
IJREL.2023.9.2.04 p. 1/22

Tetiana A. Vakaliuk
Zhytomyr Polytechnic State University, Ukraine

 https://orcid.org/0000-0001-6825-4697

Oleksii V. Chyzhmotria
Zhytomyr Polytechnic State University, Ukraine

 https://orcid.org/0000-0002-5515-6550

Svitlana O. Didkivska
Krakow University of Economics, Poland

 https://orcid.org/0000-0002-4004-6631

Illia Linevych
Zhytomyr Polytechnic State University, Ukraine

 https://orcid.org/0000-0002-8189-4856

Development of a Web Service for Creating Tests Based
on Text Analysis Using Natural Language

Processing Technologies

Abstract

The purpose of the work is to analyze models, natural language processing
methods, and select modern technologies for training these models, as well as to
develop a web service for creating tests based on text analysis using natural lan-
guage processing technologies. The study considers methods and algorithms for
intelligent data analysis to generate questions and correct and incorrect answers
from the text. The authors justify the choice of a neural network for generating tests
based on English and Ukrainian text, and characterize data sources for training. The
study also describes the activity of the proposed model, which will serve as a basis
for creating a web service. After a detailed review of these datasets, the necessary
data for the experiment were extracted and transformed into a convenient format
for use. The training algorithm for 6 models was designed and implemented, and

DOI 10.31261/IJREL.2023.9.2.04

International Journal of Research in E-learning
Vol. 9 (2), 2023, pp. 1–22

https://orcid.org/0000-0001-6825-4697
https://orcid.org/0000-0002-5515-6550
https://orcid.org/0000-0002-4004-6631
https://orcid.org/0000-0002-8189-4856
https://doi.org/10.31261/IJREL.2023.9.2.04
https://creativecommons.org/licenses/by-sa/4.0/deed

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 2/22

valuable metrics were obtained after their training. Additionally, a server-side and
web interface were developed to interact with each other.

K e y w o r d s: text analysis, natural language, natural language processing tech-
nologies, NLP, model

Introduction

To assess students’ knowledge and skills at the end of a semester or upon
completion of any topic, instructors often conduct a summative assessment. While
preparing for this process, the instructor needs to analyze the covered educational
material and, based on it, creates various questions with corresponding answers.
It is also essential not to forget about the subsequent test review, which involves
calculating the results for each student. The entire process is very monotonous,
consuming a lot of energy and time, especially if the instructor has a large number
of students. A similar chain of events also occurs during the evaluation of a com-
pany’s employee professionalism or, conversely, during their internship.

Therefore, the relevance of the topic is determined by the need to automate the
process of creating tests from textual material using natural language processing
technologies. Further research is required on the issue of properly training neural
models for generating questions, correct and incorrect answers based on an English
and Ukrainian text.

Tests are one of the primary forms of consolidating knowledge. The more
accurately they are selected, the more effectively the learning process can be
implemented. An automated system for creating questions could improve their
quality and increase their number, thereby covering more details and topics for
the learning program. With this system, instructors or employers could generate
questions based on covered material to assess the knowledge and skills of their
students and workers.

At present, there are numerous languages and nationalities, complicating this
task. To efficiently generate tests from a text in various languages, it is necessary
to consider the lexical, grammatical, and other features of each language. That is,
a separate implementation plan must be developed for each language to achieve the
best results. Therefore, to simplify the work, this project will focus on generating
questions, correct and incorrect answer options from an English text, as it is one
of the most widespread languages globally. Additionally, based on the conducted
research, algorithms will be adapted for Ukrainian texts.

In general, all types of questions can be divided into two groups: objective
and subjective. When answering objective questions, users are asked to choose

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 3/22

the correct answer from the provided options. The most popular of this type are
multiple-choice tasks, matching, true or false, filling in blanks in a sentence, and
more. At the same time, when answering subjective questions, students need to
write the answer independently. Tasks of this type may require a short response
(from a few words to several sentences) or a long one (for example, an essay).
Therefore, for a successful generation, one needs to have such a data pair: a text
passage (minimum 2–3 sentences); a predetermined answer or a set of answers,
based on which questions will be asked and incorrect options will be generated.

To avoid doing this manually, there are numerous methods for extracting
so-called “keywords” from the text that can become potential answers, as well
as algorithms that can generate false options based on these words. Using this,
a comprehensive test can be created. One such interesting approach is Named
Entity Recognition (NER). Named Entity Recognition is a subtask of information
extraction that attempts to find and classify named entities in an unstructured text
into predefined categories, such as names of people, organizations, places, time,
quantities, monetary values, percentages, and more. That is, some named entities
can be used as answers, and some of them, which match a category, can be used
as incorrect options.

