
Annales Mathematicae Silesianae 35 (2021), no. 1, 90–104
DOI: 10.2478/amsil-2020-0026

GENERALIZED FRACTIONAL INEQUALITIES
OF THE HERMITE–HADAMARD TYPE

FOR CONVEX STOCHASTIC PROCESSES

McSylvester Ejighikeme Omaba, Eze R. Nwaeze

Abstract. A generalization of the Hermite–Hadamard (HH) inequality for
a positive convex stochastic process, by means of a newly proposed frac-
tional integral operator, is hereby established. Results involving the Riemann–
Liouville, Hadamard, Erdélyi–Kober, Katugampola, Weyl and Liouville frac-
tional integrals are deduced as particular cases of our main result. In addition,
we also apply some known HH results to obtain some estimates for the expecta-
tions of integrals of convex and p-convex stochastic processes. As a side note, we
also pointed out a mistake in the main result of the paper [Hermite–Hadamard
type inequalities, convex stochastic processes and Katugampola fractional in-
tegral, Revista Integración, temas de matemáticas 36 (2018), no. 2, 133–149].
We anticipate that the idea employed herein will inspire further research in
this direction.

1. Introduction

Let I ⊂ R be an interval. A function f : I → R is said to be convex if for
all x, y ∈ I and λ ∈ [0, 1], the following inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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For this class of functions, the following theorem is known:

Theorem 1.1 (Hermite–Hadamard Inequality). Let f : I → R be a convex
function, and a, b ∈ I with a < b, then

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
.

Inequalities akin to the above double inequality have been established
for different classes of functions. In this article, we shall discuss (1.1) within
the frame work of the convex stochastic processes. Now, let (Ω,F , P ) be a
probability space. In 1980, Nikodem [5] introduced the notion of convex sto-
chastic processes and proposed the following definition: a stochastic process
X : I × Ω→ R is said to be convex if

X(λa+ (1− λ)b, ·) ≤ λX(a, ·) + (1− λ)X(b, ·)

holds almost everywhere for all a, b ∈ I and λ ∈ [0, 1]. If we put λ = 1
2

in the above inequality, then the process X is Jensen-convex or 1
2 -convex.

A stochastic process X is termed concave if −X is convex. For a stochastic
process, we have the following theorem:

Theorem 1.2 ([3]). Let X : I × Ω → R be a convex and mean square
continuous process in the interval I × Ω. Then

(1.2) X

(
a+ b

2
, ·
)
≤ 1

b− a

∫ b

a

X(t, ·)dt ≤ X(a, ·) +X(b, ·)
2

holds almost everywhere.

Recently, this concept was extended in the following definitions:

Definition 1.3 ([6]). A stochastic process X : I ⊂ (0,∞) × Ω → R is
called p-convex if the inequality

X([λap + (1− λ)bp]
1
p , ·) ≤ λX(a, ·) + (1− λ)X(b, ·)

holds almost everywhere for all a, b ∈ I ⊂ (0,∞), p ∈ R and λ ∈ [0, 1].
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Definition 1.4 ([7]). A stochastic process X : I ⊂ (0,∞)×Ω→ R is said
to be exponentially p-convex if the inequality

X([λap + (1− λ)bp]
1
p , ·) ≤ λX(a, ·)

eαa
+ (1− λ)

X(b, ·)
eαb

holds almost everywhere for all a, b ∈ I ⊂ (0,∞), p ∈ R \ {0} and λ ∈ [0, 1].

For these classes of functions, the following theorems have been estab-
lished:

Theorem 1.5 ([6]). Let X : I ⊂ (0,∞)× Ω→ R be a p-convex stochastic
process and mean-square integrable on [a, b] where a, b ∈ I and a < b. Then

(1.3) X

([
ap + bp

2

] 1
p

, ·
)
≤ p

bp − ap

∫ b

a

X(t, ·)
t1−p

dt ≤ X(a, ·) +X(b, ·)
2

.

