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HYPO-g-NORMS ON A CARTESIAN PRODUCT OF
ALGEBRAS OF OPERATORS ON BANACH SPACES

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper we consider the hypo-g-operator norm and hypo-g-
numerical radius on a Cartesian product of algebras of bounded linear opera-
tors on Banach spaces. A representation of these norms in terms of semi-inner
products, the equivalence with the g-norms on a Cartesian product and some
reverse inequalities obtained via the scalar reverses of Cauchy-Buniakowski-
Schwarz inequality are also given.

1. Introduction

Let (E, ||-]|) be a normed linear space over the real or complex number field
K. On K" endowed with the canonical linear structure we consider a norm
||-||,, and the unit ball

B([[ll,,) = {A = (A1,..., A) € K[[JA]l, <1}
As an example of such norms we should mention the usual p-norms

max {|A\],...,[\n|} if p= o0,
(k=1 Pl
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The FEuclidean norm is obtained for p = 2, i.e.,

1AL, = (Z w)
k=1

It is well known that on E™ := E X --- X E endowed with the canonical linear
structure we can define the following p-norms:

1
2

H || { maX{Hlevvnan} if b =00,
b'e = L
n,p n = .
(k= llzwll”)? if p€[l,00),
where x = (z1,...,x,) € E".

Following [6], for a given norm [-[|,, on K", we define the functional |-, ,, :
E™ — [0,00) given by

n
> N

j=1

(1.1) 1%[l},,, == sup
xeB(|IIl,,)

)

where x = (z1,...,2,) € E™.
It is easy to see, by the properties of the norm ||-||, that:
(i) ”Xth >0 for any x € E™,
(i) fx+yllpn < Ixlpn + 1515, for any x, y € B,
(i) [lax|ly, ,, = laf[x]];,, for each o € K and x € E™,
and therefore ||-||,, ,, is a semi-norm on E™.
We observe that [x|,, = 0 if and only if 7, \jz; = 0 for any
(A, ..sAn) € B(]|]l,,) - Since (0,...,1,...,0) € B(]-||,,) then the semi-norm
[Il5,., generated by |-/, is a norm on E™.

If by B,,, with p € [1,00] we denote the balls generated by the p-norms
on K", then we can obtain the following hypo-¢-norms on E™ :

> Nz

j=1

[P

(12) HXHh,n,q = Sup
AEB

n,p

)

withq>1and%—I—I%:lifp>1,q:11fp:ooandq:ooifp:1.
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For p = 2, we have the Euclidean ball in K", which we denote by B,,, B,, =
{)\ = (AL A) €KLM) < 1} that generates the hypo-Euclidean
norm on E", i.e.,

[Bll, e = sup
B

n
E g
=1

Moreover, if £ = H, where H is an inner product space over K, then the
hypo-Euclidean norm on H™ will be denoted simply by

n
E AjT;
j=1

Let (H; (-,-)) be a Hilbert space over K and n € N, n > 1. In the Cartesian
product H™ := H x --- x H, for the n-tuples of vectors x = (x1,...,2,),
y = (Y1,...,yn) € H", we can define the inner product (-,-) by

l|Ix||, := sup
AEB

<XaY> ::Z<xjayj>v X, yeHna

Jj=1

which generates the Euclidean norm ||-||, on H", i.e.,

n }
2
Il o= (anjn ) xenn
j=1

The following result established in [6] connects the usual Euclidean norm
||-l, with the hypo-Euclidean norm ||-|, .

THEOREM 1.1 (Dragomir, 2007, [6]). For any x € H™ we have the inequal-
ities
1
;735HXH2 < [lxlle < x5
i.e., |||l and ||-||, are equivalent norms on H™.