As for the generation of the questions themselves, this task is much more
complex. Unfortunately, most static methods do not show very high efficiency
and work well only with a few languages, such as English, while they cannot form
a long, consistently correct chain of words for Ukrainian. Therefore, nowadays,
artificial intelligence is increasingly replacing these algorithms, as this development
allows for obtaining more accurate results, similar to the ones obtained by human.
Considering this, further research was conducted in this area.

The purpose of the work is to analyze models, natural language processing
methods, and select modern technologies for training these models, as well as to
develop a web service for creating tests based on text analysis using natural lan-
guage processing technologies.

Methodology of Research

To achieve this goal, the following main tasks need to be solved:
•	 define the basic requirements and desired end results;
•	 research existing neural models of natural language processing that are suitable

for achieving the selected goals;
•	 select suitable models and methods of their training;
•	 make a reasonable choice of tools for model training;
•	 create an API to interact with models (server side);

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 4/22

•	 create a web interface for testing and general use of models (client side).
To solve these tasks, a number of methods were used: analysis, synthesis, and

generalization to study neural models of natural language processing and to select
tools for training models; and methods for training neural models using program-
ming languages.

Theoretical Background

Data mining methods and algorithms for generating questions, correct
and incorrect answers from the text

To implement the given task, natural language processing technologies can be
used. Natural Language Processing (NLP) is the ability of a computer program to
understand a human language. NLP is a branch of artificial intelligence that deals
with the interaction between computers and humans using a natural language. The
ultimate goal of NLP is to teach a neural network to read, decode, understand, and
determine the meaning of human language in a valuable way. Most NLP techniques
rely on various machine learning methods to derive meaning from a text (Educa-
tion Ecosystem, 2022).

NLP is used in various development areas, namely: in language translation
programs such as Google Translate; in text processors like Microsoft Word and
Grammarly for checking the grammatical accuracy of texts; in interactive voice
response programs; in personal assistants such as Google, Siri, Cortana, Alexa,
and more.

There are two main stages of natural language processing: preprocessing of
data and the development of the necessary algorithm to solve the given problem.
Preprocessing of data includes preparing and “cleaning” text data for machines
to be able to analyze it. Preprocessing presents the data in a workable form and
highlights specific words in the text that the algorithm can work with. This stage
may include the following processes (Lutkevich, 2022):

•	 tokenization – the text is broken down into smaller, separate units for process-
ing;

•	 removal of stop words – common, frequently repeated words and parts of
speech are removed from the text, leaving only unique ones that provide the
most information about the text;

•	 lemmatization and stemming – words are reduced to their root forms for pro-
cessing;

•	 part-of-speech tagging – words are marked with the part of speech they cor-
respond to, such as nouns, verbs, and adjectives.

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 5/22

After preprocessing the data, the development of the text processing algorithm
begins. There are many different natural language processing algorithms, but usu-
ally, two main types are used: rule-based systems – these systems use carefully
pre-developed linguistic rules; machine learning-based systems – machine learning
algorithms are used to train neural networks. They learn to perform tasks based on
the training data provided to them and adjust their methods as they process more
data (Lutkevich, 2022). The second approach will be used in this study.

Effective question generation is an open scientific problem that still lacks
a universal, easy approach to its solution. The question generation itself consists of
two fairly complex processes: analysis of the lexical and syntactic context of input
sentences, and construction of new sentences based on the processed information,
following all the rules of the current language. Therefore, after analyzing various
sources, several works were found on the autogeneration of questions from a text in
Turkish (Akyon et al., 2022), Arabic (Nagoudi et al., 2022), and English languages
(Vachev et al., 2022).

In each of these works, special transformer models for natural language pro-
cessing based on machine learning were used. A transformer (neural network) is
a deep learning model. It uses an “attention” mechanism that takes into account the
relationship between all the words in a sentence. The transformer creates differen-
tial coefficients that indicate the elements in the sentence that are most important
for a more accurate interpretation of the meaning of problematic words. Thus, the
computer can quickly and efficiently understand ambiguous phrases (Negri, 2022).
Other scholars (Mellah et al., 2021; Affolter et al., 2019, Guo et al., 2019; Xavier
et al., 2022) have also considered various aspects of the issue in their works.

Transformers can differ in the type of input and output data. For example, they
can accept data in a text, visual, or audio format and return results of the same type.
To solve the problem of generating tests, transformers that can work with text data
and return a textual result will be considered. They are also called seq2seq models
(sequence to sequence).

Seq2Seq models consist of two parts: an encoder and a decoder. The encoder
and decoder can be thought of as translators who can speak only two languages.
Each of them has its own native language; for example, one can say that the en-
coder is a native speaker of Chinese, and the decoder is a native speaker of English.
Both have a second common language; let us say Japanese. To translate Chinese to
English, the encoder converts the Chinese sentence into Japanese. This Japanese
sentence is then passed as a context to the decoder. Since the decoder understands
Japanese and can read in this language, it can now translate the given Japanese
passage into English.

