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WITH ANDRZEJ LASOTA THERE AND BACK AGAIN

Ryszard Rudnicki

The XVII Annual Lecture dedicated to the memory of Professor Andrzej Lasota

Abstract. The paper below is a written version of the 17th Andrzej Lasota
Lecture presented on January 12th, 2024 in Katowice. During the lecture we
tried to show the impact of Andrzej Lasota’s results on the author’s research
concerning various fields of mathematics, including chaos and ergodicity of
dynamical systems, Markov operators and semigroups and partial differential
equations.

1. Introduction

Let us start with a brief introduction of Professor Andrzej Lasota
(1932–2006). He studied physics and mathematics at Jagiellonian University
(1951–1955). From 1955–1975 he worked at Jagiellonian University, where he
was the Dean of the Faculty of MPCh (1972–1975).

He then moved to Katowice at the University of Silesia, where he worked
until his death with a short break in the years of 1986–1988 spent at Maria
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Curie-Skłodowska University in Lublin. During that time he had also part-
time positions at Jagiellonian University (1975–2005) and Institute of Math-
ematics Polish Academy of Sciences (1995–2006).

His research interests concerned the following areas of mathematics:
(1) differential equations,
(2) dynamical systems: chaos, ergodicity and fractal theory,
(3) Markov operators,
(4) applications of mathematics to biology, physics and technology.

I met Professor Lasota at his lecture on the theory of differential equa-
tions in 1977, and after the exam, I began my research under his supervision.
This was a period when he conducted very intensive research dealing with
a variety of issues in pure and applied mathematics collaborating with well-
known scholars, including J.A. Yorke – American mathematician co-founder
of chaos theory and M.C. Mackey – Canadian biomathematician (see Fig. 1).
This gave me the opportunity to learn about top scientific issues and join in
this research.

Figure 1. Special Scientific Session in honour of Professor Andrzej Lasota on the oc-
casion of his 70th birthday, Będlewo 22.06.2002. From the left A. Lasota, J.A. Yorke,
M.C. Mackey.
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During the lecture, I tried to show the impact of Andrzej Lasota’s results
on my research. I will focus on a few selected topics, mainly on chaos theory
for partial differential equations and asymptotics of Markov operators and
semigroups and their applications in biology.

2. Chaos and ergodicity of dynamical systems

2.1. General remarks

Since the issues of chaos and ergodicity will occur at various points in the
lecture, we will now collect the necessary definition and basic results. A more
extensive introduction to these issues is presented in the survey papers [34, 37].

Let (X, ρ) be a metric space. A semiflow {St}t≥0 on X is a collection of
transformations St : X → X, for t ≥ 0, such that
(a) S0 = Id, St+s = St ◦ Ss for t, s ≥ 0,
(b) S : [0,∞)×X → X, defined as S(t, x) := St(x), is a continuous function

of (t, x).
The set O(x) = {St(x) : t ≥ 0} is called an orbit of the point x.

For example if f : Rn → Rn is a Lipschitz function then the problem

x′(t) = f(x(t)), x(0) = x0 ∈ Rn

has a unique solution x : [0,∞) → Rn and St(x0) = x(t) defines a semiflow
on Rn.

If S : X → X is a continuous map, then the sequence of its iterates
{Sn}∞n=0 creates a discrete time semiflow. Discrete and continuous time semi-
flows belong to a broader class called dynamical systems. In a dynamical
system, instead of the continuity condition (b), for example, we can assume
the measurability of a function S(t, x).

When can we say that a dynamical system is chaotic? General answer
is that it has a simple and deterministic description, but it behaves in a
complicated and random way. Random means here that the semiflow has
unpredictable behaviour. The semiflow is very sensitive on small perturbations
of initial data and looks like a system with a stochastic noise.

Almost all specialists are willing to accept this not too precise definition.
But, in fact, there are hundreds of definitions of chaos. Generally we have
three different approaches to chaos.

1. Macroscopic approach: the existence of global attractors with com-
plicated structure (strange attractors).
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2. Microscopic approach: the existence of trajectories, which are unsta-
ble, turbulent or dense in the phase space; topological mixing.