Theorem 1.6 ([7]). Let X : I ⊂ (0,∞) × Ω → R be an exponentially
p-convex stochastic process. Let a, b ∈ I with a < b. If X is mean-square
integrable on [a, b], then for p ∈ R\{0} and α ∈ R, we have almost everywhere

X

([
ap + bp

2

] 1
p

, ·
)
≤ p

bp − ap

∫ b

a

X(s, ·)
s1−peαs

ds(1.4)

≤ A1(α)
X(a, ·)
eαa

+A2(α)
X(b, ·)
eαb

,

where

A1(α) =

∫ 1

0

λdλ

eα
(
λap+(1−λ)bp

) , A2(α) =

∫ 1

0

(1− λ)dλ

eα
(
λap+(1−λ)bp

) .
The case of α = 0 gives (1.3).

Aside extensions by means of convexity, analogues of inequality (1.1) (with
the Riemann–Liouville, Hadamard, Erdélyi–Kober, Katugampola, Weyl and
Liouville fractional integrals) are bound in the literature. Recently, Katugam-
pola [2] unified the aformentioned six integral operators as follows:

Suppose Xp
c (a, b), c ∈ R denotes the set of complex valued Lebesgue mea-

surable functions f on [a, b] with the norm

‖f‖Xpc =

(∫ b

a

|tcf(t)|p dt
t

) 1
p

<∞, 1 ≤ p <∞,
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and

‖f‖X∞c = sup
t∈(a,b)

ess |tcf(t)|.

Let f ∈ Xp
c (a, b), α > 0 and β, ρ, η, κ ∈ R. Then the left (and respectively

the right) fractional integrals of f are given by

(
ρIα,βa+,η,κf

)
(t) =

ρ1−βtκ

Γ(α)

∫ t

a

(tρ− sρ)α−1sρ(η+1)−1f(s)ds, 0 ≤ a < t < b ≤ ∞

and(
ρIα,βb−,η,κf

)
(t) =

ρ1−βtρη

Γ(α)

∫ b

t

(sρ − tρ)α−1sκ+ρ−1f(s)ds, 0 ≤ a < t < b ≤ ∞.

For η = 0, β = α and κ = 0, one obtains, from the above defined operators,
the so-called Katugampola integrals. For this, Hernández and Gômez recently
proved the following theorem:

Theorem 1.7 ([1]). Let α > 0 and ρ > 0. Let X : [aρ, bρ] × Ω → R be
a positive stochastic process with 0 ≤ a < b and X(t, ·) ∈ Xp

c (aρ, bρ). If X(t, ·)
is convex, then the following inequality holds almost everywhere

X

(
aρ + bρ

2
, ·
)
≤ Γ(α+ 1)

2ρ−α(bρ − aρ)α

(
ρJαbρ−X(aρ, ·) + ρJαaρ+X(bρ, ·)

)

≤ X(aρ, ·) +X(bρ, ·)
2ρα

,(1.5)

where ρJαbρ−X(aρ, ·) = ρIα,αbρ−,0,0X(aρ, ·) and ρJαaρ+X(bρ, ·) = ρIα,αaρ+,0,0X(bρ, ·).

However, we observed that there is a mistake in the proof of Theorem 1.7
and hence, inequality (1.5) should read:

X

(
aρ + bρ

2
, ·
)
≤ Γ(α+ 1)

2ρ−α(bρ − aρ)α
(
ρJαbρ−X(aρ, ·) + ρJαaρ+X(bρ, ·)

)
≤ X(aρ, ·) +X(bρ, ·)

2
.(1.6)

Remark 1.8. We were informed that recently, the authors of [1] submitted
a follow-up paper with a corrected version of Theorem 1.7.
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The goal of this article is two-fold. Namely,
1. Give a broader generalization of inequality (1.6) by means of the gener-

alized fractional integral operators. From this, inequalities involving the
Riemann–Liouville, Hadamard, Erdélyi–Kober, Katugampola, Weyl and
Liouville fractional integrals are deduced as particular cases.