Another key component of the transformer architecture is a mechanism called
“attention.” This technique mimics cognitive attention. Cognitive attention re-
flects how our brain focuses on the meaningful parts of a sentence, helping us
understand its overall meaning. For example, when you read this sentence, you are

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 6/22

always focused on the word you are reading, but at the same time, your memory
stores the most important keywords you have already read to ensure understanding
of the context.

The attention mechanism examines the input text sequence in parts, and at each
step, it decides which other parts of the sequence are important. This helps the
transformer filter out noise and focus on what is relevant, connecting related words
that, by themselves, do not contain any obvious markers pointing to one another.

Selecting a neural network for generating tests based on English and
Ukrainian text

At present, there are many ready-made natural language processing models,
each of which has been pre-configured on large datasets to be able to perform basic
NLP tasks. During this initial training, transformers learn various language con-
structs and basic functions, which are sufficient to avoid having to train them from
scratch. Thus, they begin to “understand” a human language. Datasets represent
a large “repository” of records that are stored in a special format. By receiving these
records as input, transformers learn to perform specific tasks. Pre-trained models
are most often used in the implementation of NLP tasks because they are easier to
adjust, have high accuracy, and require much less time and computational resources
for additional training compared to custom transformers built from scratch (neural
networks). Although most pre-trained transformers can perform a range of simple
tasks, none of them can initially generate questions, correct or incorrect answers
based on the analyzed text. Therefore, it is necessary to choose an NLP model
for each task and train them separately. There are countless neural networks that
can work with texts, but the choice of the best is limited by a number of factors,
namely:
1.	 The ability of the neural network to work with texts in different languages.
2.	 The amount of computational resources needed for training and operation of

the neural network.
3.	 The availability of the neural network on the Internet.

After analyzing several natural language processing models, the most optimal
option was found to be the Text-To-Text Transfer Transformer (T5) developed by
Google (Roberts, 2022). In T5, all NLP tasks are transformed into a unified text
format in which the input and output data are always text strings, unlike models
like BERT (Devlin, 2019), which accept a text as an input but return results as
quantitative estimates.

The T5 transformer was pre-trained on a large dataset, the Colossal Clean
Crawled Corpus (C4) (Dodge et al., 2021), so that it understands a human language
and can perform a range of tasks, such as data classification or text translation.
An important component for further training of neural networks for more specific

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 7/22

tasks is the unlabeled dataset used for pre-training. To enhance the pre-training
effect, a dataset is needed that will not only be high-quality and diverse, but also
massive. Existing datasets for pre-training do not meet all three of these criteria –
for example, a collection of articles from Wikipedia is of high quality but is unified
in style and relatively small in size, while the Common Crawl dataset (Common
crawl) is huge and very diverse but has a relatively low quality.

So, to satisfy all requirements, Google developed the Colossal Clean Crawled
Corpus (C4), a cleaned version of Common Crawl, which is two orders of magni-
tude larger than the collection of Wikipedia articles. The cleaning process involved
deduplication, discarding incomplete sentences, and removing offensive or noisy
content. This filtering led to better initial training results for the T5 model. As for
the language, the T5 model works only with English, but there is its multilingual
version (mT5), which can be used for Ukrainian. This model also has different
versions (dimensions), which allows it to be used even on ordinary machines with
a single graphics processor. It is worth noting that the smaller the size of the neural
network, the less accurate the results it produces, but their quality remains satis-
factory. Such models work much faster and are more accessible to ordinary users.

To train the T5 model for generating questions, correct and incorrect answers,
special datasets need to be used. Also, in training the transformer, the optimization
function plays an important role, helping to reduce the error of future calculations.
Mathematical optimization (sometimes referred to as optimization) or mathemati-
cal programming in mathematics, computer science, and operations research refers
to the selection of the best element (according to a certain criterion) from a set of
available alternatives. In the simplest case, the optimization task consists of find-
ing the extremum (minimum or maximum) of a real function by systematically
selecting input values from the allowed set and calculating the function’s value.
The optimization function to be used is the AdamW function (Graetz, 2022), which
is an improved version of the Adam method.

Comparison of available software products

The use of artificial intelligence is achieving great success in the field of
education. A striking example of such development is the increase in the number
of online platforms and mobile applications for teaching. Machine learning, deep
learning, and natural language processing are used to assist teachers in their work
and help students increase their productivity.

Let us consider software products with the ability to auto-generate questions
and determine the features of each of them: PrepAI, Quillionz, and Questgen. For
better perception, we will divide the analysis into certain evaluation criteria:

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 8/22

1.	 Data submission methods, input formats, and sources
The first factor is the data input method. PrepAI allows multiple input formats.