3. Stochastic approach: the existence of invariant measures having strong
ergodic and analytic properties.

It should be noted that our “classification” of chaotic behaviour is com-
pletely arbitrary, but it could help non-specialists what kind of problems are
studied in the theory of chaos. In the lecture, I will focus on the connec-
tions between the second and third approaches to justify that the methods of
ergodic theory allow us to obtain quite strong chaotic properties.

2.2. Microscopic approach

In this approach we have several different definitions of chaos. A flow is
chaotic in the sense of Auslander–Yorke [1] if
(a) there exists a dense trajectory,
(b) each trajectory is unstable.

Let us mention that a semiflow on some topological vector space X having
a dense orbit is said to be hypercyclic [7], which in the case when X is a Baire
space it is equivalent to the flow being topologically transitive. We consider
a strong version of unstability, which is also called sensitive dependence on
initial conditions: there exists a constant η > 0 such that for each point
x ∈ X and for each ε > 0 there exist a point y ∈ B(x, ε) and t > 0 such that
ρ(St(x), St(y)) > η. Here B(x, r) denotes the open ball in X with centre x
and radius r > 0.

A little stronger definition of chaos was given by Devaney [6]:
(a’) there exists a dense trajectory,
(b’) the set of periodic points is dense in X.
One can check that from (a’) and (b’) it follows that each trajectory is unsta-
ble.

A semiflow {St}t≥0 is topologically mixing if for any two non-empty open
sets U , V of X there exists t0 > 0 such that St(U) ∩ V 6= ∅ for t ≥ t0.
The topological mixing is a strong chaotic property of a transformation and
implies chaos in the sense of Auslander–Yorke and sensitive dependence on
initial conditions.

One of the chaotic properties of a semiflow is turbulence. A trajectory
O(x) = {St(x) : t ≥ 0} of the point x is turbulent in the sense of Lasota–
Yorke [14], if its closure cl(O(x)) is a compact set and cl(O(x)) does not
contain periodic points.
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Theorem 1. Let {St}t≥0 be a semiflow. If for some nonempty, compact,
and disjoint sets A and B we have

(1) A ∪B ⊂ St0(A) ∩ St0(B) for some t0 > 0,

then there exists a turbulent orbit in the sense of Lasota–Yorke.

Theorem 1 was proved in [14] (a discrete time version) and in [8] (a con-
tinuous time version).

2.3. Stochastic approach

We recall some necessary definitions.
By a measure on X we mean any probability measure defined on the σ-

algebra B(X) of Borel subsets of X. By suppµ we denote the topological
support of the measure µ.

A measure µ is called invariant under a semiflow {St}t≥0, if µ(A) =
µ(S−t(A)) for each t ≥ 0 and each Borel subset A. Here S−t(A) := (St)−1(A).
We will denote a semiflow {St}t≥0 with an invariant measure µ by (S, µ).

The semiflow (S, µ) is called ergodic if for each µ-integrable function
f : X → R we have

(2) lim
T→∞

1

T

∫ T

0

f(St(x)) dt =

∫
X

f(x)µ(dx) for µ-a.e. x.

If we substitute f = 1A in equation (2), then the left-hand side of (2) is the
mean time of visiting the set A and the right-hand side of (2) is µ(A).

A semiflow (S, µ) is called mixing if

(3) lim
t→∞

µ(S−t(A) ∩B) = µ(A)µ(B)

for all A,B ∈ B(X). If P = µ and P(B) > 0 then condition (3) can be written
in the following way

lim
t→∞

P(St(x) ∈ A|x ∈ B) = µ(A) for all A ∈ B(X),

which means that the trajectory of almost all points enters a set A with
asymptotic probability µ(A).

The semiflow (S, µ) is exact if for each measurable set A with µ(A) > 0
we have

(4) lim
t→∞

µ(St(A)) = 1.

We have: exactness ⇒ mixing ⇒ ergodicity.
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We now show how ergodic properties of a semiflow imply its chaotic be-
haviour.

Proposition 1. Let X be a separable metric space and µ be a probability
Borel measure on X such that suppµ = X. If a semiflow (S, µ) is ergodic, then
the orbit of µ–a.e. point x is dense in X. If a semiflow (S, µ) is mixing, then
the semiflow {St}t≥0 is topologically mixing, in particular it has the property
of sensitive dependence on initial conditions.