2. As an application, we provide new Hermite–Hadamard type estimates for
expectations of integrals of convex and p-convex stochastic processes.
This article is arranged as follows: Section 2 contains two subsections –

the first subsection houses the generalization of the Hermite–Hadamard in-
equality in the fractional sense. Thereafter, some new estimates involving the
expectation of integrals of positive–convex stochastic processes are given in
the next subsection.

2. Main Results

In this section, we start by presenting a generalization of Theorem 1.7.

2.1. Generalized Fractional HH Inequality

Theorem 2.1. Let α > 0, ρ > 0, β > 0 and η > 0. Suppose that
X : [aρ(η+1), bρ(η+1)] × Ω → R is a positive stochastic process with 0 ≤ a < b
and X(t, ·) ∈ Xp

c (aρ(η+1), bρ(η+1)). If X(t, ·) is convex, then the following in-
equality holds almost everywhere

X

(
aρ(η+1) + bρ(η+1)

2
, ·
)
≤ (η + 1)Γ(α+ 1)

2ρ−β(bρ(η+1) − aρ(η+1))α

×
[

1

akρ(η+1)
ρIα,β
bρ(η+1)−,η,κ

X(aρ(η+1), ·) +
1

bρ2η(η+1)
ρIα,β
aρ(η+1)+,η,ρη

X(bρ(η+1), ·)
]

≤ X(aρ(η+1), ·) +X(bρ(η+1), ·)
2

.

Proof. Let ρ̃ := ρ(η + 1), t ∈ [a, b] and u, v ∈ [a, b]. We now define uρ̃
and vρ̃ as follows:

uρ̃ = tρ̃aρ̃ + (1− tρ̃)bρ̃, vρ̃ = (1− tρ̃)aρ̃ + tρ̃bρ̃.
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Then, uρ̃ + vρ̃ = aρ̃ + bρ̃. Since X is a convex stochastic process, we have:

X

(
uρ̃ + vρ̃

2

)
≤ X(uρ̃) +X(vρ̃)

2
,

and obtain

2X

(
aρ̃ + bρ̃

2

)
≤ X(tρ̃aρ̃ + (1− tρ̃)bρ̃) +X((1− tρ̃)aρ̃ + tρ̃bρ̃).

Now, multiplying both sides of the above inequality by tαρ̃−1, α, ρ̃ > 0 and
integrating over t in the interval [0, 1] we obtain:

2

αρ(η + 1)
X

(
aρ̃ + bρ̃

2

)
≤
∫ 1

0

tαρ̃−1X(tρ̃aρ̃ + (1− tρ̃)bρ̃)dt(2.1)

+

∫ 1

0

tαρ̃−1X((1− tρ̃)aρ̃ + tρ̃bρ̃)dt.

From the definition of uρ̃ above, we have tρ̃ = bρ̃−uρ̃
bρ̃−aρ̃ and hence uρ̃−1

bρ̃−uρ̃ du =

−1
t dt.
Computing the right hand side of the inequality and using the definition

of the generalized integral, one gets:∫ 1

0

tαρ̃−1X(tρ̃aρ̃ + (1− tρ̃)bρ̃)dt =

∫ 1

0

tαρ̃X(tρ̃aρ̃ + (1− tρ̃)bρ̃)t−1dt

= −
∫ a

b

(
bρ̃ − uρ̃

bρ̃ − aρ̃

)α
X(uρ̃)

uρ̃−1

bρ̃ − uρ̃
du

=
1(

bρ̃ − aρ̃
)α ∫ b

a

uρ̃−1(
bρ̃ − uρ̃

)1−αX(uρ̃)du

=
Γ(α)

ρ1−β(bρ̃)ρη
1(

bρ̃ − aρ̃
)α ρIα,βaρ̃+,η,ρη

X(bρ̃, ·).