The following representation result for the hypo-Euclidean norm plays a
key role in obtaining various bounds for this norm:
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THEOREM 1.2 (Dragomir, 2007, [6]). For any x € H" with x =
(z1,...,2,), we have

Let (E, ||-]|) be a normed linear space over the real or complex number field
K. We denote by E* its dual space endowed with the norm ||-|| defined by

[f[l:= sup [f(z)] = sup [f(u)| < oo, where f € E*.

llzll<1 flull=1

The following representation result for the hypo-g-norms on E™ plays a key
role in obtaining different bounds for these norms (see [7]):

THEOREM 1.3 (Dragomir, 2017, [7]). Let (E, ||||) be a normed linear space
over the real or complex number field K. For any x € E™ withx = (x1,...,%y,),
we have

n 1/q
I, = sup (er<xj>|Q>

Ifll=1
where ¢ > 1, and

[l 00 = Xl oo = max ]

We have the following inequalities of interest:

COROLLARY 1.4. With the assumptions of Theorem [L.3] we have for ¢ > 1
that

1
m HX| n,q

< HXHh,n,q < ”XHn,q

for any any x € E™.
We have forr > q > 1 that

r—gq
”X||h7n7r S ”X||h7n7q S nora ||X||h,n7r

for any x € E™.
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In this paper we introduce the hypo-g-operator norms and hypo-g-nume-
rical radius on a Cartesian product of algebras of bounded linear operators
on Banach spaces. A representation of these norms in terms of semi-inner
products, the equivalence with the g-norms on a Cartesian product and some
reverse inequalities obtained via the scalar reverses of Cauchy—Buniakowski—
Schwarz inequality are also given.

2. Semi-inner products and preliminary results

In what follows, we assume that F is a linear space over the real or complex
number field K.

The following concept was introduced in 1961 by G. Lumer [IT] but the
main properties of it were discovered by J. R. Giles [9], P. L. Papini [17], P.
M. Mili¢i¢ [12]-[14], I. Rosca [18], B. Nath [16] and others (see also [3]).

In this section we give the definition of this concept and point out the
main facts which are derived directly from the definition.

DEFINITION 2.1. The mapping [, ] : E x E — K will be called the semi-
inner product in the sense of Lumer-Giles or L-G-s.i.p., for short, if the fol-
lowing properties are satisfied:

(i) [ +y 2] =[zr,2]+ [y, 2] forall z,y, z€ E,
(ii) [Az,y] = A[z,y] for all z, y € E and A a scalar in K,
(iii) [x,x] > 0 for all € E and [z, z] = 0 implies that x = 0,
) [z, 9])* < [z, 2] [y, y] (Schwarz’s inequality) for all z, y € E,
) [z, \y] = Xz, y] for all 2, y € E and X a scalar in K.

The following result collects some fundamental facts concerning the con-
nection between the semi-inner products and norms.

PROPOSITION 2.2. Let E be a linear space and [-,-] a L-G-s.i.p on E. Then

the following statements are true:

(i) The mapping E > AN [x,:c]% € Ry is a norm on E.

(ii) For every y € E the functional E > a:i% [z,y] € K is a continuous
linear functional on E endowed with the norm generated by the L-G-
s.i.p. Moreover, one has the equality || f,|| = |ly||-
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DEFINITION 2.3. The mapping J : E — 28", where E* is the dual space
of E, given by:

J(z) :={a" € E*| (&%, 2) = |l2"| ||, [[=*]| = [[=}, =€ E,
will be called the normalised duality mapping of normed linear space (E, ||-||).

DEFINITION 2.4. A mapping J : E — E* will be called a section of
normalised duality mapping if J (z) € J (z) for all z in E.

The following theorem due to I. Rogca (J18]) establishes a natural connec-
tion between the normalised duality mapping and the semi-inner products in
the sense of Lumer-Giles.

THEOREM 2.5. Let (E,|||]|) be a normed space. Then every L-G-s.i.p.
which generates the norm ||-|| is of the form

w9) = (T (w).x) forallzy in E,
where J is a section of the normalised duality mapping.
The following proposition is a natural consequence of Rogca’s result.

PROPOSITION 2.6. Let (E,||-||) be a normed linear space. Then the follow-
ing statements are equivalent:
(i) E is smooth.
(ii) There exists a unique L-G-s.i.p. which generates the norm |-||.