It can read data from plain text, files (.pdf, .docx), video files or YouTube videos,
as well as Wikipedia articles. Quillionz also supports multiple input data formats:
plain text, “.pdf” files, and YouTube videos. In addition, Quillionz allows you to
choose a topic before generating questions, which helps the algorithm perform bet-
ter. Questgen, on the other hand, can only work with a text. Unfortunately, each of
the services supports only the English language, which is a significant drawback
and emphasizes the relevance of conducting research on test generation for the
Ukrainian language as well.
2.	 Types of questions and their generation

Generation in all applications is relatively fast. The process mainly takes from
a few seconds to a minute, but this number depends on the amount of input data.
3.	 Output data and storage

After the questions have been generated, they can be edited and saved. PrepAI
and Quillionz allow for editing and deleting questions with answers, while Quest-
gen, in addition, provides the ability to change their order. Unfortunately, none of
the services allows adding your own questions to the final result. In PrepAI, you
can export the created test in “.pdf”, “.docx”, or “.xlsx” format. Quillionz allows
for exporting data in “.txt”, “.pdf”, and “.docx” format. As for Questgen, it does
not allow for exporting the resulting test, but it can be copied as a text, saved to
a personal account, and printed in the prepared format. From the analysis, it can
be said that PrepAI mainly wins in terms of functionality, but Questgen showed
the best results in terms of the quality of generated questions.

Results

The server-side implementation, data processing, and training will be con-
ducted using the Python programming language, as it contains numerous built-in
methods and libraries that greatly simplify the development process. The model
training will take place in the Google Colaboratory cloud development environment
(Google Colaboratory, 2022). A single-page application (SPA) type of website is
chosen for a web interface development. The web application developed follow-
ing this scheme uses a single page and allows for dynamically changing content
without reloading, providing the user with an experience similar to using a native
application. The web interface will be written using the TypeScript programming
language and the React library.

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 9/22

Characteristics of data sources for training

For the task of generating questions, the Stanford Question Answering Dataset
(SQuAD) can be utilized. SquAD is a reading comprehension dataset consisting
of questions posed on English Wikipedia articles. The answer to each question
is a word or text snippet from the corresponding passage or the question can be
unanswerable. Generally, SquAD was created for the opposite task – generating
answers to questions, but it is well-suited for the current task.

There are two versions of this dataset: SquAD 1.1 – the previous version of
the SquAD dataset, containing approximately 100,000 question-answer pairs
based on 500+ articles; SquAD 2.0 – combines questions from SquAD 1.1 with
unanswerable questions written by crowdworkers to resemble answerable ones.
SquAD 2.0 will be used for training since this dataset contains two types of ques-
tions, allowing the model to learn to generate questions based on both predefined
answers and without them.

Now let us take a closer look at the structure of the selected dataset. Figure 1
shows several entries.

Figure 1. SquAD 2.0 structure
S o u r c e: Own work.

In fact, the dataset is split into two files: train and dev. This is done for conveni-
ence. The first file is used for model training, while the second is used for validation
after each training epoch. The SquAD 2.0 translation into Ukrainian has already
been carried out in a fellow researcher’s work (Huggingface.co, 2022), where the
dataset was used for generating answers to questions. For the task at hand, it is
sufficient to have only a context, question, and answer. Moreover, the data is stored
in the less convenient JSON format rather than CSV. So let us modify the dataset
to meet our needs. For entries without an answer, the answer column will contain
a special token “[MASK]” to train the model to generate questions based only on
the context. Figures 2 and 3 show the result of the data transformation.

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 10/22

Figure 2. Modified training set for generating questions
S o u r c e: Own work.

Figure 3. Modified validation set for generating questions
S o u r c e: Own work.

Now, let us set aside a few percent of the training dataset for the test set, which
will be used for checking the results after training. Figure 4 shows the result.

Figure 4. Creating a test data set for question generation
S o u r c e: Own work.

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 11/22

For the task of extracting answers from the text, the SQuAD dataset will also
be used, but we will transform the data so that each entry contains the context and
a list of potential answers found within it. Splitting into three separate datasets
followed a similar principle as in the previous example.

To perform the task of generating incorrect answers, the ReAding Comprehen-
sion dataset from Examinations (RACE) can be used. RACE is a dataset containing
more than 28,000 paragraphs and approximately 100,000 questions. This dataset
is based on English language exams designed for middle and high school students
in China. Unlike the SQuAD dataset, which contains only questions and answers,
RACE also includes a list of incorrect answer options for each question-answer
pair. Now, let us take a closer look at the structure of the chosen dataset. Figure 5
shows several entries.

The dataset is already divided into three files: train, dev, and test. The transla-
tion of RACE into Ukrainian was carried out independently. Figure 6 shows the
transformed datasets in a convenient format for training.

