$

Proof. Compare Theorem 4.8 with Theorem 2.7 .
Lemma 4.11. If n is a non-negative integer, then

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k} 4^{k}\binom{n+k}{n-k} \cos ^{2 k} x=\frac{\sin ((2 n+1) x)}{\sin x} \tag{4.8}
\end{equation*}
$$

Proof. Evaluate the identity [3]

$$
\sum_{k=0}^{n}(-1)^{n-k} 4^{k}\binom{n+k}{n-k} x^{2 k}=U_{2 n}(x)
$$

at $x=\cos x$.
Lemma 4.12. If n is an integer, then

$$
\frac{\sin ((2 n+1) \pi / 5)}{\sin (\pi / 5)}=\left\{\begin{array}{lll}
1, & \text { if } n \equiv 0 & (\bmod 5) \\
\alpha, & \text { if } n \equiv 1 & (\bmod 5) \\
0, & \text { if } n \equiv 2 & (\bmod 5) \\
-\alpha, & \text { if } n \equiv 3 & (\bmod 5) \\
-1, & \text { if } n \equiv 4 & (\bmod 5)
\end{array}\right.
$$

From Lemmas 4.11 and 4.12 we can deduce the following Fibonacci and Lucas binomial identities modulo 5.

Theorem 4.13. If n is a non-negative integer and t is any integer, then

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n+k}{n-k} L_{2 k+t}= \begin{cases}L_{t}, & \text { if } n \equiv 0 \quad(\bmod 5) \\ L_{t+1}, & \text { if } n \equiv 1 \quad(\bmod 5) \\ 0, & \text { if } n \equiv 2 \quad(\bmod 5) \\ -L_{t+1}, & \text { if } n \equiv 3 \quad(\bmod 5) \\ -L_{t}, & \text { if } n \equiv 4 \quad(\bmod 5)\end{cases}
$$

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n+k}{n-k} F_{2 k+t}= \begin{cases}F_{t}, & \text { if } n \equiv 0 \quad(\bmod 5) \\ F_{t+1}, & \text { if } n \equiv 1 \quad(\bmod 5) \\ 0, & \text { if } n \equiv 2 \quad(\bmod 5) \\ -F_{t+1}, & \text { if } n \equiv 3 \quad(\bmod 5) \\ -F_{t}, & \text { if } n \equiv 4 \quad(\bmod 5)\end{cases}
$$

Proof. Set $x=\pi / 5$ in 4.8) and use Lemma 4.12.
Lemma 4.14 ([10, (41.2.16.1)]). If n is a positive integer and x is any variable, then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{(-1)^{k}}{\cos x-\cos (\pi k / n)}=\frac{1}{2}\left(\frac{1}{1-\cos x}+\frac{(-1)^{n}}{1+\cos x}\right)-\frac{n}{\sin x \sin n x} \tag{4.9}
\end{equation*}
$$

Further interesting identities involving Fibonacci and Lucas numbers are stated in the next theorem.

Theorem 4.15. If n is a positive integer and t is any integer, then

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{(-1)^{k-1}\left(L_{t-1}+2 L_{t} \cos (\pi k / n)\right)}{4 \cos ^{2}(\pi k / n)-2 \cos (\pi k / n)-1} \\
& =\frac{1}{2}\left(L_{t+2}+(-1)^{n} F_{t-1}\right)-2(-1)^{\lfloor n / 5\rfloor} n \cdot \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\
F_{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
F_{t}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& \sum_{k=1}^{n} \frac{(-1)^{k-1}\left(F_{t-1}+2 F_{t} \cos (\pi k / n)\right)}{4 \cos ^{2}(\pi k / n)-2 \cos (\pi k / n)-1} \\
& =\frac{1}{2}\left(F_{t+2}+\frac{(-1)^{n}}{5} L_{t-1}\right)-\frac{2(-1)^{\lfloor n / 5\rfloor}}{5} n \cdot \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5), \\
L_{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
L_{t}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

