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ON A SEPARATION THEOREM
FOR DELTA-CONVEX FUNCTIONS

Andrzej Olbryś

Dedicated to Professor Zygfryd Kominek on the occasion of his 75th birthday

Abstract. In the present paper we establish necessary and sufficient condi-
tions under which two functions can be separated by a delta-convex function.
This separation will be understood as a separation with respect to the partial
order generated by the Lorentz cone. An application to a stability problem for
delta-convexity is also given.

1. Introduction

A real function f defined on a convex subset of a real linear space is called
a d.c. function (or a delta-convex function) if it is a difference of two convex
functions. Therefore many properties of f are directly inherited from those
of convex functions. The class of d.c. functions is the smallest linear space
containing all convex functions, in particular, it contains all C2 functions.
D.c. functions of one real variable were considered by numerous mathemati-
cians (see for instance [3], [5], [7], [10]). The first who considered d.c. functions
of several variables was probably A.D. Alexandrov ([1], [2]), in 1949 motivated
by geometry. It turns out that many operations preserve delta-convexity of
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functions. In fact, the class of delta-convex functions is not only a linear space
but also an algebra and lattice. These facts were generalized in [6] by P. Hart-
man in 1959. He proved that a composition of two d.c. functions is d.c. He also
proved that a function which is locally d.c. on an open and convex subset D
of Rn is globally d.c. on D.

In [11], the notion of a d.c. function was extended to the notion of a d.c.
mapping between arbitrary normed spaces in the following manner.

Definition 1. Let X and Y be normed linear spaces, D ⊂ X be
a nonempty open and convex set and let F : D → Y be a mapping. We
say that F is a d.c. mapping if there exists a continuous and convex func-
tion f on D such that y? ◦ F + f is a continuous convex function for each
y? ∈ Y ?, ‖y?‖ = 1. Every such f is called a control function for F .

Let us observe that the definition of delta-convex maps coincides with the
definition of delta-convex functions in the case where (Y, ‖ · ‖) = (R, | · |).
Indeed, because there are only two linear functionals id,−id ∈ R? (identity
and minus identity) from the unite sphere then f + F and f − F are convex
functions and consequently, we have the representation

F =
f + F

2
− f − F

2
.

In the present paper we will consider a separation problem for delta-convex
functions. A corresponding problem for convex functions was solved in [4] and
we will use the main results from [4] in the next section. The separation
in our paper will be considered with respect to the partial order generated
by so called Lorentz cone which appears in a natural way in the context of
delta-convexity and was introduced and examined in [9]. Now, we recall only
the necessary definitions and facts concerning the mentioned order. We will
consider a very particular case where a normed space is (R, | · |).

Let consider the linear space Y := R × R, where the addition and scalar
multiplication are defined coordinate-wise. Let us recall that a convex cone
defined by formula

K := {(x, t) ∈ Y : |x| ≤ t}

is called the Lorentz cone. This cone induces in Y a partial order in the
following manner:

(X1, x1) �K (X2, x2)⇐⇒ |X2 −X1| ≤ x2 − x1.

This partial order is compatible with the linear structure of Y , i.e.
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• x �K y ⇒ x+ z �K y + z for x, y, z ∈ Y,

• x �K y ⇒ αx �K αy for x, y ∈ Y, α ≥ 0.

Note that, defining for given maps F : D → R and f : D → R (where
D stands for a nonempty convex subset of a real vector space) the map
F : D → Y via the formula

F (x) := (F (x), f(x)), x ∈ D,

we can rewrite the inequality defining the notion of delta-convexity of the map
F with a control function f by the formula

F (tx+ (1− t)y) �K tF (x) + (1− t)F (y), x, y ∈ D, t ∈ [0, 1].

The above remark shows that the notion of delta-convexity generalizes the
notion of usual convexity by replacing the classic inequality by the relation of
partial order induced by the Lorentz cone. The results for usual convexity are
obtained by putting F = 0.

In the sequel for X1, X2 ∈ Y we will write X1 � X2 instead of X1 �K X2;
moreover, we will use the following notation

C(D) := {(F, f) : F : D → R is delta-convex

with a control function f : D → R}.

A survey of results in the theory of delta-convex functions and mappings
can be found in [11], in particular, the following theorem was proved in [11].

Theorem 1. Let D be a nonempty convex subset of a real vector space and
let F : D → R be a function. Then the following statements are equivalent:
(i) F is a delta-convex function,
(ii) there exists a function f : D → R such that for all x, y ∈ D and t ∈ [0, 1]

the inequality

|tF (x) + (1− t)F (y)− F (tx+ (1− t)y)|

≤ tf(x) + (1− t)f(y)− f(tx+ (1− t)y),

holds,
(iii) there exists a function f : D → R such that for each positive integer n,

for all vectors x1, . . . , xn ∈ D and reals t1, . . . , tn ∈ [0, 1] summing up to
1 the inequality
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n∑

j=1

tjF (xj)− F

(
n∑

j=1

tjxj

)∣∣∣∣∣∣ ≤
n∑

j=1

tjf(xj)− f

(
n∑

j=1

tjxj

)
,

holds.