Sometimes the combination of the methods of ergodic theory and dynami-
cal systems allows us to obtain stronger properties of the considered systems.
We combine the following well known Krylov–Bogoliubov theorem with con-
dition (1).

Theorem 2. Let {St}t≥0 be a semiflow on a compact metric space. Then
there exists a probability Borel measure µ invariant and ergodic with respect
to {St}t≥0.

This theorem is a nice general result, but if the semiflow has a periodic
point x, this result is trivial, because we find an invariant ergodic measure
supported on the orbit of x. To formulate a stronger version of Theorem 2
we need the following definition. A measure µ is said to be continuous if
µ(Per) = 0, where Per is the set of all periodic points of the semiflow {St}t≥0.

Theorem 3. Let {St}t≥0 be a semiflow on a compact metric space. If
there are nonempty, compact, and disjoint sets A and B satisfying condi-
tion (1), then there exists a continuous probability Borel measure µ invariant
and ergodic with respect to {St}t≥0.

Proof. From Theorem 1 it follows the existence of an orbit O(x) turbu-
lent in the sense of Lasota–Yorke. We now consider the semiflow restricted
to the orbit O(x). By Theorem 2 there exists a probability invariant ergodic
measure µ supported on O(x). Since the orbit O(x) has no periodic points
the measure µ is continuous. �

3. Frobenius–Perron operator and ergodic properties

3.1. Introduction

Ergodic properties of semiflows can be successfully investigated using meth-
ods of operator theory [11]. We now introduce the notion of Frobenius–Perron
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operator and show how ergodic properties of flows can be expressed in the lan-
guage of Frobenius–Perron operators.

Let (X,Σ,m) be a σ-finite measure space. A measurable map S : X → X
is called non-singular if it satisfies the following condition

(5) m(A) = 0 =⇒ m(S−1(A)) = 0 for A ∈ Σ.

Let L1 = L1(X,Σ,m) and let S be a nonsingular map of X. An operator
PS : L1 → L1 which satisfies the following condition

(6)
∫
A

PSf(x)m(dx) =

∫
S−1(A)

f(x)m(dx) for A ∈ Σ and f ∈ L1

is called the Frobenius–Perron operator for the transformation S. The oper-
ator PS is linear, positive (if f ≥ 0 then PSf ≥ 0) and preserves the inte-
gral (

∫
X
PSf dm =

∫
X
f dm). The adjoint of the Frobenius–Perron operator

P ∗S : L∞ → L∞ is given by P ∗Sg(x) = g(S(x)).
Denote by D the set of all densities with respect to m, i.e. functions f ∈

L1(X,Σ,m) such that f ≥ 0 and ‖f‖ = 1. Let S : X → X be a nonsingular
transformation and let f∗ ∈ D. Then the measure µ(A) =

∫
A
f∗ dm for A ∈ Σ,

is invariant with respect to S if and only if PSf∗ = f∗.
Now we consider a family of transformations {St}t∈T , where T = [0,∞)

or T = N. If the map S : T ×X → X is measurable and each transformation
St is nonsingular, then we denote by P t the Frobenius–Perron operator cor-
responding to St. Then the quadruple (X,Σ, µ, St) is a measure-preserving
dynamical system if and only if P tf∗ = f∗ for all t ∈ T . We collect the rela-
tions between ergodic properties of dynamical systems (X,Σ, µ, St) and the
behavior of the Frobenius–Perron operators {P t} in Table 1.

Table 1. The behavior of the Frobenius–Perron operators

µ f∗

invariant P tf∗ = f∗ for all t ∈ T
ergodic f∗ is a unique fixed point in D of all P t

mixing w-limt→∞ P
tf = f∗ for every f ∈ D

exact limt→∞ P
tf = f∗ for every f ∈ D

We recall that the weak limit w-limt→∞ P
tf is a function h ∈ L1 such that

for every g ∈ L∞ we have

lim
t→∞

∫
X

P tf(x)g(x)m(dx) =

∫
X

h(x)g(x)m(dx).
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3.2. Lasota–Yorke lower function theorem

A. Lasota and J.A. Yorke have developed tools to study the convergence
of Frobenius–Perron operators and their applications to expanding maps [13].
One of such tools is the lower function theorem [15]. This theorem can be
applied to a broader class of operators called Markov or stochastic operators,
so we will start with a definition of them.

