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ON THE ALIENATION OF MULTIPLICATIVE
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Abstract. Given S a semigroup. We study two Pexider-type functional equa-
tions

f(zy) + g(zy) = f(x) + f(y) +9(x)9(y), =z,y€S,

and
/ f(zyt)du(t) +/ glxyt)du(t) = f(x) + f(y) + 9(x)g(y), =,y €S,
S S

for unknown functions f and g mapping S into C, where u is a linear combi-
nation of Dirac measures (9, );es for some fixed elements (z;);cr contained in
S such that [gdu(t) = 1.

The main goal of this paper is to solve the above two functional equations
and examine whether or not they are equivalent to the systems of equations

{f(xy) = f(z) + f(v),
g(zy) = g(x)g(y), =,y€S,
and

Js flzyt)du(t) = f(z) + f(y),

Js 9(zyt)du(t) = g(z)g(y), =,y €S,

respectively.
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1. Notation and terminology

Throughout this paper .S denotes an arbitrary semigroup, i.e. a set equipped
with an associative binary operation and p := ), ; a;6., is a linear combi-
nation of Dirac measures (0,,);cr, where (2;);cr are fixed elements in S and

(ai)ier € C are such that [odu(t) = ,., 00 = 1 and {agla; # 0,7 € I} is
a finite set. A function A: S — C is additive if A(zy) = A(z) + A(y) for all
xz,y € S. A function x: S — C is multiplicative if x(zxy) = x(z)x(y) for all
x,y € 8S.

Two complex-valued functions f and g are quadratically equivalent if for
some nonvanishing constants ci,co € C we have

Ad(erf + cag)(z) =0
for all x € S, where A, denotes the difference operator with span y given by
Ayf(z) := flzy) — f(z)

and the iterates A} are defined respectively Agf = f, AZ"’lf = Ay (AY ),
n= 1,2,.... In particular, for n = 3:

ASf(x) = f(zy®) — 3f(zy?) + 3f (xy) — f(x)
or, equivalently,
A = fuo —3f2 +3f,— [,

where fy(z) = f(xy) for all z,y € S.

2. Introduction
Let A and m be an additive and a multiplicative functions respectively.
Then
(2.1) A(zy) = A(x) + A(y), =,y €S,
and

(2.2) m(zy) = m(x)m(y), x,y€S.
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Summing up these two functional equations side by side we obtain
Azy) +m(ry) = Alx) + A(y) + m(z)m(y), =,y€S.

Conversely, a natural question is whether given two functions f: S — C and
g: S — C, the corresponding equation

(2.3) flzy) +g(xy) = f(z) + f(y) + 9(x)g(y), =,y €S,

implies the additivity of f and hence the multiplicativity of ¢ (alienation
phenomenon). For the more detailed study of the history of this phenomenon
see the survey article [10].

During their investigations of the alienation of Cauchy’s functional equa-
tions, Dhombres [2] (where the alienation idea comes from) and Ger [6] 7, [9]
obtained interesting results about the generalized ring homomorphisms equa-
tion

af(zy) +bf(x +y) + cf (@) f(y) + df (x) + df (y) = 0.

By algebraic methods Ger [8] proved that the solutions f,g: M — R of the
Pexider functional equation

(24)  flz+y) +g(x+y) = flz)+ fly) +9(x)g9(y), z,y€ M,

on a commutative monoid M mapping into an integral domain R are closely
related to the solutions of the trigonometric functional equation

(2.5) h(z +vy) = p(z)h(y) + h(x), =,y € M.

The solutions of equation are known on commutative monoids, and then
the solutions of are described by means of additive and multiplicative
functions. Furthermore, Ger [§| establishes the alienation of additivity and
exponentiality up to quadratic equivalence.

By using Stetkeer result [I3] about the solutions of on groups, Ger
main result can be extended to the more general case, when M is a group not
necessarily commutative.