Figure 5. RACE structure
S o u r c e: Own work.

Figure 6. Modified datasets for generation of incorrect answer choices
S o u r c e: Own work.

Model training and practical implementation

For each of the three identified tasks, a separate model for both English and
Ukrainian languages needs to be trained. Therefore, a total of 6 transformers will
be trained. In each of the three cases, the overall training process is similar and
differs in terms of some details. So, let us consider only the common methods.

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 12/22

We will start training the T5 model. It is best to conduct training on a graphics
processor because it is a complex computational process that can take a lot of time,
especially if using a regular CPU, which has far fewer cores. Google Colaboratory
offers the opportunity to use powerful graphics processors for free but limits their
continuous usage to 6 hours, which is also important to consider since sometimes
training models can take much longer, so it has to be done in parts. To ensure that
the training is performed on a GPU, go to Edit -> Notebook settings -> Hardware
accelerator and select GPU. Check the information about the GPU chip to which
the current notebook has an access (Figure 7).

Figure 7. GPU information
S o u r c e: Own work.

Next, we choose the language for which we want to perform training and
connect Google Drive to the runtime environment so that we can write and read
files from it. Now, we set up Google Drive as the working directory for storing all
checkpoints and logs.

The “transformers” library contains various NLP models for solving a wide
range of tasks. In this work, we export the T5 model from it. The “pytorch-lightning”
library contains many useful classes that simplify the training process and reduce the
amount of a written code. The “tokenizers” library contains special tokenizers that
prepare the text input for the model. We import the required methods and classes.

Next, we need to prepare the dataset for use. After that, appropriate classes
with methods for training are created. For each task, the classes were developed
separately, but their operating principle is quite similar. The following is an exam-
ple of classes for generating questions. We inherit a special Dataset class, which
manipulates the dataset. We also add another special token “SEP” to separate parts
of input and output sequences. Now we create a DataModule class. DataModule
is responsible for creating Datasets (for training, validation, and testing) and for
creating appropriate DataLoaders for iterating over them. In the end, we create
a Trainer, which will carry out the training, and a ModelCheckpoint that will save
the model after each epoch. This way, the best model can be used later on. Figure
8 shows the training process.

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 13/22

Figure 8. Training model
S o u r c e: Own work.

Now we can move on to the time metrics. Due to Google Colaboratory limita-
tions, the training of some models took place in two or even three stages. However,
the pytorch-lightning library can save logs and the state of the model being trained
at the time of urgent and emergency disconnections from the runtime environment.
For the question generation task, the process of training the English model took ap-
proximately 6 hours (8 epochs). Training the Ukrainian model took approximately
9 hours (12 epochs). For the potential answer extraction task, the process of training
the English model took approximately 2 hours (6 epochs). Training the Ukrainian
model took slightly over 2 hours (8 epochs). For the incorrect answer generation
task, the process of training the English model took approximately 6 hours (10 ep-
ochs). Training the Ukrainian model took approximately 8 hours (8 epochs).

Results of the training

We load the trained models and test them on the test dataset. Now we install
the “tensorboard” extension to display graphs with metrics and specify the path to
the directory where logs were stored.

Below, in Figures 9–11, the main loss minimization graphs during training and
validation for the English models are presented.

a)   b)
Figure 9. Graph of loss changes during a) training / b) validation for the task of
generating questions
S o u r c e: Own work.

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 14/22

a)   b)
Figure 10. a) Graph of loss changes during training for the task of extracting poten-
tial responses. b) Graph of loss changes during validation for the task of extracting
potential answers
S o u r c e: Own work.

a)   b)
Figure 11. a) Graph of loss changes during training for the task of generating incor-
rect answers. b) Graph of loss changes during validation for generating incorrect
answers
S o u r c e: Own work.

Now, in Figures 12–14, the main loss minimization graphs during training and
validation for the Ukrainian models are presented.

a)   b)
Figure 12. Ukrainian models graph of loss changes during a) training / b) validation
for the task of generating questions
S o u r c e: Own work.

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 15/22

As can be seen from the figures, with each training epoch, the neural models
provided more and more accurate results. Now we can move on to the demonstra-
tion of their use.

a)   b)
Figure 13. Ukrainian models a) Graph of loss changes during training for the task
of extracting potential responses. b) Graph of loss changes during validation for
the task of extracting potential answers
S o u r c e: Own work.

a)   b)
Figure 14. Ukrainian models a) Graph of loss changes during training for the task
of extracting potential responses. b) Graph of loss changes during validation for
the task of extracting potential answers
S o u r c e: Own work.

Development of the server API

After training, the models were saved to separate files, and a special API for
their use was written using the Python programming language and the Flask library.
Figure 16 shows the main endpoints.

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 16/22

Figure 15. API endpoints
S o u r c e: Own work.