We need the following lemma holding for n-tuples of complex numbers:

LEMMA 2.7. Let B = (B1,...,5,) € C". Ifp, ¢ > 1 with 2 + L =1, or
p=1,g=00 orp=o00,q =1, then

> a;B

(2.1) sup
<ili3

flell

= HﬁHn,q :

n,p—

The proof follows by using Hoélder’s discrete inequality and its sharpness
for the three cases under consideration and we omit the details.
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THEOREM 2.8. Let (E, ||-||) be a normed linear space over the real or com-

plex number field K and [-,-] a L-G-s.i.p on E that generates the norm |||,

1/2

ie. [x,z]"" =||z| . For any x € E™ with x = (x1,...,%,), we have

n 1/q
22) [l g = stp (Z spad) 4

flull=1

where g > 1.
PRrROOF. If [-,-] is a L-G-s.i.p. that generates the norm ||-||, then
(2.3) sup |z, u]| = ||z|| for any =z € X.

flull=1

Indeed, if = 0 the equality is obvious. If = # 0, then by Schwarz’s inequality
we have

[z, u]] < [=]||ul for any u € X.
By taking the supremum in this inequality we have

sup [z, u]| < |||

flull=1

On the other hand by taking ug := 75 we have that |luo|| = 1 and since

[m x” — llll” = ||z
] ]
then we get the desired equality (2.3]).
Assume that x € E™ with x = (21, ...,2,) and let p, ¢ > 1 with %—!—% =1,

then by the definition (1.2)) and representation (2.3) we have

n
= sup sup [(Zajx]),u}
la|, <1\ [Jul[=1 j=1
> Slial)
= sup sup ajlzj,ul| | = sup < [z}, u] > ,
lull=1 \ lal, <11} ||u|| 1

where the last equality in (2.4) follows by the representation (2.1) for
IBJ = [SUj,U} ) ] S {1,,11,}

sup [z, ul| > [[z, uo]| =
lull=1

(24) ”XHh,n,q = |Sup




176 Silvestru Sever Dragomir

For ¢ = 1, p = oo the representation (2.2 follows in a similar way by
utilising the equality (2.1)). We omit the details. O

REMARK 2.9. If (E,||-]|) is an inner product space with (-,-) generating
the norm, then we recapture the representation result obtained in the recent

paper [§].

REMARK 2.10. We observe that the representation provides a stronger
result than the one from Theorem [I.3] since it makes use of a smaller class of
bounded linear functionals, namely the ones generated by a given L-G-s.i.p
on E that generates the norm ||-]| .

3. The case of operators on Banach spaces

A fundamental result due to Lumer ([I1]), in the theory of operators on
complex Banach spaces X, is that if T' € B(X), then

(3.1) w(T) < T < 4w (T),

where w (T') := sup| ;=1 |[T'%, z]| is the numerical radius of the operator T
and [, -] is a s-L-G-s.i.p. that generates the norm ||-||. The numerical radius is
independent of the choice of [-,-] (see [1I], Theorem 14). Also, the numerical
radius is a norm.

As shown by Glickfeld ([10]), the second inequality in holds with
e = exp (1) instead of 4 and e is the best possible constant. Therefore we have
the sharp inequalities

1
(3-2) STl = w (T) < |7
for any T' € B (X).

On the Cartesian product B (X) := B(X) x ... x B(X) we can define
the hypo-g-operator norms of (Ty,...,T,) € B™ (X) by

33) (T Tl g = S

where p, q € [1, 0],

n pf

with the convention that if p =1, ¢ = oc; if p=00, ¢ =1 and if p > 1, then
1,1

~+>=1.

»p T q
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If [-,-] is a s-L-G-s.i.p. that generates the norm ||-|| of X and w(T) :=
SUp| =1 [T, z]| is the numerical radius of the operator 7" we can also define
the hypo-q-numerical radius of (Ty,...,T,) € B™ (X) by

(34)  wppq(Th,....Ty) = sup w<Z)\ T> with p, g € [1,00],
(R

n p—
with the convention that if p =1, ¢ = oc; if p =00, ¢ =1 and if p > 1, then
1,1
141,
p ' q

We observe that (3.3)) and (3.4]) are special cases of (|L.1]), for two different
norms on E = B(X).

Using (3.2) we have
el &= iti| = 2 Nt ) =
j=1 7j=1

and by taking the supremum over [[A[[, , < 1 in this inequality, we get the
following fundamental result

1
(35 T Tl < Whnag (T L) < N Tl

for any (T1,...,T;,) € B™ (X) and ¢ > 1. The inequalities (3.5) are sharp,
which follow by the unidimensional case.