Let (X,Σ,m) be a σ-finite measure space. A linear operator P : L1 → L1

is called a Markov (or stochastic) operator if P (D) ⊂ D.
The family {P t}t≥0 of Markov operators is called a stochastic semigroup

if it satisfies the following conditions:
(a) P (0) = I, i.e., P (0)f = f ,
(b) P t+s = P tP s for s, t ≥ 0,
(c) for each f ∈ L1 the function t 7→ P tf is continuous.
We also consider a discrete time stochastic semigroup defined as the iterates
of a Markov operator.

Markov operators appear in ergodic theory of dynamical systems and it-
erated function systems. They also describe the evolution of Markov chains.
Stochastic semigroups describe the evolution of densities of distributions of
Markov processes like diffusion processes, piecewise deterministic processes
and hybrid stochastic processes.

Consider a stochastic semigroup {P t}t≥0. A density f∗ is called invariant
if P tf∗ = f∗ for each t > 0. The stochastic semigroup {P t}t≥0 is called
asymptotically stable if there is an invariant density f∗ such that

lim
t→∞

‖P tf − f∗‖ = 0 for f ∈ D.

A function h ∈ L1, h ≥ 0 and h 6= 0, is called a lower function for a
stochastic semigroup {P t}t≥0 if

P tf(x) ≥ h(x)− εt(x) and ‖εt‖ → 0

for each density f . This condition can be equivalently written as:

lim
t→∞

‖(P tf − h)−‖ = 0 for every f ∈ D.

Observe that if the semigroup is asymptotically stable then its invariant den-
sity f∗ is a lower function for it. Lasota and Yorke [15] proved the following
converse result.

Theorem 4. If there exists a lower function for a stochastic semigroup
{P t}t≥0 then this semigroup is asymptotically stable.
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3.3. A generalization of the lower function theorem

G. Pianigiani and J.A. Yorke [21] considered the following problem. Let X
be a compact subset of Rd and let S : X → Rd be a piecewise expanding map.
We consider the sequence of iterates x, S(x), . . . , Sn(x) of points from X as
long as they still remain in the set X. If Sn(x) /∈ X, then we lose the orbit
of x. We consider the following problem. If the initial distribution of points is
given by a probability measure µ0, what is the conditional probability µn(A)
that Sn(x) ∈ A given that x, S(x), . . . , Sn(x) are in X? Such a problem can
be called a discrete time billiard with holes, because we can treat X as a table
with holes and the transformation S describes the motion of a ball which can
fall through some hole.

We can define the Frobenius–Perron operator PS for the map S. The
operator PS is positive, but since the set S(X) is not containing in X, the
operator PS does not preserve the integral. If µ0 has a density f , then µn
has density PnS f/‖PnS f‖ and ‖PnS f‖ is the fraction of points such that the
sequence x, S(x), . . . , Sn(x) lies in the set X.

Since Theorem 4 was useful to study asymptotic stability of Frobenius–
Perron operators of piecewise expanding maps S : X → X, we hoped that it is
possible to find a version of this theorem which can be successfully applied to
billiards with holes. The problem was solved in [31], but instead of operators
on the space L1 we consider operators on C(X). The result is the following.

Theorem 5. Let X be a compact Hausdorff space, P be a positive operator
on C(X), F be a dense subset of C+(X) = {f ∈ C(X) : min f > 0}, and
α > 0. We assume that for each f ∈ F there exists a constant n0(f) such that

Pnf/‖Pnf‖ ≥ α for n ≥ n0(f).

We also assume that for some g ∈ C+(X), the sequence {Png/‖Png‖} has
a weakly convergent subsequence. Then there exist a probability measure ν,
λ > 0, and a function f∗ ∈ C+(X) such that Pf∗ = λf∗, ν(f∗) = 1 and

lim
n→∞

‖λ−nPnf − f∗
∫
X

f(x) ν(dx)‖ = 0 for each f ∈ C(X).