The first endpoint contains a description of the usage, and the second provides
the access to the trained models, with which a complete test generation can be
performed.

Let us look at the parameters accepted by the second server API endpoint in
more detail:

•	 language – the input text language. Possible values: “ENG”, “UKR”;
•	 text – a paragraph of the text from which tests will be generated. A minimum

paragraph character counts: 50;
•	 desired_questions_count – the desired number of questions to be generated.

Possible values: from 1 to 20. Can be “null” if the “predefined_answers” pa-
rameter is specified;

•	 predefined_answers – answers chosen by the user. Possible values: str[], 1 to
20. Can be “null” if the “desired_questions_count” parameter is specified;

•	 generate_distractors – determines whether to generate incorrect answers. Pos-
sible values: “True”, “False”.
After sending a request for generation, the parameters undergo validation.

If the validation is successful, the data enters the main class responsible for test
generation and connects the previously trained models. First, the text is cleared of
noise. Next, the filtered text is broken down into smaller parts. The spaCy library is
responsible for this. It uses numerous natural language processing methods and
is able to work with many languages. After this, one of the neural networks must
find potential answers, the number of which should correspond to the desired num-
ber of generated questions. If the user enters potential answers themselves, this step
is ignored. The next step is creating questions. Based on the found answers and the
text snippets they relate to, another neural network generates questions. Finally,
if the “generate_distractors” parameter contains the “True” value, the third neural
model will begin generating incorrect answer options for each question.

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 17/22

Figure 16. Generating questions based on the text in English
S o u r c e: Own work.

This model takes into account the text snippet on which the question was based,
and adjacent ones to increase result diversity. In the final stage, the generated
questions, correct, and incorrect answer options are formatted and combined into
a single JSON object that is returned to the client. At this point, test generation can
be considered complete. The test creation time varies greatly and depends on the
desired number of questions and the need to generate correct (the user can specify
them independently) or incorrect answers. On average, generating a test with 15–20
questions takes about two minutes. Figure 16 shows the testing of the server API
and the generation of five questions from a paragraph of a text. All requests were
executed using the Postman program.

Web interface

As mentioned earlier, a web application was developed for using the server API
using the TypeScript programming language and the React library. Let us consider
its structure and capabilities. Figure 17 shows the main page with instructions for

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 18/22

use. The application supports two interface languages: English and Ukrainian.
To change it, click on the selector in the upper right corner and choose the desired
option.

Figure 17. Web application home page
S o u r c e: Own work.

All further instructions will be executed for the English interface. To start creat-
ing a test, click the “Generate test” button. After that, you will be redirected to the
generation form page. This form contains fields that correspond to the server API
parameters: Language – the language of the text; Generate distractors – a check-
box indicating whether to generate incorrect answer options; Desired questions
count – the desired number of generated questions. This is a required field, but if
potential answers (Predefined answers) are specified manually, this field is ignored;
Predefined answers – desired answers specified manually, based on which ques-
tions will be generated. Answers must be separated by a semicolon “;”; Text – the
text from which the test will be generated. Fill in the form and try to generate a test
with 5 questions (Figure 18, a). Click the “Generate” button to get the result. Now
you can start editing the test in a special text editor (Figure 18, b). The answers are
highlighted in a bold format.

a)   b)
Figure 18. a) Generation of a five-question test; b) Generated test from English text
S o u r c e: Own work.

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 19/22

Discussion

The problem of auto-generating questions and correct and incorrect answers
based on a particular text is relevant and widespread for the research. This will
make it easier for teachers to create questions and answer options in the future.
The proposed approach can be easily adapted to other languages, not just English.

In the future, teachers should be encouraged to try using such an application
for educational purposes and analyze its advantages and disadvantages according
to various criteria and indicators. Developing such criteria and indicators involves
using the expert research method, which will be the next stage of the study.

Conclusions

In this study, the problem of autogeneration of questions, correct and incorrect
answers based on the English text was identified. Based on this, several scientific
works on this topic were researched and analyzed. As a result, it was decided to
create a proprietary algorithm that would perform this task, i.e., generate questions,
correct and incorrect answers from an English text. Special SQuAD and RACE
datasets were chosen for training. After a detailed review of these datasets, the
necessary data for the experiment were extracted and transformed into a convenient
format for use. The training algorithm for 6 models was designed and implemented,
and useful metrics were obtained after their training. Additionally, a server-side
and web interface were developed for interaction with them.

In conclusion, the models were configured correctly, and now they fully per-
form the assigned task. Overall, the conducted research and work can be considered
successful, as the web application requires a minimal amount of user actions.

The prospects for further research include studying the possibility and feasibil-
ity of using this software tool for educational purposes.