The purpose of the present paper is to show how Ger’s work [8] on com-
mutative monoids extends to the much wider framework of semigroups not
necessarily commutative. Our main goal is to give the general solutions of
on all semigroups by proving a similar result as [§, Theorem 3]|. In the proof
we use the solutions of cosine addition law:

g(zy) = g(x)g(y) + f(x)f(y), =x,y €S,
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instead of equation (2.5). A secondary goal is to obtain the solutions of the
functional equation

26) [ fudu®) + [ gaydu(®) = 1) + @) + glx)gle), wy € S,
s s
and to prove that the system of equations

{ s Flayt)ydu(t) = f(z) + f(y),
[s 9(zyt)du(t) = g(x)g(y), z,y €S,

is equivalent to (2.6) when f and g are assumed not to be quadratically
equivalent.
The solutions of the functional equation

(27) /5 fayt)du(t) = f@) + f@y), z.y €S,

are of the form f = A+ [y A(t)du(t) where A is an additive function (see
Lemma below), while the functional equation

(2.8) /S g(zyt)du(t) = g(x)gy), =,y € S,

has been solved by E. Elqorachi and A. Redouani [5], Corollary 2.5]. The solu-
tions are of the form g = x [ x(t)du(t), where x is a multiplicative function.

3. Solutions of the functional equations (2.3) and alienation of
equations (2.1) and (2.2)

The present section is dedicated to solve the functional equation .
The solutions are expressed (in Theorem in terms of multiplicative and
additive functions. In addition, by help of these results, we will show in The-
orem that the functional equations and are alien to each other
for non-quadratically equivalent functions.

THEOREM 3.1. The solutions f,qg: S — C of the functional equation
flay) +g(xy) = f(x) + f(y) + 9(x)g(y), =y €S,

are the following pairs:
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(a) g = Z(;fl’ f=A— ﬁ(x — 1), where o € C\ {i, —i}and A is additive
and x is multiplicative;
(b) g=A+1, f=B+ %A2, where A, B are additive.

PROOF. Let the pair (f,g) be a solution of equation ([2.3). If g = 1 or
g = 0, then f is additive. This occurs in case @ with x =1 or with x =0
and a = 0. From now on we assume that g # 1 and g # 0 and we follow
the proof given by Ger [8] in the commutative case. It is well known that
the Cauchy difference C¢(z,y) := f(zy) — f(z) — f(y), z,y € S satisfies the
cocycle equation

(31> Cf(.%'y,Z)—f—Cf(.%,y) :Cf(l',yZ)‘l‘Cf(y,Z), T,Y,z € S.
From we find that
C(z,y) = g(x)g(y) — g9(zy), =x,y€S.

Inserting the last identity into (3.1)), we obtain the following functional equa-
tion

(3:2) g(zy)g(z) — g(y)g(2) + g(y2)
=g(x)g(yz) — g(x)g(y) + g(xy), =x,y,2€ 8.

Now, the rest of the proof takes another way, we simply notice that g satisfies
the cosine addition law. Indeed, by subtracting g(x)g(y)g(z) from both sides

of , we get
(9(2) = 1) [g(zy) — g(z)g(y)] = (9(x) — 1) [g(y2) — 9(v)9(2)], =,y,2z €S.

Since g # 1, there exists xg € S such that

(3.3) g(zy) —g(x)g(y)
= (g9(w0) — 1)~ (g(x) — 1) [g(ymo) — 9(y)g(z0)], yES.

Using (3.3), the term g(yxo) — g(y)g(zo) can be written as
_ 2
9(yzo) — g(y)g(xo) = (9(wo) = 1) (g(y) — D [g(5) — (9(x0))"], @,y €S
It follows from (3.3) that g satisfies the cosine functional equation
(34) g(zy) = g(x)g(y) + a*(g(z) = 1)(g9(y) 1), z,y €S,

where a2 = (g(z0) — 1))2[g(22) — (9(x0))"]-
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If @« = 0, then g is multiplicative and, consequently, f is additive. This
occurs in case @ Otherwise we have to deal with a particular case of the
cosine addition law with a # 0. According to [3, Theorem 3.2] (see [I}
Theorem 2.2] for simpler formulas), the pair (g, a(g — 1)) has one of the forms
included in the following list:

(i) g =0 on S?%, where S%? = {xy|x,y € S} and a(g — 1) = +ig.
(ii) g = H%m and a(g — 1) = 7zm, where ¢ € C\{0,4, —i} and m is a
nonzero multiplicative function.
S X1 +0xe

(iii) ¢ = “5*5 52 and a(g — 1) = $25°5, where X1 and x2 are two multi-
plicative functions such that x;1 # x2 and 6 € C\ {0, 4, —i}.
(iv) g = x £ ¢ and a(g — 1) = —i¢, where x is a nonzero multiplicative

function and ¢ is a solution of the special sine addition law

(3.5) P(xy) = d(x)x(y) + o(y)x(x), z,y € S.