THEOREM 3.1. Let (X, ||-||) be a Banach space and [-,-] a s-L-G-s.i.p. that
generates the norm ||-|| of X. Let (Ty,...,T,) € B (X) and z, y € X, then
forp, g>1 with%—k%:l orp=1,qg=o00 orp=o00,q=1, we have

n 1/q
oo (G- (o)
Halh1 p<1 =1
PrOOF. If we take g = ([T1z,y],...,[Thz,y]) € C" in (2.1, then we get
n 1/q
(Cimea) " =180, = s
j=1 |04||
sup Zaj [Tz, y ‘ sup [Zajzj,y} ‘,
el o, <t | L5

which proves (3.6)). O
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COROLLARY 3.2. With the assumptions of Theorem 1, if (Ty,...,T,) €
B(”)(X) and x € X, then for p, ¢ > 1 with erg =lorp=1,qg=o00 or
p=o00,q =1, we have

(3.7) sup

[l

T

n 1/q
= sup <ZTxy > .

" i s

n pf

PROOF. By the properties of semi-inner product, we have for any v € X,

u # 0 (see also (2.3))) that

(33 Jull = s {3l

Let 2 € X, then by taking the supremum over [|y| = 1 in (3.6)) we get for

p, g > 1 with I+ 1 =1 that
o, ()= g (. [(Sen)])
= i, (g [(Sem)=o]

llyll=1 llyll=1
<Z OéjTj) X
=1

which proves the equality (3.7). We used for the last equality the prop-

erty (3:3). 0

We can state and prove our main representation result.

= sup
el , <1

THEOREM 3.3. Let (X, |-||) be a Banach space, [-,-] a s-L-G-s.i.p. that
generates the norm ||-|| of X and (T4, ...,T,) € B (X).

(i) For q > 1 we have the representation for the hypo-q-operator norm

n 1/q
(3.9) \Tr o Ty = sup (chy )
lzl|l=llyll=1 j=1

and

T, ..., T, = ma Ts| .
(T T e = _max T3]
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(ii) For g > 1 we have the representation for the hypo-q-numerical radius

n 1/q
(3.10) Whon,q (Th, ..., Ty) = sup (Z [Tz, x] )
lzl=1 \ 5=
and
Whon.oo (T1,...,Th) = max w(Ty).
oo (T ) je{l,..m} (T3)

PRrROOF. (i) By using the equality (3.7) we have for (T3, ...,T,) € B™ (X)
that

s (St = s (aw (Simer) )

lzl=llyll=1 \ = lzll=1 \ llyll=1 \ 3=
= sup
lzll=1 IIOcH,L,,,

= Su ( Sup
Hannp_ lzll=1
= ||(T17 e 7Tn)||h,n,q ’

Zaa

Za]Tx

Za i1

= sup
ledl,, ,<1

n,p—

which proves (3.9). The rest is obvious.
(ii) By using the equality (3.6) we have for (T,...,T,) € B™ (X) that

o (Sme) = (o [[(Sem)e])
= (m” 1 KZ% )] )

lell,, <1

<1

which proves (3.10)). The rest is obvious. O
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We can consider on B(™ (X) the following usual operator and numerical
radius g-norms, for ¢ > 1

n 1/q
[(Tar.e T = (Z uTj|r‘1)
=1

and
n 1/q
W (Th, ..., T) = (qu (Tj)>
j=1

where (T1,...,T,) € B™ (X). For ¢ = oo we put
Ty,...,T, = T;
T Tl = e (5]

and

Wh.oo (T1,...,Ty) = max w(Ty).
o (T ) je{1,...n} (1)

COROLLARY 3.4. With the assumptions of Theorem[3.3 we have for ¢ > 1
that

1
m H(Tlv s 7T7’L)Hn,q < H(Tlv‘ ‘e 7Tn)Hh,n,q < H(Tl" ‘e ’Tn)Hn,q
and
1
mwmq (Tl, . ,Tn) S wh,n,q (Tl, e ,Tn) S wmq (Tl, e ,Tn)

for any (T1,...,T,) € B™ (X).

The proof follows from Corollary for £ = B(X) and we omit the
details.

