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ON MERSENNE NUMBERS AND THEIR
BIHYPERBOLIC GENERALIZATIONS

Dorota Bród, Anetta Szynal-Liana

Abstract. In this paper, we introduce Mersenne and Mersenne–Lucas bihy-
perbolic numbers, i.e. bihyperbolic numbers whose coefficients are consecutive
Mersenne and Mersenne–Lucas numbers. Moreover, we study one parameter
generalizations of Mersenne and Mersenne–Lucas bihyperbolic numbers. We
present some properties of these numbers and relations between them.

1. Introduction and preliminary results

Let n ≥ 0 be an integer. The nth Mersenne number Mn and the nth
Mersenne–Lucas number Hn are defined recursively by

Mn = 3Mn−1 − 2Mn−2, for n ≥ 2 with M0 = 0, M1 = 1

and

Hn = 3Hn−1 − 2Hn−2, for n ≥ 2 with H0 = 2, H1 = 3,

respectively. Note that Mersenne–Lucas numbers are also called as Fermat
numbers. The Binet type formulas of these sequences have the form Mn =
2n − 1 and Hn = 2n + 1, so Hn =Mn + 2.
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Mersenne sequence has been studied in many papers, see for example [2,
3, 6, 7, 9]. In the literature, we can find some generalizations of Mersenne
numbers, see [4, 10]. In [8], Ochalik and Włoch introduced the generalized
Mersenne numbers as follows. Let k ≥ 3 be a fixed integer. For any integer
n ≥ 0 let M(k, n) be the nth generalized Mersenne number defined by the
second order linear recurrence relation of the form

(1.1) M(k, n) = kM(k, n− 1)− (k − 1)M(k, n− 2)

for n ≥ 2 with M(k, 0) = 0 and M(k, 1) = 1.
For n = 0, 1, 2, 3, 4, . . . the generalized Mersenne numbers are 0, 1, k,

k2 − k + 1, k3 − 2k2 + 2k, . . .. Moreover, M(3, n) =Mn.
By analogy, we define the generalized Mersenne–Lucas numbers in the

following way. Let k ≥ 3 be a fixed integer. For any integer n ≥ 0 let H(k, n)
be the nth generalized Mersenne–Lucas number defined by

(1.2) H(k, n) = kH(k, n− 1)− (k − 1)H(k, n− 2)

for n ≥ 2 with H(k, 0) = 2 and H(k, 1) = 3.
Then the first few terms of the generalized Mersenne–Lucas sequence are

2, 3, k+2, k2−k+3, k3−2k2+2k+2, . . .. It is easily seen that H(3, n) = Hn.

Proposition 1.1. Let k ≥ 3 be a fixed integer. For any integer n ≥ 0 we
have H(k, n) =M(k, n) + 2.

Proof. (By induction on n.) If n = 0 then M0 = 0, H0 = 2. If n = 1
then M1 = 1, H1 = 3. Now assume that for any n ≥ 0, we have H(k, n) =
M(k, n)+2 andH(k, n+1) =M(k, n+1)+2.We shall show thatH(k, n+2) =
M(k, n+ 2) + 2. Applying the induction’s hypothesis we obtain

H(k, n+ 2) = kH(k, n+ 1)− (k − 1)H(k, n)

= k (M(k, n+ 1) + 2)− (k − 1) (M(k, n) + 2)

= kM(k, n+ 1)− (k − 1)M(k, n) + 2

=M(k, n+ 2) + 2,

and by the induction’s rule the formula follows. �

Some identities, properties, combinatorial interpretations and matrix gen-
erators of M(k, n) were given in [8] and [11]. In the next part of the paper we
use the following results.
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Theorem 1.2 ([8]). Let n ≥ 0, k ≥ 3 be integers. Then

(1.3) M(k, n) =
1

k − 2
((k − 1)n − 1) .

Theorem 1.3 ([8]). Let n ≥ 0, k ≥ 3 be integers. Then

(1.4) M(k, n+ 1)−M(k, n) = (k − 1)n.

Theorem 1.4 ([11]). Let n ≥ 0, k ≥ 3 be integers. Then

(1.5) M(k, n+ 1) = (k − 1)M(k, n) + 1.