References

Affolter, K., Stockinger, K. & Bernstein, A. (2019). A comparative survey of recent natural language
interfaces for databases. The VLDB Journal, 28(5), 793-819. https://doi.org/10.1007/s00778
-019-00567-8.

https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1007/s00778-019-00567-8

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 20/22

Akyon, F., Cavusoglu, D., Cengiz, C., Altinuc, S. & Temizel, A. (2022) Automated question genera-
tion and question answering from Turkish texts using text-to-text transformers. Turkish Journal
of Electrical Engineering and Computer Sciences (30:5), article 17. https://doi.org/10.55730/1300
-0632.3914.

Colab.research.google.com. (2022) Google Colaboratory. Retriеved: https://colab.research.google.
com/notebooks/welcome.ipynb?hl=ua.

Common crawl. https://commoncrawl.org/.
Devlin, J., Chang, M., Lee, K. & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In J. Burstein, C. Doran & T. Solorio (Eds.). Proceed-
ings of NAACL-HLT 2019, (pp. 4171–4186). https://aclanthology.org/N19-1423.pdf.

Dodge, J. et al. (2021) Documenting large Webtext corpora: A case study on the Colossal Clean
Crawled Corpus, Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, (pp. 1286–1305). https://aclanthology.org/2021.emnlp-main.98.pdf.

Education Ecosystem (LEDU). (2022) A Simple Introduction to Natural Language Processing,
Becoming Human: Artificial Intelligence Magazine. https://becominghuman.ai/a-simple-intro
duction-to-natural-language-processing-ea66a1747b32.

Graetz, F. M. (2022). Why AdamW matters, Towards Data Science. https://towardsdatascience.com/
why-adamw-matters-736223f31b5d.

Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J. G. & Liu, T. (2019). Towards complex text-to-SQL in
cross-domain database with intermediate representation. In 57th Annual Meeting of the Associa-
tion for Computational Linguistics, (pp. 4524–4535), Association for Computational Linguistics,
Florence, Italy. https://doi.org/10.18653/v1/P19-1444.

Huggingface.co. (2022) squad_v2 · Datasets at Hugging Face. https://huggingface.co/datasets/
squad_v2.

Lutkevich, B. (2022) What is Natural Language Processing? An Introduction to NLP. https://www.
techtarget.com/searchenterpriseai/definition/natural-language-processing-NLP.

Mellah, Y., Rhouati, A., Ettifouri, E. H., Bouchentouf, T. & Belkasmi, M. G. (2021). SQL Genera-
tion from Natural Language: A Sequence-to-Sequence Model Powered by the Transformers
Architecture and Association Rules. Journal of Computer Science, 17(5), 480–489. https://doi.
org/10.3844/jcssp.2021.480.489.

Nagoudi, E., Elmadany, A. & Abdul-Mageed, M. (2022) AraT5: Text-to-Text Transformers for Arabic
Language Understanding and Generation. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.).
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), (pp. 628–647). http://dx.doi.org/10.18653/v1/2022.acl-long.47.

Negri, D. (2022). Transformer NLP explained & natural language processing examples, Eidosmedia.
https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything.

Roberts, A. (2022). Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer.
Google Research. https://ai.googleblog.com/2020/02/exploring-transfer-learn ing-with-t5.html.

Vachev, K., Hardalov, M., Karadzhov, G., Georgiev, G., Koychev, I. & Nakov, P. (2022). Leaf:
Multiple-Choice Question Generation. Advances in Information Retrieval. ECIR 2022. Lecture
Notes in Computer Science (13186). Springer, Cham, (pp. 321–328). https://doi.org/10.1007/978
-3-030-99739-7_41.

Xavier, B. A. & Chen, P. H. (2022) Natural Language Processing for Imaging Protocol Assignment:
Machine Learning for Multiclass Classification of Abdominal CT Protocols Using Indication
Text Data. Journal of Digital Imaging 35, 1120–1130. https://doi.org/10.1007/s10278-022-00633-8.

https://doi.org/10.55730/1300-0632.3914
https://doi.org/10.55730/1300-0632.3914
https://colab.research.google.com/notebooks/welcome.ipynb?hl=ua
https://colab.research.google.com/notebooks/welcome.ipynb?hl=ua
https://commoncrawl.org/
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/2021.emnlp-main.98.pdf
https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32
https://towardsdatascience.com/why-adamw-matters-736223f31b5d
https://towardsdatascience.com/why-adamw-matters-736223f31b5d
https://doi.org/10.18653/v1/P19-1444
https://huggingface.co/datasets/squad_v2
https://huggingface.co/datasets/squad_v2
https://www.techtarget.com/searchenterpriseai/definition/natural-language-processing-NLP
https://www.techtarget.com/searchenterpriseai/definition/natural-language-processing-NLP
https://doi.org/10.3844/jcssp.2021.480.489
https://doi.org/10.3844/jcssp.2021.480.489
http://dx.doi.org/10.18653/v1/2022.acl-long.47
https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything
https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything
https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html
https://doi.org/10.1007/978-3-030-99739-7_41
https://doi.org/10.1007/978-3-030-99739-7_41
https://doi.org/10.1007/s10278-022-00633-8