Following similar steps, we also obtain:∫ 1

0

tαρ̃−1X((1− tρ̃)aρ̃ + tρ̃bρ̃)dt =
Γ(α)

ρ1−β(aρ̃)k
1(

bρ̃ − aρ̃
)α ρIα,βbρ̃−,η,κ

X(aρ̃, ·).
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Substituting the integrals into (2.1), we get:

(2.2)
2

αρ̃
X

(
aρ̃ + bρ̃

2

)
≤ Γ(α)

ρ1−β
1(

bρ̃ − aρ̃
)α

×
(

1

(bρ̃)ρη
ρIα,β
aρ̃+,η,ρη

X(bρ̃, ·) +
1

(aρ̃)k
ρIα,β
bρ̃−,η,κ

X(aρ̃, ·)
)
.

To obtain the other part of the inequality, we use the convex property of the
process X as follows:

X(tρ̃aρ̃ + (1− tρ̃)bρ̃) ≤ tρ̃X(aρ̃) + (1− tρ̃)X(bρ̃),

X((1− tρ̃)aρ̃ + tρ̃bρ̃) ≤ (1− tρ̃)X(aρ̃) + tρ̃X(bρ̃).

Adding the two inequalities, we obtain:

X(tρ̃aρ̃ + (1− tρ̃)bρ̃) +X((1− tρ̃)aρ̃ + tρ̃bρ̃) ≤ X(aρ̃) +X(bρ̃).

Multiplying through by tαρ̃−1, α, ρ̃ > 0 and integrating the resulting inequal-
ity over t, in the interval [0, 1], we obtain

(2.3)
Γ(α)

ρ1−β
1(

bρ̃ − aρ̃
)α( 1

(bρ̃)ρη
ρIα,β
aρ̃+,η,ρη

X(bρ̃, ·) +
1

(aρ̃)k
ρIα,β
bρ̃−,η,κ

X(aρ̃, ·)
)

≤ X(aρ̃) +X(bρ̃)

αρ̃
.

Thus, combining (2.2) and (2.3), we get:

(2.4)
2

αρ̃
X

(
aρ̃ + bρ̃

2

)
≤ Γ(α)

ρ1−β
1(

bρ̃ − aρ̃
)α

×
(

1

(bρ̃)ρη
ρIα,β
aρ̃+,η,ρη

X(bρ̃, ·) +
1

(aρ̃)k
ρIα,β
bρ̃−,η,κ

X(aρ̃, ·)
)

≤ X(aρ̃) +X(bρ̃)

αρ̃
.

It is enough to multiply now all sides of (2.4) by αρ̃
2 and the intended result

follows. �



Generalized fractional inequalities of the Hermite–Hadamard type 97

We deduce the generalized Hermite–Hadamard inequality for the general-
ized Katugampola fractional integrals of any convex function f :

Corollary 2.2. Let f ∈ Xp
c (aρ(η+1), bρ(η+1)). If f : [aρ(η+1), bρ(η+1)]→ R

is a convex function with 0 ≤ a < b, α > 0, ρ > 0, β > 0 and η > 0, then

f

(
aρ(η+1) + bρ(η+1)

2

)
≤ (η + 1)Γ(α+ 1)

2ρ−β(bρ(η+1) − aρ(η+1))α

×
[

1

bρ2η(η+1)
ρIα,β
aρ(η+1)+,η,ρη

f(bρ(η+1)) +
1

akρ(η+1)
ρIα,β
bρ(η+1)−,η,κ

f(aρ(η+1))

]

≤ f(aρ(η+1)) + f(bρ(η+1))

2
.

Remark 2.3. In view of Theorem 2.1, we make the following observations:
1. If we set β = α and κ = η = 0 in Theorem 2.1, then we recover Theorem

1.7.
2. By setting β = α, κ = η = 0 and taking limit ρ→ 0+ in Theorem 2.1, we

get the Hermite–Hadamard inequality involving the Hadamard fractional
integral operators.

3. Let β = 0 and κ = −ρ(α + η) in Theorem 2.1, we obtain the Hermite–
Hadamard inequality involving the Erdélyi–Kober fractional integral oper-
ators.

