1. A.D. Aleksandrov, On surfaces represented as the difference of convex functions, Izvestiya Akad. Nauk Kazah. SSR. 60, Ser. Mat. Meh. 3, (1949), 3–20.
2. A.D. Aleksandrov, Surfaces represented by the differences of convex functions, Doklady Akad. Nauk SSSR (N.S.) 72, (1950), 613–616.
3. M.G. Arsove, Functions representable as differences of subharmonic functions, Trans. Amer. Math. Soc. 75 (1953), 327–365.
4. K. Baron, J. Matkowski, and K. Nikodem, A sandwich with convexity, Math. Pannon. 5 (1994), no. 1, 139–144.
5. H. Busemann and W. Feller, Krümmungseigenschaften Konvexer Flächen, Acta Math. 66 (1936), no. 1, 1–47.
6. P. Hartman, On functions representable as a difference of convex functions, Pacific J. Math. 9 (1959), 707–713.
7. C.O. Kiselman, Fonctions delta-convexes, delta-sousharmoniques et delta-plurisousharmoniques, in: P. Lelong (ed.), Séminaire Pierre Lelong (Analyse). Année 1975/76, Lecture Notes in Math., vol. 578, Springer-Verlag, Berlin, 1977, pp. 93–107.
8. A. Olbryś, On separation by h-convex functions, Tatra Mt. Math. Publ. 62 (2015), 105–111.
9. A. Olbryś, On sandwich theorem for delta-subadditive and delta-superadditive mappings, Results Math. 72 (2017), no. 1–2, 385–399.
10. A.W. Roberts and D.E. Varberg, Convex Functions, Pure and Applied Mathematics, vol. 57, Academic Press, New York-London, 1973.
11. L. Veselý and L. Zajiček, Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pp.
Google Scholar