Consider the following example: S : [0, 1] → [0,∞) is given by S(x) =
cmin{x, 1− x}, c > 2 (see Fig. 2). Then

PSf(x) =
1

c

(
f
(x
c

)
+ f

(
1− x

c

))
.
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In this example we have

λ−nPnS f → f∗
∫
X

f(x) ν(dx),

λ = 2/c and the support of the measure ν is similar to the Cantor’s set.

Figure 2. The graph of S

A continuous version of Theorem 5 was proved in [12] and applied to study
the movement of a point on a circle with random jumps. Nowadays, such a
movement is called a piecewise deterministic Markov process, although at the
time we did not know this name. We also applied this theorem to some par-
tial differential equations with integral perturbation. Methods presenting in
papers [12, 31] are also used in the paper with M.C. Mackey [18] to study
the asymptotic behaviour of non-homogeneous age dependent cellular popu-
lations. A non-autonomous version of Theorem 5 was proved by A. Lasota
and J.A. Yorke [16].

4. Asymptotic behaviour of stochastic semigroups

4.1. Partially integral stochastic semigroups

We will now present methods for studying the asymptotics of stochastic
semigroups based on an idea reminiscent of the use of the lower function. It
involves estimating a semigroup from below using an integral operator.
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A Markov semigroup {P t} is called partially integral if there exist t > 0
and a measurable function k(t, x, y) ≥ 0, such that∫

X

∫
X

k(t, x, y)m(dx)m(dy) > 0,

and

P tf(y) ≥
∫
k(t, x, y)f(x)m(dx) for f ∈ D.

Using the theory of Harris operators one can prove many interesting results
concerning partially integral stochastic (and substochastic) semigroups.

The basic results have been published in the paper [33], but we will limit
ourselves to a few selected later results. In [22] was proved the following result.

Theorem 6. If a continuous time partially integral stochastic semigroup
{P t}t≥0 has a unique invariant density f∗ and f∗ > 0, then it is asymptoti-
cally stable.

4.2. Asymptotic decomposition of stochastic semigroups

The main problem with applying Theorem 6 is that often it is not easy to
find an invariant density. To get around this difficulty, in [23] was devised a
method of studying of stochastic semigroups via their asymptotic decomposi-
tion. To present this method, from now on we assume additionally that (X, ρ)
is a separable metric space and Σ = B(X) is the σ-algebra of Borel subsets
of X. We consider stochastic semigroups {P t}t≥0 which satisfy the following
condition:
(K) for every x0 ∈ X there exist an ε > 0, a t > 0, and a measurable function
η ≥ 0 such that

∫
η(x)m(dx) > 0 and

(7) k(t, x, y) ≥ η(y) for x ∈ B(x0, ε), y ∈ X,

where B(x0, ε) = {x ∈ X : ρ(x, x0) < ε}. It is clear that stochastic semi-
groups satisfying condition (K) are partially integral. Now we present the
main theorem of [23].

Theorem 7. Let {P t}t≥0 be a continuous time stochastic semigroup which
satisfies (K). Then there exist a countable (possible empty) set J , a family
of invariant densities {f∗j }j∈J with disjoint supports {Aj}j∈J , and a family
{αj}j∈J of positive linear functionals defined on L1 such that
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(i) for every j ∈ J and for every f ∈ L1 we have

(8) lim
t→∞

‖1AjP tf − αj(f)f∗j ‖ = 0,

(ii) if Y = X \
⋃
j∈J

Aj, then for every f ∈ L1 and for every compact set F

we have

(9) lim
t→∞

∫
F∩Y

P tf(x)m(dx) = 0.

We note that not only the sets Aj , j ∈ J , are disjoint but also their
closures are disjoint, which means that the measures µj(dx) := f∗j (x)m(dx)
have disjoint topological supports [24].

We now consider the case when J is an empty set. In order to formulate a
corollary of Theorem 7, we need an auxiliary notion. A stochastic semigroup
{P t}t≥0 is called sweeping from a set B ∈ Σ if for every f ∈ D

lim
t→∞

∫
B

P tf(x)m(dx) = 0.