Proof. Set $x=\pi / 5$ and $x=3 \pi / 5$, in turn, in 4.9) to obtain

$$
2 \sum_{k=1}^{n} \frac{(-1)^{k}}{\alpha-2 \cos (\pi k / n)}=\frac{1}{2-\alpha}+\frac{(-1)^{n}}{2+\alpha}-\frac{4 n \alpha}{\sqrt{5}} \frac{\sin (\pi / 5)}{\sin (n \pi / 5)}
$$

and

$$
2 \sum_{k=1}^{n} \frac{(-1)^{k}}{\beta-2 \cos (\pi k / n)}=\frac{1}{2-\beta}+\frac{(-1)^{n}}{2+\beta}+\frac{4 n \beta}{\sqrt{5}} \frac{\sin (3 \pi / 5)}{\sin (3 n \pi / 5)}
$$

from which the identities follow.

By setting $t=0$ and $t=1$ in Theorem4.15, we obtain the following.
Corollary 4.16. If n is a positive integer, then

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{(-1)^{k-1}(4 \cos (\pi k / n)-1)}{4 \cos ^{2}(\pi k / n)-2 \cos (\pi k / n)-1} \\
& \quad=\frac{3+(-1)^{n}}{2}-2(-1)^{\lfloor n / 5\rfloor} n \cdot \begin{cases}0, & \text { if } n \equiv 0,2 \text { or } 3 \quad(\bmod 5) \\
1, & \text { otherwise },\end{cases} \\
& \sum_{k=1}^{n} \frac{(-1)^{k-1}}{4 \cos ^{2}(\pi k / n)-2 \cos (\pi k / n)-1} \\
& \quad=\frac{5-(-1)^{n}}{10}-\frac{2(-1)^{\lfloor n / 5\rfloor}}{5} n \cdot \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5), \\
1, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\
2, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
\end{aligned}
$$

$$
\sum_{k=1}^{n} \frac{(-1)^{k-1} \cos ^{2}(\pi k / 2 n)}{4 \cos ^{2}(\pi k / n)-2 \cos (\pi k / n)-1}
$$

$$
=\frac{1}{2}-\frac{(-1)^{\lfloor n / 5\rfloor}}{2} n \cdot \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\ 1, & \text { otherwise }\end{cases}
$$

$$
\sum_{k=1}^{n} \frac{(-1)^{k-1} \cos (\pi k / n)}{4 \cos ^{2}(\pi k / n)-2 \cos (\pi k / n)-1}
$$

$$
=\frac{5+(-1)^{n}}{10}-\frac{(-1)^{\lfloor n / 5\rfloor}}{5} n \cdot \begin{cases}0, & \text { if } n \equiv 0 \quad(\bmod 5) \\ 3, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5) \\ 1, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

5. Some additional observations

We close this paper with some additional observations leading to possibly new series representations of the constant α involving Bernoulli polynomials. Recall that Bernoulli polynomials $B_{n}(t), n \geq 0$, may be defined by the

$$
B_{n}(t)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} t^{k}
$$

where B_{n} is the nth Bernoulli number, defined by the power series

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}, \quad|z|<2 \pi
$$

We have $B_{n}(1)=B_{n}(0)=B_{n}$ for all $n \geq 2$ and $B_{2 n+1}=0$ for all $n \geq 1$.
Theorem 5.1. Let m be a non-negative integer. Then

$$
\begin{align*}
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}\right)=(-1)^{m-1} \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+\frac{1}{2}\right)=0 \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+1\right)=(-1)^{m} \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+\frac{3}{2}\right)=(-1)^{m} \alpha \tag{5.1}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+2\right)=(-1)^{m} \alpha \tag{5.2}
\end{equation*}
$$

Proof. Combine (2.6) with the representation [13, Eq. (2.5)]

$$
\begin{equation*}
\frac{\sin x t}{\sin t}=\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} B_{2 k+1}\left(\frac{1+x}{2}\right) t^{2 k}, \quad|t|<\pi \tag{5.3}
\end{equation*}
$$

When $m=0$ then from (5.1) and (5.2) we get the special series:

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{3}{2}\right)=\alpha \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}(2)=\alpha
\end{aligned}
$$