Using the fact that H(k, n) =M(k, n)+ 2, we can give some properties of
generalized Mersenne–Lucas numbers.

Corollary 1.5. Let n ≥ 0, k ≥ 3 be integers. Then

H(k, n) =
(k − 1)n + 2k − 5

k − 2
,(1.6)

H(k, n+ 1)−H(k, n) = (k − 1)n(1.7)

and

(1.8) H(k, n+ 1) = (k − 1)H(k, n)− 2k + 5.

The Mersenne numbers and their generalizations have applications also in
the theory of hypercomplex numbers. In [5], Daşdemir and Bilgici introduced
and studied Mersenne quaternions, Gaussian Mersenne numbers and gener-
alized Mersenne quaternions. In [11], the authors considered the Mersenne
hybrid numbers and generalized Mersenne hybrid numbers. In this paper, we
use the Mersenne, Mersenne–Lucas numbers and their generalizations in the
theory of bihyperbolic numbers.

Hyperbolic numbers are two dimensional number system. Hyperbolic imagi-
nary unit, so-called unipotent, is an element h 6= ±1 such that h2 = 1. Bihy-
perbolic numbers are a generalization of hyperbolic numbers. Let H2 be the
set of bihyperbolic numbers ζ of the form

ζ = x0 + x1j1 + x2j2 + x3j3,

where x0, x1, x2, x3 ∈ R and j1, j2, j3 /∈ R are operators such that

(1.9) j21 = j22 = j23 = 1, j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1.



Dorota Bród, Anetta Szynal-Liana

From the above rules the multiplication of bihyperbolic numbers can be made
analogously to the multiplication of algebraic expressions. The addition and
the subtraction of bihyperbolic numbers is done by adding and subtracting
corresponding terms and hence their coefficients. The addition and multipli-
cation on H2 are commutative and associative, (H2,+, ·) is a commutative
ring. For the algebraic properties of bihyperbolic numbers, see [1].

Let n ≥ 0 be an integer. The nth bihyperbolic Mersenne number BhMn

and the nth bihyperbolic Mersenne–Lucas number BhHn are defined by

BhMn =Mn +Mn+1j1 +Mn+2j2 +Mn+3j3,

BhHn = Hn +Hn+1j1 +Hn+2j2 +Hn+3j3,

respectively, whereMn is the nth Mersenne number, Hn is the nth Mersenne–
Lucas number and j1, j2, j3 are units which satisfy (1.9).

The nth generalized bihyperbolic Mersenne number BhMk
n we define in

the following way

(1.10) BhMk
n =M(k, n) +M(k, n+ 1)j1 +M(k, n+ 2)j2 +M(k, n+ 3)j3,

whereM(k, n) denotes the nth generalized Mersenne number, defined by (1.1).
By analogy, the nth bihyperbolic Mersenne–Lucas number BhHk

n is defined by

(1.11) BhHk
n = H(k, n) +H(k, n+ 1)j1 +H(k, n+ 2)j2 +H(k, n+ 3)j3,

where H(k, n) denotes the nth generalized Mersenne–Lucas number, defined
by (1.2). For k = 3 we have BhM3

n = BhMn and BhH3
n = BhHn.

Using the above definitions, we can write initial generalized bihyperbolic
Mersenne numbers

BhMk
0 = j1 + kj2 + (k2 − k + 1)j3,

BhMk
1 = 1 + kj1 + (k2 − k + 1)j2 + (k3 − 2k2 + 2k)j3,

(1.12)

generalized bihyperbolic Mersenne–Lucas numbers

BhHk
0 = 2 + 3j1 + (k + 2)j2 + (k2 − k + 3)j3,

BhHk
1 = 3 + (k + 2)j1 + (k2 − k + 3)j2 + (k3 − 2k2 + 2k + 2)j3,

(1.13)

bihyperbolic Mersenne numbers

BhM0 = j1 + 3j2 + 7j3,

BhM1 = 1 + 3j1 + 7j2 + 15j3,
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and bihyperbolic Mersenne–Lucas numbers

BhH0 = 2 + 3j1 + 5j2 + 9j3,

BhH1 = 3 + 5j1 + 9j2 + 17j3.