4. If we let a = 0, κ = η = 0 and taking limit ρ→ 1 in Theorem 2.1, then we
have the Hermite–Hadamard inequality involving the Liouville fractional
integral operators.

5. Substituting β = α, κ = η = 0 and taking limit ρ→ 1 in Theorem 2.1, we
get the following Hermite–Hadamard inequality involving the Riemann–
Liouville fractional integral operators:

X

(
a+ b

2
, ·
)
≤ Γ(α+ 1)

2(b− a)α

(
Jαb−X(a, ·) + Jαa+X(b, ·)

)
(2.5)

≤ X(a, ·) +X(b, ·)
2

,

where X(t, ·) ∈ Xp
c (a, b), and Jαb− and Jαa+ are the left and right Riemann-

-Liouville fractional integral operators, respectively.
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In 2013, Sarikaya et al. [8] introduced the (k, r)-fractional integral oper-
ators (which are generalizations of the Riemann–Liouville fractional integral
operators) as follows:

Iα,ra+,kf(t) =
(r + 1)1−

α
k

kΓk(α)

∫ t

a

(tr+1 − sr+1)
α
k−1srf(s)ds, t ∈ [a, b]

and

Iα,rb−,kf(t) =
(r + 1)1−

α
k

kΓk(α)

∫ b

t

(sr+1 − tr+1)
α
k−1srf(s)ds, t ∈ [a, b],

with Iα,0a,1 f(t) = Iαa f(t) where Γk is the Euler gamma k-function given by

Γk(x) =

∫ ∞
0

tx−1e−
tk

k dt, Re(x) > 0, k > 0

and Γ1(x) = Γ(x) the usual gamma function, satisfying the following proper-
ties: Γk(x+ k) = xΓk(x) and Γk(k) = 1.

By following a similar approach as outlined in the proof of Theorem 2.1, we
state (without proof) a generalization of (2.5) involving the (k, r)-Riemann-
-Liouville fractional integral operators in the following theorem:

Theorem 2.4. Let α > 0, k > 0 and r ≥ 0. Let X : [ar+1, br+1]× Ω→ R
be a positive stochastic with 0 ≤ a < b and X(t, .) ∈ Xp

c (ar+1, br+1). If X(t, .)
is convex, then the following inequality holds almost everywhere

X

(
ar+1 + br+1

2
, ·
)
≤ Γk(α+ k)

2(r + 1)−
α
k (br+1 − ar+1)

α
k

×
(
Iα,r
b(r+1)−,k

X(ar+1, ·) + Iα,r
a(r+1)+,k

X(br+1, ·)
)

≤ X(ar+1, ·) +X(br+1, ·)
2

.

2.2. Moment Estimates

Let X : I × Ω → R be a random variable given by X = X(t, ω), t ∈ I,
ω ∈ Ω. For convenience and simplicity, we will denote X = X(t) = X(t, ·)
for a fixed ω ∈ Ω. Here and throughout this section, we assume X(t) to be
an {Ft}-adapted, positive, non-decreasing convex stochastic process, where
Ft = σ{X(s), 0 ≤ s ≤ t} for each t ∈ [0, T ], is the (its natural) filtration.
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Remark 2.5. If X(t) is a positive convex stochastic process, then X2(t) is
also convex. Since the composition of non-decreasing convex functions is still
convex and non-decreasing, it follows therefore that for any two convex, non-
decreasing functions ϕ(t) and X2(t), their composition ϕ(X2(t)) is a convex
(and non-decreasing) stochastic process.

Theorem 2.6. Let ϕ : R→ R be a convex, non-decreasing function and X
a one dimensional adapted, positive, non-decreasing convex process such that
E
[
ϕ
(
X2(t)

)]
<∞ for all a ≤ t ≤ b. Then

ϕ

(
a+ b

2

)
≤ 1

b− a
E

[ ∫ b

a

ϕ
(
X2(t)

)
dt

]
≤

E
[
ϕ
(
X2(a)

)]
+ E

[
ϕ
(
X2(b)

)]
2

.