Corollary 1. Assume that a stochastic semigroup {P t}t≥0 satisfies con-
dition (K) and has no invariant densities. Then {P t}t≥0 is sweeping from
compact sets.

This result also holds for discrete time stochastic semigroups.
Theorem 7 allows us also to find conditions guaranteeing that a stochas-

tic semigroup {P t}t≥0 satisfies the Foguel alternative, i.e. it is asymptotically
stable or sweeping from all compact sets. An advantage of the formulation
of some results in the form of the Foguel alternative is that in order to show
asymptotic stability we do not need to prove the existence of an invariant den-
sity. It is enough to check that the semigroup is not sweeping from compact
sets then, automatically, the semigroup {P t}t≥0 is asymptotically stable. A
more comprehensive introduction to the subject of convergence and asymp-
totic behaviour of semigroups of operators can be found in [3].

4.3. Applications to piecewise deterministic Markov processes

Theorems from Section 4.2 are very useful in the study of stochastic semi-
groups generated by Markov processes. In the case of diffusion processes,
the semigroups describing the evolution of the density of distributions of the
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process are integral and have continuous and positive kernels. Hence, The-
orem 7 can be applied without additional conditions and we immediately
obtain the Foguel alternative. Theorem 7 is satisfied by a semigroup induced
by any Markov chains because the space is discrete. This semigroup satisfies
the Foguel alternative if the chain is irreducible. It turns out that the theorem
can also be applied to piecewise deterministic Markov processes (PDMPs). We
will now give a definition of a PDMP and explain why such processes lead to
partially integral semigroups.

According to a non-rigorous definition by Davis [5], the class of PDMPs is
a general family of stochastic models covering virtually all non-diffusion ap-
plications. A more formal definition of a PDMP is the following. A continuous
time (homogeneous) Markov process X(t) is a PDMP if there is an increasing
sequence of random times (tn), called jumps, such that the sample paths of
X(t) are defined in a deterministic way in each interval (tn, tn+1).

We consider three types of jumps:
(a) the process can jump to a new point,
(b) at the moment of jump it changes the dynamics which defines its trajec-

tories,
(c) changes the dynamics when it hits some surface (a stochastic billiard).

The induced semigroup by a PDMP is generally not integral, but because
the jumps are at random moments there is a “blurring” of distributions. For
example, from a distribution concentrated at a point we get an absolutely
continuous distribution with respect to the Lebesgue measure, which leads to
a partially integral semigroup.

Figure 3. A flow with random jumps

Flows with jumps (see Fig. 3) are used in models of population growth
with disasters, immune systems [27, 29] and cell cycle models [26, 28].

Processes with switching dynamics (see Fig. 4) describe the action of sev-
eral flows with random switching between them. They are used as models of
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gene regulatory networks [2, 40]. Depending on the state of activity of the
genes occurring in the network, such a model is described by different systems
of differential equations. A change in gene activity switches the system.

Figure 4. Process with switching dynamics

We also consider processes in which a change in dynamics or a jump in
phase space occurs when the process reaches the boundary of the domain
or some fixed subset of the phase space. An example of such a process is
a stochastic billiard [4, 17, 20]. Similar properties have models of cell cycle
and neuron activity [25]. A more comprehensive introduction to PDMPs and
there applications can be found in [38, 41].

5. Invariant measures for partial differential equations

5.1. Lasota example

A. Lasota, in his seminal work [9], showed that even relatively simple linear
partial differential equations have interesting chaotic properties. We will show
that such equations have also interesting ergodic properties, from which the
aforementioned chaotic properties arise.

Consider the following equation with the initial condition:

(10)
∂u

∂t
+ x

∂u

∂x
= λu, u(0, x) = v(x), λ > 0.

This equation can served as a very simple model of the dynamics of cell
maturation. Here x is the cell maturity, 1 is the maturation rate. If k is the
rate of population growth, then λ = k − 1.
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Problem (10) defines a semiflow on the space

X = {v ∈ C[0, 1] : v(0) = 0}

given by

Stv(x) = u(t, x) = eλtv(e−tx).