2. Main results

In this section, we present some properties of the generalized bihyperbolic
Mersenne and Mersenne–Lucas numbers.

Theorem 2.1. Let n ≥ 0, k ≥ 3 be integers. Then

BhMk
n+2 = kBhMk

n+1 − (k − 1)BhMk
n ,

where BhMk
0 and BhMk

1 are defined by (1.12).

Proof. By formulas (1.10) and (1.1) we get

kBhMk
n+1 − (k − 1)BhMk

n

= k (M(k, n+ 1) +M(k, n+ 2)j1 +M(k, n+ 3)j2 +M(k, n+ 4)j3)

− (k − 1) (M(k, n) +M(k, n+ 1)j1 +M(k, n+ 2)j2 +M(k, n+ 3)j3)

= kM(k, n+ 1)− (k − 1)M(k, n)

+ (kM(k, n+ 2)− (k − 1)M(k, n+ 1)) j1

+ (kM(k, n+ 3)− (k − 1)M(k, n+ 2)) j2

+ (kM(k, n+ 4)− (k − 1)M(k, n+ 3)) j3

=M(k, n+ 2) +M(k, n+ 3)j1 +M(k, n+ 4)j2 +M(k, n+ 5)j3

= BhMk
n+2. �

In the same way, using (1.11) and (1.2), we can prove the next theorem.

Theorem 2.2. Let n ≥ 0, k ≥ 3 be integers. Then

BhHk
n+2 = kBhHk

n+1 − (k − 1)BhHk
n,

where BhHk
0 and BhHk

1 are defined by (1.13).
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Theorem 2.3. Let n ≥ 0, k ≥ 3 be integers. Then

BhMk
n+1 = (k − 1)BhMk

n + 1 + j1 + j2 + j3,

where BhMk
0 is defined by (1.12).

Proof. Using (1.10) and (1.5), we have

BhMk
n+1 − (k − 1)BhMk

n

=M(k, n+ 1) +M(k, n+ 2)j1 +M(k, n+ 3)j2 +M(k, n+ 4)j3

− (k − 1) (M(k, n) +M(k, n+ 1)j1 +M(k, n+ 2)j2 +M(k, n+ 3)j3)

=M(k, n+ 1)− (k − 1)M(k, n) + (M(k, n+ 2)− (k − 1)M(k, n+ 1)) j1

+ (M(k, n+ 3)− (k − 1)M(k, n+ 2)) j2

+ (M(k, n+ 4)− (k − 1)M(k, n+ 3)) j3

= 1 + j1 + j2 + j3. �

Theorem 2.4. Let n ≥ 0, k ≥ 3 be integers. Then

BhHk
n+1 = (k − 1)BhHk

n + (−2k + 5)(1 + j1 + j2 + j3)− 2j1 − 4j2 − 6j3,

where BhHk
0 is defined by (1.13).

Proof. Using (1.11) and (1.8), we have

BhHk
n+1 − (k − 1)BhHk

n

= H(k, n+ 1) +H(k, n+ 2)j1 +H(k, n+ 3)j2 +H(k, n+ 4)j3

− (k − 1) (H(k, n) +H(k, n+ 1)j1 +H(k, n+ 2)j2 +H(k, n+ 3)j3)

= H(k, n+ 1)− (k − 1)H(k, n) + (H(k, n+ 2)− (k − 1)H(k, n+ 1)) j1

+ (H(k, n+ 3)− (k − 1)H(k, n+ 2)) j2

+ (H(k, n+ 4)− (k − 1)H(k, n+ 3)) j3

= −2k + 5 + (−2k + 3) j1 + (−2k + 1) j2 + (−2k − 1) j3

= (−2k + 5)(1 + j1 + j2 + j3)− 2j1 − 4j2 − 6j3. �

Next theorems give the Binet formulas for the generalized bihyperbolic
Mersenne and Mersenne–Lucas numbers.
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Theorem 2.5. Let n ≥ 0, k ≥ 3 be integers. Then

(2.1) BhMk
n =

(k − 1)n − 1

k − 2
(1 + j1 + j2 + j3)

+ (k − 1)n
(
j1 + kj2 + (k2 − k + 1)j3

)
.