Proof. Following (1.1) for any convex function ϕ, we have

ϕ

(
X2

(
a+ b

2

))
≤ 1

b− a

∫ b

a

ϕ
(
X2(t)

)
dt ≤

ϕ
(
X2(a)

)
+ ϕ

(
X2(b)

)
2

.

Taking expectation of all sides and applying Jensen’s inequality, we obtain

ϕ

(
E

[
X2

(
a+ b

2

)])
≤ E

[
ϕ

(
X2

(
a+ b

2

))]
≤ 1

b− a
E

[ ∫ b

a

ϕ
(
X2(t)

)
dt

]

≤
E
[
ϕ
(
X2(a)

)]
+ E

[
ϕ
(
X2(b)

)]
2

,

and the result follows. �

Corollary 2.7. If ϕ : R→ R is a convex function and ϕ(X2(t)) = X2(t),
a convex process (X– a one dimensional process), then we have

a+ b

2
≤ 1

b− a
E

[ ∫ b

a

X2(t)dt

]
≤ a+ b

2
,

and it follows that

E

[ ∫ b

a

X2(t)dt

]
=
b2 − a2

2
.

We now use Theorem 1.2 to compute the second moment of integral of
a convex, positive and mean square continuous process (in particular one
dimensional process) as follows:
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Theorem 2.8. If X : I → R is a convex, positive and mean square con-
tinuous process in the interval I, then

E

[(∫ b

a

X(t)dt

)2]
=

(a+ b)(b− a)2

2

holds almost everywhere.

Proof. Square all sides of (1.2) and take expectations, to get:

E

[
X2

(
a+ b

2

)]
≤ 1

(b− a)2
E

[(∫ b

a

X(t)dt

)2]

≤
E
[
X2(a)

]
+ 2E

[
X(a)X(b)

]
+ E

[
X2(b)

]
4

.

Hence, since X is adapted,

a+ b

2
≤ 1

(b− a)2
E

[(∫ b

a

X(t)dt

)2]
≤ a+ 2 min{a, b}+ b

4

=
a+ 2a+ b

4
≤ b+ 2a+ b

4
=
a+ b

2
. �

Theorem 1.7 can be applied to estimate the moment of Katugampola frac-
tional integral mean square continuous process:

Theorem 2.9. If X(t) is a one dimensional adapted, positive, convex sto-
chastic process satisfying statement of Theorem 1.7, then(

E

[
ρIαbρ−X

2(aρ)

]
+ E

[
ρIαaρ+X

2(bρ)

])
=

(aρ + bρ)(bρ − aρ)α

ραΓ(α+ 1)
.

Proof. Following Theorem 1.7, since X2 is positive and convex, we have
from (1.6) that:

X2

(
aρ + bρ

2

)
≤ Γ(α+ 1)

2ρ−α(bρ − aρ)α
(
ρIαbρ−X

2(aρ) + ρIαaρ+X
2(bρ)

)
≤ X2(aρ) +X2(bρ)

2
.
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Now, take expectation of both sides to obtain

E

[
X2

(
aρ + bρ

2

)]
≤ Γ(α+ 1)

2ρ−α(bρ − aρ)α
(
E
[
ρIαbρ−X

2(aρ)
]

+ E
[
ρIαaρ+X

2(bρ)
])

≤
E
[
X2(aρ)

]
+ E

[
X2(bρ)

]
2

,

and thus, by assuming that X is adapted we obtain

aρ + bρ

2
≤ Γ(α+ 1)

2ρ−α(bρ − aρ)α
(
E
[
ρIαbρ−X

2(aρ)
]

+ E
[
ρIαaρ+X

2(bρ)
])

≤ aρ + bρ

2
. �

Theorem 2.10. Let X : I ⊂ (0,∞)→ R be a p-convex, positive stochastic
process and mean-square integrable on [a, b] where a, b ∈ I and a < b. Then

(ap + bp)
1
p (bp − ap)2

p22
1
p

≤ E

[(∫ b

a

X(t)

t1−p
dt

)2]
≤ (a+ b)(bp − ap)2

2p2
.