If the space is finite dimensional, then ergodic properties of semiflows
can be successfully investigated by means of Frobenius–Perron operators. But
this method is rather difficult to apply in the infinite dimensional space X.
A. Lasota [8] proposed to apply Theorem 3 to this flow and he proved that
if λ ≥ 2, then there is a continuous ergodic measure µ on X invariant with
respect to {St}.

The disadvantage of this method is that the constructed measure has a rel-
atively small support and it is not mixing, and thus we cannot use it to prove
the chaotic properties discussed in Sec. 2.3. In particular we are not able
to prove that the semiflow (S, µ) has a dense orbit and has the property of
sensitive dependence on initial conditions.

Looking for a method to construct invariant measures that have the desired
properties, I noticed that it would be more convenient to use a method based
on isomorphism of the flow with a translation semiflow and using measure
introduced by some stationary process. We will present this method in the
next section, but now we only mention that an invariant mixing measure with
suppµ = X can be given by the formula µ(A) = P(ξx ∈ A), where ξx = wx2λ

and wt, t ≥ 0, is the standard Wiener process. Since problem (10) describes
the evolution of distribution of maturity in a cellular population one can prefer
to consider the semiflow {St}t≥0 restricted to the set X+ = {v ∈ X : v ≥ 0}.
In this case the invariant measure on X+ can be induced by the process
ξx = |wx2λ |.

5.2. General approach

Now we consider semiflow generated by the equation of the form

(11)
∂u

∂t
+ c(x)

∂u

∂x
= f(x, u).

We assume that c and f are C1-functions and c(0) = 0, c(x) > 0 for x ∈ (0, 1],
f(0, u∗) = 0, ∂f

∂u(0, u∗) > 0, f(0, u) 6= 0 for u 6= u∗. Let

X = {v ∈ C[0, 1] : v(0) = u∗} and Stv(x) = u(t, x).
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This flow was studied in [30, 32] and, among other things, it was proved the
following theorem.

Theorem 8. There exists a probability measure µ such that:
(a) µ is invariant with respect to {St},
(b) µ is exact,
(c) suppµ = X.

Draft of the proof. Let Y = C[0,∞) and let {T t}t≥0 be the left-side
shift on the space Y defined by (T tϕ)(s) = ϕ(s+ t).

1. The semiflows {St}t≥0 and {T t}t≥0 are isomorphic, i.e. the map Q :
X → Y given by Qv(t) = Stv(1) is a homeomorphism of X onto Y and

(12) Q ◦ St = T t ◦Q for t ≥ 0.

2. Let wt, t ≥ 0, be the Wiener process and ξt = etwe−2t for t ≥ 0. Then
ξt is a stationary Gaussian process with continuous trajectories. Let

m(A) = P{ω : ξt(ω) ∈ A}, A ∈ B(Y ).

The measure m is invariant under {T t} and m(Q(X)) = 1. Thus the measure
µ(A) = m(Q(A)) is invariant under {St}.

3. Exactness of (T t, Y ) follows from the Blumenthal’s zero-one law for the
Wiener process; from the definition of the measure m; and from an equivalent
definition of exactness.

4. Positivity of µ on open sets can be obtained from the following property
of Wiener process:

P{ω : f(t) < wt(ω) < g(t) for t ∈ [a, b]} > 0

for continuous functions f < g and 0 < a < b. �

5.3. Other chaotic models

The method of constructing invariant measures presented in Section 5.2
can be used for semiflows generated by other partial differential equations,
although the proofs are no longer as easy as for Eq. (11). We will briefly
present other equations studied using this method.

We consider a population of stem cells. These cells live in the bone marrow
and they are precursors of any blood cells. They are subjects of two biological
processes: maturation and division. Stem cells can be at different levels of
morphological development called maturity. The maturity of a cell differs from
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its age, because we assume that a newly born cell is in the same morphological
state as its mother at the point of division. We assume that maturity is a
real number x ∈ [0, 1]. The function u(t, x) describes the density distribution
function of cells with respect to their maturity. The maturity grows according
to the equation x′ = g(x). When one cell reaches the maturity 1 it leaves
the bone marrow, then one of cells from the bone marrow splits. This cell is
chosen randomly according to the distribution given by the density u(t, x). It
follows from the assumptions that a newly born cell has the same maturity
as its mother cell and each cell can divide with the same probability (see
Fig. 5). There is an exterior regulatory system in which the production of