Proof. Using (1.4), we have M(k, n + 1) = M(k, n) + (k − 1)n, hence
M(k, n + 2) = M(k, n + 1) + (k − 1)n+1 = M(k, n) + (k − 1)n + (k − 1)n+1

and M(k, n+ 3) =M(k, n) + (k − 1)n + (k − 1)n+1 + (k − 1)n+2. Thus

BhMk
n =M(k, n) +M(k, n+ 1)j1 +M(k, n+ 2)j2 +M(k, n+ 3)j3

=M(k, n) (1 + j1 + j2 + j3)

+ (k − 1)nj1 +
(
(k − 1)n + (k − 1)n+1

)
j2

+
(
(k − 1)n + (k − 1)n+1 + (k − 1)n+2

)
j3

=M(k, n)(1 + j1 + j2 + j3) + (k − 1)n
(
j1 + kj2 + (k2 − k + 1)j3

)
.

Putting M(k, n) = 1
k−2 ((k − 1)n − 1) (see (1.3)), we obtain the desired for-

mula. �

Theorem 2.6. Let n ≥ 0, k ≥ 3 be integers. Then

(2.2) BhHk
n =

(k − 1)n + 2k − 5

k − 2
(1 + j1 + j2 + j3)

+ (k − 1)n
(
j1 + kj2 + (k2 − k + 1)j3

)
.

Proof. Using (1.6), (1.7) and proceeding analogously as in the proof of
the previous theorem we obtain the desired formula. �

Corollary 2.7. Let n ≥ 0 be an integer. For k = 3 we have

BhMn = (2n − 1)(1 + j1 + j2 + j3) + 2n (j1 + 3j2 + 7j3)

= 2n (1 + 2j1 + 4j2 + 8j3)− (1 + j1 + j2 + j3)

and

BhHn = (2n + 1) (1 + j1 + j2 + j3) + 2n (j1 + 3j2 + 7j3)

= 2n (1 + 2j1 + 4j2 + 8j3) + (1 + j1 + j2 + j3).
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For simplicity of notation let A = 1 + j1 + j2 + j3. Using (1.3), (1.6)
and (1.12), we can write (2.1) and (2.2) as

(2.3) BhMk
n = A ·M(k, n) + (k − 1)nBhMk

0

and

(2.4) BhHk
n = A ·H(k, n) + (k − 1)nBhMk

0 ,

respectively.
Using the Binet formula (2.3) and identity (1.3), we can derive the Catalan

identity for the generalized bihyperbolic Mersenne numbers.

Theorem 2.8. Let n ≥ 0, r ≥ 0, k ≥ 3 be integers such that n ≥ r. Then

BhMk
n+r ·BhMk

n−r −
(
BhMk

n

)2
=

(k − 1)n − 1

k − 2
(k2 + 2)(k − 1)n−r (1− (k − 1)r)

2
(1 + j1 + j2 + j3).

Proof. By formula (2.3) we get

BhMk
n+r ·BhMk

n−r −
(
BhMk

n

)2
=
(
A ·M(k, n) + (k − 1)n+rBhMk

0

) (
A ·M(k, n) + (k − 1)n−rBhMk

0

)
−
(
A ·M(k, n) + (k − 1)nBhMk

0

) (
A ·M(k, n) + (k − 1)nBhMk

0

)
= A ·M(k, n) ·BhMk

0 · (k − 1)n−r +A ·M(k, n) ·BhMk
0 · (k − 1)n+r

− 2A ·M(k, n) ·BhMk
0 · (k − 1)n

= A ·M(k, n) ·BhMk
0 · (k − 1)n−r

(
1 + (k − 1)2r − 2(k − 1)r

)
=M(k, n) ·A ·BhMk

0 · (k − 1)n−r (1− (k − 1)r)
2
.

Moreover,

A ·BhMk
0 = (1 + j1 + j2 + j3)

(
j1 + kj2 + (k2 − k + 1)j3

)
= j1 + kj2 + (k2 − k + 1)j3 + 1 + kj3 + (k2 − k + 1)j2

+ j3 + k + (k2 − k + 1)j1 + j2 + kj1 + (k2 − k + 1)

= (k2 + 2)(1 + j1 + j2 + j3).
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Hence we get

BhMk
n+r ·BhMk

n−r −
(
BhMk

n

)2
=

(k − 1)n − 1

k − 2
(k2 + 2)(k − 1)n−r (1− (k − 1)r)

2
(1 + j1 + j2 + j3),

which completes the proof. �

In the same way, using (2.4) and (1.6), we obtain the Catalan identity for
the generalized bihyperbolic Mersenne–Lucas numbers.