First case: the pair (g,(g — 1)) has the form ({). This case is omitted
because the identities a(g — 1) = +ig and g = 0 on S? imply that a = 0.

Second case: the pair (g, (g — 1)) has the form (i). In this case we have
a # cand g = -=-. Since g is a solution of ., we check by elementary

computations that ac = —1 and hence g = ;35 Using this formulas in ,
we get that f— — +1)2 is an additive function. That is f = A+

A is additive. ThlS occurs in case @ with x = 0.
Third case: the pair (g, a(g — 1)) has the form . In this case we deduce
that

0t 4+at §—at
(3.6) [M} X1+ {M} x2—1=0.

Using |11, Theorem 3.18|, equation (3.6]) shows that x; =1 and § = a~! or
_ x+oz2

@ 2+1)2, where

x2 = 1 and § = « since x1 # X2, then g = , where x is a multiplicative
function. Using this form of g in equation (2.3) we get after some rearrange-
ments that f = A ’

occurs in case

Fourth case: the pair (g, a(g — 1)) has the form (iv). In this case we have

- (afT)Q(X 1), where A is an additive function. This

(3.7) X+ (et +1)p—1=0.

Since x # 0, we deduce that ¢ # x because otherwise, we will have y(xy) =
2x(z)x(y) for all z,y € S which implies xy=0. In view of [4, Lemma 4.2], the
identity shows that ¢ =1 or xy = 1.

The case ¢ = 1 does not occur because, otherwise, we will have y = 1,
which contradicts the fact that ¢ # x. So we have to take x = 1. It follows
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that ¢ is additive, consequently g = A + 1, where A is an additive function.

Then, from (2.3]) we deduce that f and g satisfy f(xy) = f(x)+ f(y) —g(zy)+
9(2)g(y), =,y € S, or equivalently

(3.8) flzy) = f(@) + f(y) + A(x)Aly), =,y€S.

Consider the particular Levi—Civita equation

(3.9) Y(zy) = Y(@)x(y) + x(x)v(y) + é(x)d(y), =x,y€S,

for unknown ¥: S — C, where x is a nonzero multiplicative function and
¢ is a nonzero solution of the special sine addition law (3.5). Taking x = 1
and ¢ = A, one can observe that the functional equation is a particular
instance of (3.9). According to [4, Theorem 4.1] with x = 1, we have f =
B+ %AQ, where B is an additive function. This is case (]ED, and this completes
the proof. O

THEOREM 3.2. Let S be a semigroup. If functions f: S — Candg: S — C
are not quadratically equivalent then they satisfy the functional equation

flzy) +g(zy) = f(2) + fy) +9()9(y), x,y €S,
if and only if g is multiplicative and f is additive.

PrOOF. The “if” part of the proof is obvious.

Let the pair (f, g) be a solution of (2.3). If the pair (f,g) has the form as
in Theorem (]E[}, then A3(f + g) = 0. This is a contradiction. If (f,g)
has the form as in Theorem @ such that a # 0, then we find that
AS[f—(c—=1)g] = A}[A—(c—1)] = 0, where ¢ = a%—ﬁ—l’ which contra-
dicts the fact that f and g are not quadratically equivalent. So, necessarily
we have v = 0. Then g is multiplicative and f is additive. This completes the
proof. ([

4. Solutions of the functional equations (2.6) and alienation of

equations (2.7) and ({2.8)

In this section we give (in Theorem |4.2) an exhaustive list of solutions
of the functional equation (2.6). We express them in terms of multiplicative
and additive functions. Furthermore, on the basis of these results, we prove
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in Theorem that the functional equations (2.1)) and (2.2)) are alien to each
other for non-quadratically equivalent functions.
To prove the next theorem we will need the following:

LEMMA 4.1. Let f: S — C be a solution of the functional equation (2.7)).
Then f is of the form f = A+ [g A(t)du(t) where A is an additive function.