COROLLARY 3.5. With the assumptions of Theorem we have for
r>q>1 that

(3.11) ||(Ty,...,Ty) < |[(T1,...,Ty)

Hh,n,r —=

r—gq
Hh,n,q S n H(T17"'7Tn)||h’n77’
and

(3.12)  Whony (Th, .., T0) < Whing (Ths - T) <070 Wiy (T, Ty)

for any (Ty,...,T,) € B™ (X).
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PrOOF. We use the following elementary inequalities for the nonnegative
numbers a;, j =1,...,n and r > ¢ > 0 (see for instance [I9] and [I5])

(3.13) <ia§> v < <ia§)l/q <n'w (i@)%

j=1 j=1 j=1

Let (Ty,...,T,) € B™ (X) and z, y € X with ||z| = ||ly|| = 1. Then by (3.13)
we get,

(i\mx,yw)l/r < (immv)w gnﬁ‘q“(i\[m,yv)

By taking the supremum over ||z|| = ||y|| = 1 we get (3.11).
The inequality (3.12) follows in a similar way and we omit the details. O

1/r

For ¢ = 2, we put

H(Tlv cee an)Hh,n,e = ”(Tl’ s ’Tn)Hh,nQ

and

whm,e (Tl, e ,Tn) = U)h,n’Q (Tl, e ,Tn) .

REMARK 3.6. We draw the readers’ particular attention to special cases
of Corollary BB r=2,¢=2,¢=1.

We have:

PROPOSITION 3.7. For any (Ty,...,T,) € B (X) and p, ¢ > 1 with

1 1_1
=+ = =1, we have
p+q ’

n

2T

Jj=1

1

H(Th s ’Tn)Hh,n,q 2 m

and

1 n
(3.14) Whong (Th,. ., Ty) > w(ZT]>
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PROOF. Let \; = —~ for j € {1,...,n}, then Z _1 |Aj|" = 1. Therefore

by (B3) we get

n

1 1
(T, To) g = Mﬁup Z)\ T Z 75Tl = =7 > Ty
np* J=1 Jj=1
The inequality (3.14) follows in a similar way. O

We can also introduce the following norms for (Ti,...,T,) € B™ (X),

/p
N (Z i),
where p > 1 and
Ty, To) |l oo = SUD ( max Tm): max T}
I Mmoo = s (e Tyl ) = x| 17,1
The triangle inequality for ||-|[, ,, , follows from Minkowski inequality, while

the other properties of the norm are obvious.
PROPOSITION 3.8. Let (Ty,...,T,) € B™ (X). We have for p > 1, that

(3.15) (T Tl < I Tl < (T - Tl

s,Mm,p n,p "’
PROOF. We have for p > 2 and z, y € X with ||z|| = ||y|| = 1, that
[T, yll” < N Tl lyll” = 1T l” < T flll” = 17511
for j € {1,...,n}.
This implies

DT yll” < ITyell” < D IT17,
7j=1 =1 7j=1

SO

(3.16) (anrmx,yw)”p < (iumup)”p < (ium”)w,

Jj=1

for any x, y € X with |[z[| = [ly[| = 1.
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Taking the supremum over ||z|| = |ly|]| = 1 in (3.16]), we get the desired
result (3.15)). O

4. Reverse inequalities

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality
(2], see also [1, Theorem 5.14]):

LEMMA 4.1. Leta, A€ R andz = (21,-..,21), Yy = (Y1,---,Yn) be two
sequences of real numbers with the property that:

ay; < z; < Ay; foreach je{l,...,n}.
Then for any w = (w1, ..., w,) a sequence of positive real numbers, one has
the inequality
n n 2
> wiag - (Lwem) <
=1 j=1

Jj=

N

(41) 0<) w2
j=1

(A= a)? <¥wy)

The constant % is sharp in (&.1)).

O. Shisha and B. Mond obtained in 1967 (see [19]) the following counter-
parts of (C'BS)-inequality (see also [I, Theorem 5.20 & 5.21]):

LEMMA 4.2. Assume that a = (ai,...,a,) and b = (by,...,b,) are such
that there exist a, A, b, B with the property that:

0<a<a; <A and 0<b<b;<B foranyje{l,...,n}.

Then we have the inequality

n n n 2 A 2 n n
an Y ayr-(Yay) < <\/; - \/@ S a3
=1 =1 =1 7j=1 7j=1

and
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LEMMA 4.3. Assume that a, b are nonnegative sequences and there exist
v, I' with the property that:

0§7§%§F<oo forany j€{1,...,n}.

J

Then we have the inequality

- 2 2 - I'— R 2
(4.3) 0§<Zaijj> _Zajbjngbj.