2. Results

Below we quote explicitely two results (Theorem 1a and Theorem 1b,
respectively from [4]) which will be applied in the proofs of our main results.

Theorem 2. Real functions f and g, defined on a convex subset D of an
(n− 1)-dimensional real vector space satisfy

(1) g

(
n∑

j=1

tjxj

)
≤

n∑
j=1

tjf(xj),

for all vectors x1, . . . , xn ∈ D and reals t1, . . . , tn ∈ [0, 1] summing up to 1 iff
there exists convex function h : D → R such that

(2) g(x) ≤ h(x) ≤ f(x), x ∈ D.

For infinite dimensional real vector space we have the following counterpart
of the above theorem.

Theorem 3. Real functions f and g, defined on a convex subset D of a
real vector space, satisfy (1) for each positive integer n, vectors x1, . . . , xn ∈ D
and real numbers t1, . . . , tn ∈ [0, 1] summing up to 1 iff there exists a convex
function h : D → R satisfying (2).

Theorem 3 has been generalized in [8] (cf. Theorem 3, p. 108 therein).
Our main result reads as follows.

Theorem 4. Let D be a nonempty convex subset of an n-dimensional real
linear space. Functions F, f,G, g : D → R satisfy

(3)

∣∣∣∣∣∣
n+1∑
j=1

tjF (xj)−G

(
n+1∑
j=1

tjxj

)∣∣∣∣∣∣ ≤
n+1∑
j=1

tjf(xj)− g

(
n+1∑
j=1

tjxj

)
,
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for all x1, . . . , xn+1 ∈ D, t1, . . . , tn+1 ∈ [0, 1] summing up to 1 if and only if
there exists (H,h) ∈ C(D) such that

(4) (G(x), g(x)) � (H(x), h(x)) � (F (x), f(x)), x ∈ D.

Proof. Assume that inequality (4) holds true. Using (4), the fact that
(H,h) ∈ C(D) (statement (iii) from Theorem 1) and a triangle inequality we
obtain∣∣∣∣∣

n+1∑
j=1

tjF (xj)−G

(
n+1∑
j=1

tjxj

)∣∣∣∣∣ =
∣∣∣∣∣
n+1∑
j=1

tjF (xj)−
n+1∑
j=1

tjH(xj) +

n+1∑
j=1

tjH(xj)

−H

(
n+1∑
j=1

tjxj

)
+H

(
n+1∑
j=1

tjxj

)
−G

(
n+1∑
j=1

tjxj

)∣∣∣∣∣
≤

n+1∑
j=1

tj |F (xj)−H(xj)|+

∣∣∣∣∣
n+1∑
j=1

tjH(xj)−H

(
n+1∑
j=1

tjxj

)∣∣∣∣∣
+

∣∣∣∣∣H
(

n+1∑
j=1

tjxj

)
−G

(
n+1∑
j=1

tjxj

)∣∣∣∣∣ ≤
n+1∑
j=1

tj
(
f(xj)− h(xj)

)

+

n+1∑
j=1

tjh(xj)− h

(
n+1∑
j=1

tjxj

)
+ h

(
n+1∑
j=1

tjxj

)
− g

(
n+1∑
j=1

tjxj

)

=

n+1∑
j=1

tjf(xj)− g

(
n+1∑
j=1

tjxj

)
.

Conversely, suppose that inequality (3) holds. Then

g

(
n+1∑
j=1

tjxj

)
−G

(
n+1∑
j=1

tjxj

)
≤

n+1∑
j=1

tj(f(xj)− F (xj)),

and

g

(
n+1∑
j=1

tjxj

)
+G

(
n+1∑
j=1

tjxj

)
≤

n+1∑
j=1

tj(f(xj) + F (xj)).
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By Theorem 2 there exist convex functions h1, h2 : D → R such that

g(x) +G(x) ≤ h1(x) ≤ f(x) + F (x), x ∈ D,

and

g(x)−G(x) ≤ h2(x) ≤ f(x)− F (x), x ∈ D.

Let define the functions H,h : D → R by the formulas

H(x) :=
h1(x)− h2(x)

2
, h(x) :=

h1(x) + h2(x)

2
, x ∈ D.

We shall show that (H,h) ∈ C(D), and, moreover,

(G(x), g(x)) � (H(x), h(x)) � (F (x), f(x)), x ∈ D.

Observe that the inequality

tH(x)+(1− t)H(y)−H(tx+(1− t)y) ≤ th(x)+(1− t)h(y)−h(tx+(1− t)y),

is equivalent to the following one

th2(x) + (1− t)h2(y)− h2(tx+ (1− t)y) ≥ 0.