Proof. SinceX is a one dimensional p-convex, positive stochastic process,
we have by taking square of all sides of (1.3) that:

X2

([
ap + bp

2

] 1
p
)
≤ p2

(bp − ap)2

(∫ b

a

X(t)

t1−p
dt

)2

≤ X2(a) + 2X(a)X(b) +X2(b)

4
.

By taking expectations of all sides and following the proof of Theorem 2.8,

E

[
X2

([
ap + bp

2

] 1
p
)]
≤ p2

(bp − ap)2
E

[(∫ b

a

X(t)

t1−p
dt

)2]
≤ a+ b

2
.

We therefore obtain[
ap + bp

2

] 1
p

≤ p2

(bp − ap)2
E

[(∫ b

a

X(t)

t1−p
dt

)2]
≤ a+ b

2
. �



102 McSylvester Ejighikeme Omaba, Eze R. Nwaeze

Theorem 2.11. Let X : I ⊂ (0,∞)→ R be a p-convex, positive stochastic
process and mean-square integrable on [a, b] where a, b ∈ I and a < b. Then

(ap + bp)
1
p (bp − ap)
p2

1
p

≤ E

[ ∫ b

a

X2(t)

t1−p
dt

]
≤ (a+ b)(bp − ap)

2p
.

Proof. Since X2 is a one dimensional p-convex, positive stochastic pro-
cess, then we have from (1.3) that

X2

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

∫ b

a

X2(t)

t1−p
dt ≤ X2(a) +X2(b)

2
.

Taking expectation of all sides yields:

E

[
X2

([
ap + bp

2

] 1
p
)]
≤ p

bp − ap
E

[ ∫ b

a

X2(t)

t1−p
dt

]
≤ E[X2(a)] + E[X2(b)]

2
.

We obtain [
ap + bp

2

] 1
p

≤ p

bp − ap
E

[ ∫ b

a

X2(t)

t1−p
dt

]
≤ a+ b

2
. �

Theorem 2.12. Let X : I ⊂ (0,∞) → R be a one dimensional exponen-
tially p-convex, positive stochastic process and integrable on [a, b] with a, b ∈ I
and a < b. Then for p ∈ R \ {0} and α ∈ R,

(ap + bp)
1
p (bp − ap)
p2

1
p

≤ E

[ ∫ b

a

X2(s)

s1−peαs
ds

]
≤
(
A1(α) a

eαa +A2(α) b
eαb

)
(bp − ap)

p
.

Proof. If α 6= 0, then

X2

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

∫ b

a

X2(s)

s1−peαs
ds ≤ A1(α)

X2(a)

eαa
+A2(α)

X2(b)

eαb
.

Taking expectation of all sides we obtain[
ap + bp

2

] 1
p

≤ p

bp − ap
E

(∫ b

a

X2(s)

s1−peαs
ds

)
≤ A1(α)

a

eαa
+A2(α)

b

eαb
,

for constant numbers A1(α), A2(α). �
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Theorem 2.13. Let X : I ⊂ (0,∞) → R be a one dimensional exponen-
tially p-convex, positive stochastic process and a, b ∈ I with a < b. If X is
mean-square integrable on [a, b], then for p ∈ R \ {0} and α ∈ R,

(ap + bp)
1
p (bp − ap)2

p22
1
p

≤ E

[(∫ b

a

X(s)

s1−peαs
ds

)2]

≤ (bp − ap)2

p2

((
A2

1(α) +A2
2(α)

) b

e2αa
+ 2A1(α)A2(α)

a

eα(a+b)

)
.