PROOF. By replacing z by zy and y by ks in (2.7) and integrating the
result obtained with respect to k and s we get

@n [ [ [ reskstidudns)aut)
s ([ du(t)>2 w [ [ srsidutians)

By replacing = by xyk and y by s in (2.7) and integrating the result obtained
with respect to k and s we obtain

@2 [ [ [ fakstiautiduein

= /S Fzyk)du(k) / du(t) + / f(s)du(s) /S dp(t)
/ d,u(t)[ / F(s)dp(s ]

By comparing ( and and taking into account that fs du(t) =
we deduce that f + s f(s du — [ [s f(ks)du(k)du(s) is additive. Con—
sequently f = A — [ f(s)du(s —I— s fs ks Ydu(k)du(s), where A is an ad-
ditive function. Putting this back into we find that — [ f(s)du(s) +
Js [ f(ks)du(k)du(s) = [g A(s)dpu(s). ThlS completes the proof. O

THEOREM 4.2. The solutions f,g: S — C of the functional equation

/ flayt)dp(t) + / g(eyt)du(t) = f(2) + F(9) + 9(2)9(y), =y €S,
S S

are the following pairs:

(a) g=c, f = A+ [( A(t)du(t) + ¢ — 2, where c € C and A is additive;

(b) g=A, f =B+ [{B(t) d,u(t) +3 [A2 + [ A2(t)du(t)] — 1, where A and
B are additive, and [g A(t)dpu(t ) —1;
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(c)g=clp—1), f= A—|—fS du(t)+c? (p — 1)—0 wherec e C\ {-1,0},
© 18 a multiplicative functwn such that p # 1, fs o(t)du(t) = 1 and A is
additive;

(d) g = st x(t)du(t), f = A+ [§ A(t)du(t), where x is an nonzero multi-
plicative functz'on such that X ;é 1 and A is additive;

(e) g_TX2+1,f_7” [A+fs (t)_(a;éT)Q(X_l)]—*—T(l_T)a?i_‘_l’
where o € C\ {0,4, —i}, r € (C\ {0} and r # "‘2+1 A is additive and x is
a multiplicative functwn such that x # 1 and fS X Ydu(t) = m;

(f) g=r(A+1), f =712 [B+ [ B(t)dp(t) + A% + 5 [o A*(t)dp(t )} (r=1)2
wherer € C\ {0} and A, B are additive such thatA # 0 and [g A(t)du(t) =

r—1
e

PROOF. Let the pair (f,g) be a solution of (2.6). If g is constant, that
is g = ¢, Where c € C, we see from 1) that f —c+c? is a solution of
equation . Then, using Lemma we conclude that f —c+ ¢ = A+
f S ), Where A is additive. Thls proves @ From now on we assume
that g is not constant.

Using the associative property of the semigroup operation, we compute the
term  [q f(zyzt)du(t) + fsg zyzt)du(t) first as  [o f((zy)zt)du(t) +
Js 9((zy)zt)du(t), then as [q f(z(yz)t)du(t) + [4g(x(yz)t)du(t). Comparing
the results, we obtain the following

(4.3)  f(zy) + f(2) + g(zy)g(2) = f(@) + f(yz) + 9(x)g(yz), =,y,2z€ 5.
Subtracting g(x)g(y)g(z) + f(y) from both sides of ([4.3)), we get
(4.4)  f(zy) — f(z) = f(y) + 9(2) [9(zy) — 9(z)g(y)]

= f(y2) = f(y) — f(2) + 9(2) [9(y2) — 9(v)9(2)], z,y,2z€8.

Since g is not constant, there exist 21,29 € S such that g(z1) # g(z2). So,

from (4.4)) we get

flzy) = f(z) = f(y) +9(21) [9(zy) — 9(x)g(y)] = k1(y) + g(@)k2(y), z,y €S,

and

flzy) = f(z) = f(y) + 9(22) [9(zy) — 9(x)g(y)] = k3(y) + g(@)ka(y), z,y €S,
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for some functions k;, j = 1,2, 3,4, or equivalently

[Tt )[R0 B ] wves

Since g(z1) # g(z2) we have

(4.5) flzy) = f(x) = f(y) = p1(y) + g(z)p2(y), =,y €S,
and
(4.6) 9(xy) — g(x)g(y) = p3(y) + 9(x)paly), =z,y €S,

for some functions p;, j = 1,2, 3,4.
Putting this back into (4.4]) we get after some rearrangements that

4.7) g(x) [p2(y) + g(2)paly) — p3(z) — g(y)pa(2)]

= p1(2) + 9(y)p2(2) — p1(y) — 9(2)p3(y), z,y,2€S.