Theorem 2.9. Let n ≥ 0, r ≥ 0, k ≥ 3 be integers such that n ≥ r. Then

BhHk
n+r ·BhHk

n−r −
(
BhHk

n

)2
=

(k − 1)n + 2k − 5

k − 2
(k2 + 2)(k − 1)n−r (1− (k − 1)r)

2
(1 + j1 + j2 + j3).

For r = 1 we obtain Cassini identities for the generalized bihyperbolic
Mersenne and Mersenne–Lucas numbers.

Corollary 2.10. Let n ≥ 1, k ≥ 3 be integers. Then

BhMk
n+1 ·BhMk

n−1 −
(
BhMk

n

)2
= ((k − 1)n − 1) (k − 1)n−1(k − 2)(k2 + 2)(1 + j1 + j2 + j3).

Corollary 2.11. Let n ≥ 1, k ≥ 3 be integers. Then

BhHk
n+1 ·BhHk

n−1 −
(
BhHk

n

)2
= ((k − 1)n + 2k − 5) (k − 1)n−1(k − 2)(k2 + 2)(1 + j1 + j2 + j3).

For k = 3 we obtain Catalan and Cassini identities for the bihyperbolic
Mersenne and Mersenne–Lucas numbers.

Corollary 2.12. Let n ≥ 1 be an integer. Then

BhMn+r ·BhMn−r − (BhMn)
2

= 11(2n − 1)
(
2n−r − 2n+1 + 2n+r

)
(1 + j1 + j2 + j3).



Dorota Bród, Anetta Szynal-Liana

Corollary 2.13. Let n ≥ 1 be an integer. Then

BhHn+r ·BhHn−r − (BhHn)
2

= 11(2n + 1)
(
2n−r − 2n+1 + 2n+r

)
(1 + j1 + j2 + j3).

Corollary 2.14. Let n ≥ 1 be an integer. Then

BhMn+1 ·BhMn−1 − (BhMn)
2
= 11(2n − 1)2n−1(1 + j1 + j2 + j3).

Corollary 2.15. Let n ≥ 1 be an integer. Then

BhHn+1 ·BhHn−1 − (BhHn)
2
= 11(2n + 1)2n−1(1 + j1 + j2 + j3).

Now we give ordinary generating functions for the generalized bihyperbolic
Mersenne and Mersenne–Lucas numbers.

Theorem 2.16. The generating function for the generalized bihyperbolic
Mersenne number sequence {BhMk

n} is

G(t) =
BhMk

0 + (BhMk
1 − kBhMk

0 )t

1− kt+ (k − 1)t2
.

Proof. Assume that the generating function of the generalized bihyper-
bolic Mersenne number sequence {BhMk

n} has the formG(t) =
∑∞

n=0BhM
k
nt

n.
Then

(1− kt+(k − 1)t2)G(t)

= (1− kt+ (k − 1)t2)(BhMk
0 +BhMk

1 t+BhMk
2 t

2 + . . .)

= BhMk
0 +BhMk

1 t+BhMk
2 t

2 + . . .

− kBhMk
0 t− kBhMk

1 t
2 − kBhMk

2 t
3 − . . .

+ (k − 1)BhMk
0 t

2 + (k − 1)BhMk
1 t

3 + (k − 1)BhMk
2 t

4 + . . .

= BhMk
0 + (BhMk

1 − kBhMk
0 )t,

since BhMk
n = kBhMk

n−1 − (k − 1)BhMk
n−2 and the coefficients of tn for

n ≥ 2 are equal to zero. Moreover, BhMk
0 = j1 + kj2 + (k2 − k + 1)j3,

BhMk
1 − kBhMk

0 = 1 + (−k + 1)j2 + (−k2 + k)j3. �
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Theorem 2.17. The generating function for the generalized bihyperbolic
Mersenne-Lucas number sequence {BhHk

n} is

g(t) =
BhHk

0 + (BhHk
1 − kBhHk

0 )t

1− kt+ (k − 1)t2
.