We have:

N[

THEOREM 4.4. Let (X, |-||) be a Banach space, [-,-] a s-L-G-s.i.p. that
generates the norm ||-|| of X and (T4, ...,T,) € B (X).

(i) We have

2 1 2 1 2
(44) 0 < (T Tl e =~ (T Tl < I T

|
and

1 1
(45) 0<w? (T,...,T,) — Ew’%v”’l (Ty,...,T,) < o (T, Tl o -

(ii) We have

2 2
(4.6) 0<(Ths- s T)llhme = — T Tl

1
n
< (s Tl oo 1T T

and

(4.7) 0 < w?

n,e

1
(Ty,...,T,) — 5w,%7n,1 (Th,...,T,)

< H(Tlv .. 7T”>Hn,oo Wh,n,1 (Tla s aTn) .
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(iii) We have

1
(4‘8) 0< H(Th s 7Tn)Hh,n,e B ﬁ H(Th s 7Tn)”h,n,1
< VAT Tl
and
1
(49) 0 S Wn,e (Tl, e ,Tn) - ﬁw}%ml (Tl, PN ,Tn)
1
< VT T

Proor. (i). Let (Ty,...,T,) € B™ (H) and put

n,00 °

R= Tyl = |(Ti, ..., T
jemax Tl =T, To)ll

yoooy

If x, y € H with ||z|| = ||y|| = 1 then
[Ty, vl < [Tyl < |75 < R

for any j € {1,...,n}.
If we write the inequality (4.1) for z; = |[Tjz,y]|, w; =y; =1, A=R
and a = 0, we get

n 2
1
0<nZ|Txy|—<Z|Tmy> gin2R2

J=1

for any z, y € H with [|z| = |ly|| = 1.
This implies that

n 1 n 2 1
. 2< = : Lop2
(4.10) SoIme il < 23 (el ) + o
7=1 7j=1
for any z, y € H with ||z|| = ||y|| = 1 and, in particular
(4.11) S (el < (3 |Teal) L
| =1 AY=RE y

for any x € H with ||z| = 1.
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Taking the supremum over |[z]| = ||y|| = 1 in (4.10) and over ||z| =1 in

(4.11), we get (4.4) and (4.5).
(ii). Let (Tl, Ty € B(”) (H) . If we write the inequality (4.2)) for a; =

\[Tjz,y]|,b; =1, b=B=1,a=0and A= R, then we get
o<nZ|T:cy (Zu’xy) <n Y| [Ty )]
j=1

for any z, y € H with [|z|| = |ly|| = 1.
This implies that

(412) Sl < & (Y1l ) +RY [Tl

7j=1
for any z, y € H with ||z|| = ||y|| = 1 and, in particular
n n 2 n
(4.13) > Ty, 2)) < <ZT$I ) +RY |[Tz, 2],
=1 =1 j=1

for any x € H with ||z| = 1.

Taking the supremum over ||z|]| = ||y|| = 1 in and over ||z|| =1 in
(#.13), we get and (4.7).

(iii). If we write the inequality for a; = |[Tjz,y]|,b; =1, b= B =1,
v =0 and I' = R we have

3 n

<Z|T:I:y ) Z|Ta:y|< nR

7j=1

Il
=

for any x, y € H with ||z| = ||y||
This implies that

(el ) < 23 e+ R

for any z, y € H with ||z|| = ||y|| = 1 and, in particular

(4.15) (énnx,x]ﬁf <

[Tz, 2]l + 7 fR,

Si-
M-

7j=1

for any x € H with |z]| = 1.
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Taking the supremum over ||z|| = ||y|| = 1 in (4.14) and over ||z|| = 1 in
[LT5), we get (L) and (L9). 0

Before we proceed with establishing some reverse inequalities for the hypo-
Fuclidean numerical radius, we recall some reverse results of the Cauchy-
Bunyakovsky-Schwarz inequality for complex numbers as follows:

Ify,I'e Cand a; € C, j € {1,...,n} with the property that

(4.16) 0 <Re[(I' - a;) (@5 —7)]
= (Rel' = Rea;) (Rea; —Rey) + (ImI' —Im ;) (Imo; — Im )

or, equivalently,

_atr

CVj 5

1
=
_2| ol

for each j € {1,...,n}, then (see for instance [4 p. 9])

n

PO

j=1

2

< -n? 0 -4

A~ =

(4.17) ny lag® -
7j=1

In addition, if Re (I'y) > 0, then (see for example [4, p. 26]):