Taking into account that g is not constant, (4.7)) shows that

(4.8) p1(2) + 9(y)p2(2) = p1(y) + 9(2)p3(y), y,2 €S,
and
(4.9) p2(y) +9(2)paly) = p3(2) + 9(y)pa(2), y,z€S.

Consequently, for the same reason, (4.8) and (4.9) show that
(410) Pj :aj—i—bjg, ]: 1,2,3,4,

where a;, b; are constants.

Substituting (4.10) into (4.8) and (4.9) we infer that

b1:a2:a3 and b3:b2:a4.

Then, from (4.5) and (4.6) we deduce that f and g satisfy the functional

equations

(4.11) f(ay) = f(x) + f(y) + big(w) + b1g(y) + b2g(x)g(y) + a1, =,y € S,

and

(4.12) g(zy) = (ba + 1)g(y)g(x) + bag(z) + bog(y) + b1, =,y € S.
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By replacing y by ¢ in (4.11)) and (4.12)) and integrating the results obtained
with respect to t we get

(4.13) [ S@taut) = @)+ ang(e) + . €S,
and
(4.14) /S g(at)du(t) = cog(e) + do, @ € S,

where ag := by + by [¢ g(t)du(t), by := [ f(t)du(t) + b1 [¢g(t)du(t) + a1,
co = (bs + 1) [¢ g(t)du(t) + by and do := by [ g(t)du(t) + b1. Now, by using
the relations (4.13) and (4.14)) in we get

(4.15) f(zy) +rg(zy) + g = f(z) + f(y) + 9(x)g(y), =,y €S,

where r := ag + ¢g and ¢ = bg + dp.
First case: r = 0. In this case (4.15)) becomes

(4.16) f@y) +a= @)+ fly) +9(x)9(y), zyeS
Equation shows that the Cauchy difference C'y has the form

Cr(z,y) = g(x)9(y) —¢, =,y €S,
Using again the cocycle equation leads to

9(2) l9(zy) —9(W)] = 9(2) [9(y2) —9(W)], w,y,2€ 5.

Since g # 0, we deduce that
(4.17) 9(zy) = g(x)¢(y) + 9(y), z,y €5,
where ¢(y) := (g(s0)) ™" [9(ys0) — g(y)], for some sy € S such that g(so) # 0.

Now, from [12, Proposition 3|, the identity (4.17) shows that ¢ is multi-
plicative. In view of (4.12) g is central: g(zy) = g(yx), z,y € S. Using the

centrality of g, (4.17) shows that

9(x) [p(y) =1 = g(y) [p(z) = 1], @,y €S

We may distinguish two subcases here.
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If ¢ =1, then (4.17) shows that g = A, where A is additive, and since f
and g satisfy equation (4.16)), we conclude that

flxy) —q=[f(x) —ql +[f(y) — ¢ + A(x)A(y), =,y €S

Then from [4, Theorem 4.1] we have f = B+ 5 A%+ ¢, where B is an additive
function. Since the pair (f,g) satisfies (2.6), by taking © = y we have the
following relation

(4.18) %LA@@@+4A@

:q_A Q@@—/A%MM)‘LB@W@,xGS

Recall that g is a nonconstant function. So, from we deduce that

Js A( =—land q = [¢ B(t)du(t)+3 [q AQ(t d,u( ) 1. This proves (b]).
If go 7é 1 then

(4.19) g(x) = c(p(x) = 1), = €S,

where ¢ € C\ {0}. Inserting (4.19)) into (4.16)), we deduce that f—c? (¢ —1)—
is an additive function, that is f = A+ ¢ (¢ — 1) + ¢, where A is additive.

Putting back the new forms of f and g into yields
420) | [ pdu(t) + e [ e(taute) - | etaoty

=q- / A(t)du(t) +¢, =zyesS.
S

From we deduce that ¢ can not be constant. So shows that
Jset)du(t) + ¢ [¢o(t)du(t) — ¢ = 0 and q — [4 A(t)du(t) + ¢ = 0. Then
flx) = A(@) + [ A)du(t) + P (p —1) —¢, x € Sand [yo(t)dut) = 5.
This proves .