Analogously, the inequality

h(tx+(1− t)y)− th(x)− (1− t)h(y) ≤ tH(x)+(1− t)H(y)−H(tx+(1− t)y),

holds if and only if

th1(x) + (1− t)h1(y)− h1(tx+ (1− t)y) ≥ 0,

and consequently,

|tH(x)+(1−t)H(y)−H(tx+(1−t)y)| ≤ th(x)+(1−t)h(y)−h(tx+(1−t)y),

for all x, y ∈ D, t ∈ [0, 1]. Therefore (H,h) ∈ C(D).
On the other hand, since

g(x) +G(x) ≤ h1(x), g(x)−G(x) ≤ h2(x), x ∈ D,
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then by subtracting the expression (h1(x) − h2(x))/2 from the both sides of
the above inequalities after easy calculations we obtain∣∣∣∣h1(x)− h2(x)2

−G(x)
∣∣∣∣ ≤ h1(x) + h2(x)

2
− g(x), x ∈ D,

whence (G, g) � (H,h). Analogously having in mind the inequalities

h1(x) ≤ F (x) + f(x), h2(x) ≤ f(x)− F (x), x ∈ D,

after subtracting the term (h1(x)− h2(x))/2 from their both sides we get∣∣∣∣h1(x)− h2(x)2
− F (x)

∣∣∣∣ ≤ f(x)− h1(x) + h2(x)

2
, x ∈ D,

and consequently (H,h) � (F, f), which finishes the proof. �

Using similar arguments and Theorem 3 instead of Theorem 2 one can
prove the following infinite-dimensional version of the previous theorem.

Theorem 5. Let D be a nonempty convex subset of a real linear space.
Functions F, f,G, g : D → R satisfy∣∣∣∣∣

n∑
j=1

tjF (xj)−G

(
n∑

j=1

tjxj

)∣∣∣∣∣ ≤
n∑

j=1

tjf(xj)− g

(
n∑

j=1

tjxj

)
,

for each integer n and for all x1, . . . , xn ∈ D, t1, . . . , tn ∈ [0, 1] summing up
to 1 if and only if there exists (H,h) ∈ C(D) such that

(G(x), g(x)) � (H(x), h(x)) � (F (x), f(x)), x ∈ D.

As a consequence of Theorem 4 we obtain the following stability result for
delta-convex functions.

Theorem 6. Let D be a nonempty convex subset of n-dimensional real
linear space and assume that E = (E, e) ∈ K i.e. |E| ≤ e. If the functions
P, p : D → R satisfy the inequality

|tP (x) + (1− t)P (y)− P (tx+ (1− t)y) + E|(5)

≤ tp(x) + (1− t)p(y)− p(tx+ (1− t)y) + e,
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for all x, y ∈ D, t ∈ (0, 1), then there exists a delta-convex function F : D → R
with a control function f : D → R such that

(P (x), p(x)) � (F (x), f(x)) � (P (x), p(x)) + nE, x ∈ D.

Proof. First, we show by induction that if P and p satisfy (5), then for
all k ∈ N, x1, . . . , xk+1 ∈ D, t1, . . . , tk+1 ∈ (0, 1) summing up to 1, they satisfy
the inequality

(6)

∣∣∣∣∣
k+1∑
j=1

tjP (xj)− P

(
k+1∑
j=1

tjxj

)
+ kE

∣∣∣∣∣ ≤
k+1∑
j=1

tjp(xj)− p

(
k+1∑
j=1

tjxj

)
+ ke.

For k = 1 the inequality (6) coincides with (5). Suppose that (5) is true for
all convex combinations with at most k − 1 ≥ 1 points. Fix x1, . . . , xk+1 ∈ D
and t1, . . . , tk+1 ∈ (0, 1) summing up to 1, arbitrarily. Then∣∣∣∣∣

k+1∑
j=1

tjP (xj)− P

(
k+1∑
j=1

tjxj

)
+ kE

∣∣∣∣∣(7)

=

∣∣∣∣∣tk+1P (xk+1) + (1− tk+1)P

(
k∑

j=1

tj
1− tk+1

xj

)
− P

(
k+1∑
j=1

tjxj

)

+

k∑
j=1

tjP (xj)− (1− tk+1)P

(
k∑

j=1

tj
1− tk+1

xj

)
+ kE

∣∣∣∣∣
≤

∣∣∣∣∣tk+1P (xk+1) + (1− tk+1)P

(
k∑

j=1

tj
1− tk+1

xj

)
− P

(
k+1∑
j=1

tjxj

)
+ E

∣∣∣∣∣
+ (1− tk+1)

∣∣∣∣∣
k∑

j=1

tj
1− tk+1

P (xj)− P

(
k∑

j=1

tj
1− tk+1

xj

)
+

(k − 1)E

1− tk+1

∣∣∣∣∣
≤ tk+1p(xk+1) + (1− tk+1)p

(
k∑

j=1

tj
1− tk+1

xj

)
− p

(
k+1∑
j=1

tjxj

)
+ e

+ (1− tk+1)

(
k∑

j=1

tj
1− tk+1

p(xj)− p

(
k∑

j=1

tj
1− tk+1

xj

)
+

(k − 1)e

1− tk+1

)

=

k+1∑
j=1

tjp(xj)− p

(
k+1∑
j=1

tjxj

)
+ ke.
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To finish the proof it remains to apply Theorem 4 for

G(x) := P (x), g(x) := p(x), F (x) := P (x) + nE,

f(x) := p(x) + ne, x ∈ D. �
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