From Raabe's formula

$$
B_{n}(a x)=a^{n-1} \sum_{k=0}^{a-1} B_{n}\left(x+\frac{k}{a}\right)
$$

we get

$$
B_{2 k+1}(2)=2^{2 k}\left(B_{2 k+1}(1)+B_{2 k+1}\left(\frac{3}{2}\right)\right)
$$

and

$$
\begin{gathered}
\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{3}{2}\right)=\alpha \\
\sum_{k=1}^{\infty}(-1)^{k} \frac{2^{4 k+1}}{(2 k+1)!} \frac{\pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{3}{2}\right)=\alpha-3=\sqrt{5} \beta
\end{gathered}
$$

But making use of $B_{n}(t+1)-B_{n}(t)=n t^{n-1}$ we see that

$$
B_{2 k+1}\left(\frac{3}{2}\right)=\frac{2 k+1}{2^{2 k}}
$$

and thus the series turn into

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k)!} \frac{\pi^{2 k}}{25^{k}}=\frac{\alpha}{2}-1=-\frac{\beta^{2}}{2} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k)!} \frac{\pi^{2 k}}{25^{k}}=\sqrt{5} \beta \tag{5.5}
\end{equation*}
$$

The series (5.4) and 5.5) are essentially $\cosh (i \pi / 5)=\cos (\pi / 5)=\alpha / 2$ and $\cosh (2 i \pi / 5)=\cos (2 \pi / 5)=-\beta / 2$ which we encountered at the beginning of the paper.

Combining (2.7) with (5.3) we have the following theorem. The details of we leave to the reader.

ThEOREM 5.2. Let m be a non-negative integer. Then

$$
\begin{align*}
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{9^{k} \pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}\right)=(-1)^{m-1} \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k}}{(2 k+1)!} \frac{9^{k} \pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+\frac{1}{2}\right)=0 \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{9^{k} \pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+1\right)=(-1)^{m} \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{9^{k} \pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+\frac{3}{2}\right)=(-1)^{m} \beta \tag{5.6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{9^{k} \pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{5 m}{2}+2\right)=(-1)^{m} \beta \tag{5.7}
\end{equation*}
$$

Finally, we obtain the following special series as a consequence of 5.6 and 5.7):

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{9^{k} \pi^{2 k}}{25^{k}} B_{2 k+1}\left(\frac{3}{2}\right)=\beta \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1}}{(2 k+1)!} \frac{9^{k} \pi^{2 k}}{25^{k}} B_{2 k+1}(2)=\beta
\end{aligned}
$$

6. Concluding comments

In this paper, we presented new closed forms for some types of finite Fibonacci and Lucas sums involving different kinds of binomial coefficients and depending on the modulo 5 nature of the upper summation limit. To prove our results, we applied some trigonometric identities utilizing Waring formulas and Chebyshev polynomials of the first and second kinds.

Using similar techniques, we can generalize our findings to more common number sequences. Let us give, for example, a generalization of Theorems 2.3. 3.3 and 4.5 to the case of the gibonacci (generalized Fibonacci) sequence defined by the recurrence $G_{n}=G_{n-1}+G_{n-2}, n \geq 2$, with $G_{0}=a$ and $G_{1}=b$,
where a and b are arbitrary [12, 18]. Note that F_{n} corresponds to the case of G_{n} when $a=1$ and $b=0$, while L_{n} to the case when $a=1$ and $b=2$. The following identities modulo 5 hold for positive integer n and any integer t :

$$
\begin{aligned}
& n \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{(-1)^{k-1}}{k}\binom{n-k-1}{k-1} G_{n-2 k+t} \\
& = \begin{cases}G_{n+t}-(-1)^{n} 2 G_{t}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
G_{n+t}+(-1)^{n} G_{t+1}, & \text { if } n \equiv 1 \text { or } 4 \quad(\bmod 5), \\
G_{n+t}-(-1)^{n} G_{t-1}, & \text { if } n \equiv 2 \text { or } 3 \quad(\bmod 5),\end{cases} \\
& n \sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{n-k}}{n-k}\binom{n-k}{k} G_{n-2 k+t}= \begin{cases}2 G_{t}, & \text { if } n \equiv 0 \quad(\bmod 5), \\
-G_{t+1}, & \text { if } n \equiv 1 \operatorname{or} 4 \quad(\bmod 5), \\
G_{t-1}, & \text { if } n \equiv 2 \operatorname{or} 3 \quad(\bmod 5),\end{cases} \\
& n \sum_{k=0}^{n} \frac{(-1)^{n-k}}{n+k}\binom{n+k}{n-k} G_{2 k+t}= \begin{cases}G_{t}, & \text { if } n=0 \quad(\bmod 5), \\
G_{t-1} / 2, & \text { if } n=1 \operatorname{or} 4 \quad(\bmod 5), \\
-G_{t+1} / 2, & \text { if } n=2 \text { or } 3 \quad(\bmod 5) .\end{cases}
\end{aligned}
$$