0 1x

Figure 5. Scheme of maturation and division of cells
in the bone marrow

erythrocytes is stimulated by the hormone erythropoietin and the system
tries to keep the number of erythrocytes on a constant level. We have not
added this external regulatory system, thus we consider a pathological case
when the exterior regulatory system does not work. The model is described
by a nonlinear semiflow induced by the problem

(13)
∂u

∂t
+

∂

∂x
(g(x)u) = g(1)u(t, 1)u(t, x), u(0, x) = u0(x).

The semiflow is defined on the space of densities. In the paper [35] it was shown
that the semiflow generated by the initial problem (13) possesses an invariant
measure which is mixing and supported on the whole set of all densities.

The second example is the Bell and Anderson model of size structured
cellular population given by the equation

(14)
∂u

∂t
+

∂

∂x
(g(x)u) = −(µ+ b)u(t, x) + 4bu(t, 2x),

where x ∈ [0, 1] and we put u(t, 2x) = 0 if 2x > 1. In [36] it was shown that
if g(x) = ax, then there exists a mixing invariant measure supported on the
whole space.



With Andrzej Lasota there and back again 151

The next example is d-dimensional model considered in the paper [39]:

∂u

∂t
+ a1(x)

∂u

∂x1
+ · · ·+ ad(x)

∂u

∂xd
= f(x, u).

In construction of invariant measure we use Lévy d-parameter Brownian mo-
tion, which is a Gaussian random field, and we show that the semiflow is
isomorphic with a translation flow along the radii.

The last example is the heat equation:

(15) ut(t, x) = uxx(t, x), t ≥ 0, x ≥ 0

with the boundary and initial conditions

(16) ux(t, 0) = 0 for t ≥ 0, u(0, x) = v(x) for x ≥ 0.

Here we construct an invariant mixing measure supported on the phase space
X = {v ∈ C[0,∞) : limx→∞ e

−xv(x) = 0}.

6. Remarks and Conclusions

6.1. Other mathematical research inspired by biology

I devoted the lecture mainly to presenting some mathematical issues with-
out going too far into discussing their applications to biological models. Fi-
nally, I would like to show with the example of A. Lasota and my experience,
that the study of biological issues can be inspiring for the development of
mathematical methods.

1. Cell cycle modeling has influenced the development of the theory of
Markov operators and the study of their asymptotic properties.

2. Structural population models lead to the development of the theory
of transport equations, other than those found in physics, and the theory of
semigroup operators.

3. The study of population models involves non-trivial nonlinear and non-
local partial differential equations with delays [19]. Studying the behavior of
solutions to such equations is quite a challenge for mathematicians.

4. Biologists are increasingly using individual-based models, also known
as agent-based models. Individual-based models describe a population as a
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collection of different organisms whose local interactions determine the be-
haviour of the entire population. The individual description is convenient for
computer simulations and the determination of various model parameters,
and appropriate limit passages lead to interesting transport equations. For
example, the phenotypic model studied in the paper [42] after an appropriate
limit passage leads to a transport equation, including the Tjon-Wu equation
of the energy distribution of particles in the Boltzmann equation, which was
studied by A. Lasota [10].

6.2. To take home

1. Markov operators and semigroups can be used to describe and prove
ergodic and chaotic properties of dynamical systems.

2. Markov semigroups describe the evolutions of densities of Markov pro-
cesses: diffusion processes, piecewise deterministic Markov processes, stochas-
tic hybrid systems (diffusions with jumps).

3. The chaotic properties of dynamical systems generated by partial dif-
ferential equations can be successfully studied using stochastic processes.

4. Modern biology boldly reaches for mathematical models, and virtually
every part of mathematics can be useful in modeling. Due to the random
nature of biological phenomena, stochastics plays a major role in this regard.

5. We will conclude with a quote from Sir Rory Collins head of clinical
research at Oxford University: “If you want a career in medicine these
days you’re better off studying mathematics or computing than
biology.”
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