Proof. Square (1.4) and take expectations of all sides to obtain:

EX2

([
ap + bp

2

] 1
p
)
≤ p2

(bp − ap)2
E
(∫ b

a

X(s)

s1−peαs
ds

)2

≤ E

(
A1(α)

X(a)

eαa
+A2(α)

X(b)

eαb

)2

,

and the result follows. �

3. Conclusion

New fractional inequalities of the Hermite–Hadamard type for positive–
convex stochastic processes have been established. The first result generalizes
and unifies some known results in the literature. Loads of estimates can be
deduced as special cases of our main theorems. For related results, we invite
the interested reader to the following papers [4, 9, 10, 11, 12, 13] and the
references cited therein.

Acknowledgement. The first author acknowledges the continuous sup-
port of University of Hafr Al Batin, Saudi Arabia.

References

[1] J.E. Hernández and J.F. Gómez, Hermite–Hadamard type inequalities, convex stochas-
tic processes and Katugampola fractional integral, Rev. Integr. Temas Mat. 36 (2018),
no. 2, 133–149.



104 McSylvester Ejighikeme Omaba, Eze R. Nwaeze

[2] U.N. Katugampola, New fractional integral unifying six existing fractional integrals,
arXiv preprint 2016. Avaliable at arXiv:1612.08596.

[3] D. Kotrys, Hermite–Hadamard inequality for convex stochastic processes, Aequationes
Math. 83 (2012), no. 1–2, 143–151.

[4] N. Mehreen and M. Anwar, Hermite–Hadamard type inequalities for exponentially
p-convex functions and exponentially s-convex functions in the second sense with ap-
plications, J. Inequal. Appl. 2019, paper 92, 17 pp.

[5] K. Nikodem, On convex stochastic processes, Aequationes Math. 20 (1980), no. 2–3,
184–197.

[6] N. Okur, I. Iscan, and E. Yuksek Dizdar, Hermite–Hadamard type inequalities for p-
convex stochastic processes, Int. J. Optim. Control. Theor. Appl. IJOCTA 9 (2019),
no. 2, 148–153.

[7] S. Özcan, Hermite–Hadamard type inequalities for exponentially p-convex stochastic
processes, Sakarya Univ. J. Sci. 23 (2019), no. 5, 1012–1018.

[8] M.Z. Sarıkaya, E. Set, H. Yaldiz, and N. Başak, Hermite–Hadamard’s inequalities
for fractional integrals and related fractional inequalities, Math. Comput. Model. 57
(2013), no. 9–10, 2403–2407.

[9] M.Z. Sarıkaya, H. Yaldiz, and H. Budak, Some integral inequalities for convex stochas-
tic processes, Acta Math. Univ. Comenian. (N.S.) 85 (2016), no. 1, 155–164.

[10] E. Set, M. Tomar, and S. Maden, Hermite–Hadamard type inequalities for s-convex
stochastic processes in the second sense, Turkish J. Anal. Number Theory 2 (2014),
no. 6, 202–207.

[11] E. Set, M.Z. Sarıkaya, and M. Tomar, Hermite–Hadamard type inequalities for coor-
dinates convex stochastic processes, Math. Æterna. 5 (2015), no. 2, 363–382.

[12] M. Tomar, E. Set, and S. Maden, Hermite–Hadamard type inequalities for log-convex
stochastic processes, J. New Theory 2 (2015), 23–32.

[13] M. Tomar, E. Set, and N.O. Bekar, Hermite–Hadamard type inequalities for strongly
log-convex stochastic processes, J. Global Engineering Studies 1 (2014), no. 2, 53–61.

McSylvester Ejighikeme Omaba
Department of Mathematics
College of Science
University of Hafr Al Batin
P. O Box 1803 Hafr Al Batin 31991
KSA
e-mail: mcomaba@uhb.edu.sa

Eze R. Nwaeze
Department of Mathematics and Computer Science
Alabama State University
Montgomery
AL 36101
USA
e-mail: enwaeze@alasu.edu

https://arxiv.org/abs/1612.08596

	1. Introduction
	2. Main Results
	2.1. Generalized Fractional HH Inequality
	2.2. Moment Estimates

	3. Conclusion
	Acknowledgement
	References