References

[1] K. Adegoke, Weighted sums of some second-order sequences, Fibonacci Quart. 56 (2018), no. 3, 252-262.
[2] K. Adegoke, R. Frontczak, and T. Goy, New binomial Fibonacci sums, Palest. J. Math. 13 (2024), no. 1, 323-339.
[3] K. Adegoke, R. Frontczak, and T. Goy, Binomial Fibonacci sums from Chebyshev polynomials, J. Integer Seq. 26 (2023), no. 9, Paper No. 23.9.6, 26 pp.
[4] K. Adegoke, R. Frontczak, and T. Goy, On Fibonacci and Lucas binomial sums modulo 5, in: XIX International Scientific Mykhailo Kravchuk Conference. Abstracts, I. Sikorsky Kyiv Polytechnic Institute, Kyiv, 2023, pp. 60-61.
[5] K. Adegoke, A. Olatinwo, and S. Ghosh, Cubic binomial Fibonacci sums, Electron. J. Math. 2 (2021), 44-51.
[6] M. Bai, W. Chu, and D. Guo, Reciprocal formulae among Pell and Lucas polynomials, Mathematics 10 (2022), no. 15, 2691, 11 pp.
[7] Z. Fan and W. Chu, Convolutions involving Chebyshev polynomials, Electron. J. Math. 3 (2022), 38-46.
[8] R. Frontczak and T. Goy, Chebyshev-Fibonacci polynomial relations using generating functions, Integers 21 (2021), Paper No. A100, 15 pp.
[9] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, Elsevier/Academic Press, Amsterdam, 2015.
[10] E. Hansen, Addendum for 'A Table of Series and Products', preprint (undated), 56 pp. Available at carmamaths.org/resources/jon/Preprints/Books/Other/hansen07.pdf.
[11] E. Kılıç, S. Koparal, and N. Ömür, Powers sums of the first and second kinds of Chebyshev polynomials, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 2, 425-435.
[12] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[13] D.J. Leeming, The coefficients of $\sinh x t / \sin t$ and the Bernoulli polynomials, Internat. J. Math. Ed. Sci. Tech. 28 (1997), no. 4, 575-579.
[14] C. Li and Z. Wenpeng, Chebyshev polynomials and their some interesting applications, Adv. Difference Equ. (2017), Paper No. 303, 9 pp.
[15] Y. Li, On Chebyshev polynomials, Fibonacci polynomials, and their derivatives, J. Appl. Math. (2014), Art. ID 451953, 8 pp.
[16] J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[17] N.J.A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences. Available at oeis.org/book.html.
[18] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section. Theory and Applications, Dover Publications, Inc., Mineola, NY, 2008.
[19] W. Zhang, On Chebyshev polynomials and Fibonacci numbers, Fibonacci Quart. 40 (2002), no. 5, 424-428.

Kunle Adegoke
Department of Physics and Engineering Physics Obafemi Awolowo University
220005 Ile-Ife
Nigeria
e-mail: adegoke00@gmail.com
Robert Frontczak
Independent Researcher
Reutlingen
Germany
e-mail: robert.frontczak@web.de
Taras Goy
Faculty of Mathematics and Computer Science
Vasyl Stefanyk Precarpathian National University
Ivano-Frankivsk
Ukraine
e-mail: taras.goy@pnu.edu.ua

[^0]: Received: 01.12.2023. Accepted: 10.05.2024.
 (2020) Mathematics Subject Classification: 11B39, 11B37.

 Key words and phrases: Fibonacci number, Lucas number, Bernoulli polynomial, Chebyshev polynomial, trigonometric identity, binomial sum.