Development of a Web Service for Creating Tests Based…

IJREL.2023.9.2.04 p. 21/22

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

Opracowanie usługi internetowej do tworzenia testów opartych na analizie tekstu
z wykorzystaniem technologii przetwarzania języka naturalnego

S t r e s z c z e n i e

W artykule przeanalizowano modele i metody przetwarzania języka naturalnego oraz wybrano
nowoczesne technologie szkolenia modeli w celu opracowania usługi internetowej do tworzenia
testów opartych na analizie tekstu z wykorzystaniem technologii przetwarzania języka naturalnego.
Badanie uwzględnia metody i algorytmy inteligentnej analizy danych w celu generowania pytań oraz
poprawnych i niepoprawnych odpowiedzi z tekstu. Autorzy uzasadniają wybór sieci neuronowej
do generowania testów na podstawie tekstu w języku angielskim i ukraińskim oraz charakteryzują
źródła danych do szkolenia. Badanie opisuje również działanie proponowanego modelu, który po-
służy jako podstawa do stworzenia usługi internetowej. Niezbędne dane do eksperymentu zostały
wyodrębnione i przekształcone w wygodny do użycia format po szczegółowym przeglądzie tych
zbiorów danych. Zaprojektowano i zaimplementowano algorytm treningowy dla 6 modeli, a po ich
wytrenowaniu uzyskano wartościowe metryki. Dodatkowo opracowano interfejs po stronie serwera
i interfejs sieciowy do interakcji z nimi.

S ł o w a k l u c z o w e: analiza tekstu, język naturalny, technologie przetwarzania języka natural-
nego, NLP, model

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

Desarrollo de un servicio web para la creación de pruebas basado en el análisis
de textos mediante tecnologías de procesamiento del lenguaje natural

R e s u m e n

El artículo analiza modelos y métodos de procesamiento del lenguaje natural, y selecciona tec-
nologías modernas para el entrenamiento de modelos con el fin de desarrollar un servicio web para
la creación de tests basados en el análisis de textos utilizando tecnologías de procesamiento del len-
guaje natural. El estudio considera métodos y algoritmos de análisis inteligente de datos para generar
preguntas y respuestas correctas e incorrectas a partir del texto. Los autores justifican la elección de
una red neuronal para generar tests basados en textos en inglés y ucraniano y caracterizan las fuentes
de datos para el entrenamiento. El estudio también describe la actividad del modelo propuesto, que
servirá de base para crear un servicio web. Tras un examen detallado de estos conjuntos de datos,
se extrajeron los datos necesarios para el experimento y se transformaron a un formato conveniente
para su uso. Se diseñó e implementó el algoritmo de entrenamiento de 6 modelos y se obtuvieron
valiosas métricas tras su entrenamiento. Además, se desarrolló una interfaz web y de servidor para
interactuar con ellos.

P a l a b r a s c l a v e: análisis de texto, lenguaje natural, tecnologías de procesamiento del lenguaje
natural, PLN, modelo

Tetiana A. Vakaliuk, Oleksii V. Chyzhmotria, Svitlana O. Didkivska, Illia Linevych

IJREL.2023.9.2.04, p. 22/22

Татьяна Вакалюк, Алексей Чижмотря, Светлана Дидковская, Илья Линевич

Разработка веб-сервиса для создания тестов на основе анализа текста
с использованием технологий обработки естественного языка

А н н о т а ц и я

В статье проанализированы модели и методы обработки естественного языка и выбраны
современные технологии обучения моделей с целью разработки веб-сервиса для создания
тестов на основе анализа текста с использованием технологий обработки естественного язы-
ка. В исследовании используются интеллектуальные методы анализа данных и алгоритмы
для генерации вопросов, а также правильных и неправильных ответов из текста. Авторы
обосновывают выбор нейронной сети для генерации тестов на основе текста на английском
и украинском языках и характеризуют источники данных для обучения. В исследовании также
описана работа предложенной модели, которая послужит основой для создания веб-сервиса.
Необходимые для эксперимента данные были извлечены и преобразованы в удобный для
использования формат после детального рассмотрения этих наборов данных. Был разработан
и реализован алгоритм обучения для 6 моделей, после их обучения были получены ценные
метрики. Дополнительно были разработаны серверный интерфейс и веб-интерфейс для вза-
имодействия с ними.

К л ю ч е в ы е с л о в а: анализ текста, естественный язык, технологии обработки естественно
го языка, НЛП, модель