" 1
4.18 12<Z
1D+ = |?
< = .
= 1 Re (T7) jzlaj

(4.19) <”i1 |aj|2>% -

Finally, from [5] we can also state that

n

P

Jj=1

aj 2§n{|F+’y|—2 Re(F”y)]

1

)

(4.20) ny lag® -
- :

Jj= J

n

provided Re (I'y) > 0.
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We notice that a simple sufficient condition for (4.16) to hold is that
Rel' > Rea; > Rey and ImI'>Imaj; > Imy
for each j € {1,...,n}.

THEOREM 4.5. Let (X, |-||) be a Banach space, [-,-] a s-L-G-s.i.p. that
generates the norm ||-|| of X and v, I' € C with I # ~. Assume that

r 1
(4.21) w<Tj—7—;I)§2]I‘—7] forany j € {1,...,n}.
(i) We have
1 g 1
2 2 2
(4.22) Whne (T, Tn) < —w (ZlTj) +gnl0 =l
]:

(ii) If Re (I'y) > 0, then
1 |r =
(4.23) Whne (Thy .., Tn) < |+7|_w<ZT]>

and

424)  wl, . (Th,....,T,) < llwz(iTj) + [|F +9] - 2¢/Re (ny)}]

Jj=1

(iii) If T" # —~, then

1 10—~
4.2 wel(Th,... T < — T+ = .
( 5) wh’7 76( 1 n) n(“’(Z ]>+47’L |F+')/|
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PROOF. Let z € H with ||z|| = 1 and (Ty,...,T,) € B™ (H) with the
property (4.21)). By taking a; = [Tjz, z] we have

T r r
a; —7—;‘ = ‘[zj,x] —’y—;[ac,m}‘ = H(Tj —7—;]> m,x”

(- 25722579

1
<-Ir—
_2\ ol

< sup
llzll=1

for any j € {1,...,n}.
(i) By using the inequality (4.17), we have

2

@2)  YIealP < S mea| + i)
j=1 j=1
1 n 2 1 )
- T “nll —
- [Z jx,x} —|—4n\ 7|

j=1

for any x € H with ||z]| = 1.
By taking the supremum over ||z|| =1 in (4.26]) we get

sup <§:|Txx )<Sup [ZTxx]

1 2
l=l=1 \ =3 M lz)=1

n

1, 1 2
= (Y 1y) + -nll -
nw<' ]>+4n| ¥,

which proves (4.22]).
(ii) If Re (I'y) > 0, then by (4.18) we have for o; = [Tjz, 2], j € {1,...,n}
that

2

[le‘?x]

M:

- LD +y
4.2 )2 <
(427) Z| - 4n Re (I'¥)

j=1 1

<.
Il

2

LD +9P |y
= T
" 4n Re (T9) Z 3T

Jj=1

for any x € H with ||z|| = 1.
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Taking the supremum over ||z|| = 1 in (4.27) we get (4.23).
Also, by (4.20) we get

n 1 n 2
2
Z [Tz, z]|” < - [Zzj,x]
i=1 i=1

for any x € H with ||z|| = 1.
By taking the supremum over ||z|| = 1 in this inequality, we have

+ [|F+7|—2 Re ( m]

[Zm x]

lel=1 4=
< mup {nHszx} [\r+7\—2 Re 1"7} [ZTMCH
< ﬁnillllpl [ZTJJ 33] [|I‘—|—’y|—2 Re ( ny} s {ZT&: :L}

- 3( ) + It vmT] o (1)

which proves (4.24)).
(iii) By the inequality (4.19) we have

(Eij[zj,x]F)?;(;Tm i hn ‘EQ\)
(@T”] oy ‘frﬂy”)

for any = € H with ||z| = 1.
By taking the supremum over ||z|| = 1 in this inequality, we get (4.25). O

REMARK 4.6. By the use of the elementary inequality w (T') < ||T|| that
holds for any 7' € B (X), a sufficient condition for (4.21) to hold is that

T -

I
y+ H_2|F v| forany je{l,...,n}.
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