Proof. The proof of this theorem is similar to the proof of the previous
theorem. Note only that BhHk

0 = 2 + 3j1 + (k + 2)j2 + (k2 − k + 3)j3 and
BhHk

1 − kBhHk
0 = (3− 2k) + (2− 2k)j1 + (3− 3k)j2 + (2− k − k2)j3. �

Remark 2.18. The generating function γ(t) for the bihyperbolic Mersenne
number sequence {BhMn} is

γ(t) =
BhM0 + (BhM1 − 3BhM0)t

1− 3t+ 2t2
,

where BhM0 = j1 + 3j2 + 7j3 and BhM1 − 3BhM0 = 1− 2j2 − 6j3.

Remark 2.19. The generating function η(t) for the bihyperbolic Mersenne–
Lucas number sequence {BhHn} is

η(t) =
BhH0 + (BhH1 − 3BhH0)t

1− 3t+ 2t2
,

where BhH0 = 2+3j1+5j2+9j3 and BhH1−3BhH0 = −3−4j1−6j2−10j3.

At the end, we give the matrix representations of the defined bihyperbolic
numbers.

Theorem 2.20. Let n ≥ 0, k ≥ 3 be integers. Then[
BhMk

n+2 BhMk
n+1

BhMk
n+1 BhMk

n

]
=

[
BhMk

2 BhMk
1

BhMk
1 BhMk

0

]
·
[
k 1
−(k − 1) 0

]n
.

Proof. (By induction on n.) If n = 0 then assuming that the matrix to
the power 0 is the identity matrix the result is obvious. Now suppose that for
any n ≥ 0 holds[

BhMk
n+2 BhMk

n+1

BhMk
n+1 BhMk

n

]
=

[
BhMk

2 BhMk
1

BhMk
1 BhMk

0

]
·
[
k 1
−(k − 1) 0

]n
.

We shall show that[
BhMk

n+3 BhMk
n+2

BhMk
n+2 BhMk

n+1

]
=

[
BhMk

2 BhMk
1

BhMk
1 BhMk

0

]
·
[
k 1
−(k − 1) 0

]n+1

.
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By simple calculations, using induction’s hypothesis we have[
BhMk

2 BhMk
1

BhMk
1 BhMk

0

]
·
[
k 1
−(k − 1) 0

]n
·
[
k 1
−(k − 1) 0

]

=

[
BhMk

n+2 BhMk
n+1

BhMk
n+1 BhMk

n

]
·
[
k 1
−(k − 1) 0

]

=

[
k ·BhMk

n+2 − (k − 1) ·BhMk
n+1 BhMk

n+2

k ·BhMk
n+1 − (k − 1) ·BhMk

n BhMk
n+1

]

=

[
BhMk

n+3 BhMk
n+2

BhMk
n+2 BhMk

n+1

]
,

which completes the proof. �

Theorem 2.21. Let n ≥ 0, k ≥ 3 be integers. Then[
BhHk

n+2 BhHk
n+1

BhHk
n+1 BhHk

n

]
=

[
BhHk

2 BhHk
1

BhHk
1 BhHk

0

]
·
[
k 1
−(k − 1) 0

]n
.

Corollary 2.22. Let n ≥ 0 be an integer. Then[
BhMn+2 BhMn+1

BhMn+1 BhMn

]
=

[
BhM2 BhM1

BhM1 BhM0

]
·
[

3 1
−2 0

]n
.

Corollary 2.23. Let n ≥ 0 be an integer. Then[
BhHn+2 BhHn+1

BhHn+1 BhHn

]
=

[
BhH2 BhH1

BhH1 BhH0

]
·
[

3 1
−2 0

]n
.

Note that multiplication of bihyperbolic numbers is commutative and de-
terminant properties can be used. For example, calculating determinants in
Theorems 2.20–2.21 and Corollaries 2.22–2.23, we can also obtain Cassini iden-
tities. Using algebraic operations and matrix algebra could give many other
interesting properties of these numbers.
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