Second case: r # 0. From equation one can easily verify that F' :=
r=2(f —q) and G := r~1g solve the functional equation . So, we know
from Theorem - that there are only the following two possibilities:

2 . .
(i) g = TX2+1 and f =r [A— m(x— 1)} + ¢, where o € C\ {7, —i},
A is additive and 'y is multiplicative.
(ii) g=r(A+1) and f =r* [B+ L A?] + ¢, where A, B are additive func-
tions.




On the alienation of multiplicative and additive functions

Subcase 1: If the pair (f, g) has the form . If @« = 0, then f and g satisfy
the following equations

(4.21) flzy) —q=[f(z)—d +[fly) —d, =zy€S,
and

(4.22) rlg(xy) = [rlg(2)] [rle(y)] . zyES,
respectively.

From (4.21)) and (4.22]) we deduce that

(4.23) /5 Flayt)du(t) = f(z) + £y / F(O)du(t) — 24, @y €S
and
(4.24) LMWWMﬂZV%@MwLAWMM,wwGS

Now, by inserting (4.23) and (4.24]) into (2.6]), we see that
[TQ/Sg(t)du( ) — 1] 9(x)g(y) = 2q — / f)du(t), =,ye€S.

Since g is not constant, the last identity implies that r~—2 [ g(t)du(t) = 1
and 2q — [ f(t)du(t) = 0. It follows that f and g are solutions of and
8)) respectively. Then, from Lemma and [5 Corollary 2.5], we deduce
the desired forms of f and g. This proves @

From now on we assume that « # 0. Using the notation ¢ := 2+1, f and
g can be written as f = r?2[A—c¢(1 —¢c)(x —1)] +qand g = r [CX + (1 —¢)]
respectively. Putting this back into , one gets

%%)r%ﬂﬂlcbﬁxﬁmM)r%M@Mw

:q—TQ/A(t)d,u(t)—r(l—r)(l—c), z,y €S
S

As X is not constant, (4.25) implies that 1 — r(1 — c) #0and (1 —7(1—2¢))
Js x()du(t) —rc=0. Consequently we have r # 1, [ x(t)du(t) =
and ¢ — 2 [¢ A(t)du(t) — r(1 —¢)(1 —r) = 0. This proves (g).

re
1-r(1—c)



Mohamed Chakiri, Abdellatif Chahbi, Elhoucien Elqorachi

Subcase 2: If the pair (f, g) has the form . Then, taking x = y, (2.6]) im-
plies that

(4.26) 2r {r/SA(t)du(t) +1-— 7«} Alz)=q—r+1r?

- 2/SA (t)du(t) —r/SA(t)d,u(t) —r /SB(t)d,u(t), x € S.

Since A is not constant, we deduce from ([4.26) that r [(A(t)du(t) +1—r =
0. Consequently we have [ A(t)du(t) = L and ¢ = %fs A%(t)du(t) +

T

r? [ B( — (r — 1)%. This proves case (). 0

THEOREM 4.3. Let S be a semigroup and p is a linear combination of
Dirac measures (6,)ier for some fized elements (z;)ier contained in S such
that fs dp = 1. If functions f: S — C and g: S — C are not quadratically
equivalent then they satisfy the equation

/ Flayt)dut) + / g(eyt)du(t) = F(z) + f() + 9(@)a(y), z.y € 5,
S S

if and only if f and g solve the system

{ S Flzyt)du(t) = f(z) + f(y),
Js g(zyt)du(t) = g(x)g(y), z,y€S.

PrOOF. The “if™" part of the proof is obvious.

Let the pair (f,g) be a solution of (2.6). We can easily check that if
(f,g) has one of the forms @, (@ and @ of Theorem then we have
Az( f+ g) = 0, which contradicts our hypothesis about f and g. In the case

when (f, g) has the form we obtain Ag(f —¢g) = 0 and when (f, g) has

the form @ we have Az(f + 70 a;"—j_lg) = 0. For the same reason, the two last
cases does not occur. It follows that the only possible case is when (f, g) has
the form @ This completes the proof. ([l
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