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MIXED TYPE OF ADDITIVE AND QUINTIC
FUNCTIONAL EQUATIONS

Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz
Shojaee

Abstract. In this paper, we investigate the general solution and Hyers–Ulam–
Rassias stability of a new mixed type of additive and quintic functional equa-
tion of the form

f(3x+ y)− 5f(2x+ y) + f(2x− y) + 10f(x+ y)− 5f(x− y)

= 10f(y) + 4f(2x)− 8f(x)

in the set of real numbers.

1. Introduction

In 1940, Ulam [17] raised the following question. Under what conditions
does there exist an additive mapping near an approximately addition map-
ping? The case of approximately additive functions was solved by Hyers [7]
under the assumption that for ε > 0 and f : E1 → E2 with

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
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for all x, y ∈ E1, then there exist a unique additive mapping T : E1 → E2

such that ‖f(x)− T (x)‖ ≤ ε for all x ∈ E1, where E1 is a normed space and
E2 is a Banach space.

In 1978, a generalized version of the theorem of Hyers for approximately
linear mapping was given by Th.M. Rassias [15]. He proved that for a mapping
f : E1 → E2 for which f(tx) is continuous in t ∈ R and for each fixed x ∈ E1,
there exist constant ε > 0 and p ∈ [0, 1) with

(1.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E1, then there exist a unique linear mapping T : E1 → E2 such
that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E1. A number of mathematicians were attracted by the result of
Th.M. Rassias (see also [1], [3], [6], [11], [8], [9], [10] and [16]). The stability
concept that was introduced and investigated by Rassias is called the Hyers–
Ulam–Rassias stability.

In 1982–1989, J.M. Rassias [13, 14] replaced the sum appeared in right
hand side of the equation (1.1) by the product of powers of norms.

In [18], Xu et al. obtained the general solution and investigated the Ulam
stability problem for the following quintic functional equation

f(x+ 3y)− 5f(x+ 2y) + 10f(x+ y)− 10f(x) + 5f(x− y)− f(x− 2y)

= 120f(y)

in quasi-β-normed spaces via fixed point method. This method which is dif-
ferent from the “direct method ”, initiated by Hyers in [7], had been applied
by Cădariu and Radu for the first time. In other words, they employed this
fixed point method to the investigation of the Cauchy functional equation [5]
and for the quadratic functional equation [4].

In [12], Park et al. introduced the following new form of quintic functional
equations

(1.2) f(3x+ y)− 5f(2x+ y) + f(2x− y) + 10f(x+ y)− 5f(x− y)

= 10f(y) + f(3x)− 3f(2x)− 27f(x).

They applied the fixed point method to establish the Hyers–Ulam stability
of the orthogonally quintic functional equation (1.2) in Banach spaces and in
non-Archimedean Banach spaces (see also [2]).



Mixed type of additive and quintic functional equations 37

In this paper, we prove the general solution and Hyers–Ulam–Rassias sta-
bility of the new mixed additive and quintic functional equation of the form

(1.3) f(3x+ y)− 5f(2x+ y) + f(2x− y) + 10f(x+ y)− 5f(x− y)

= 10f(y) + 4f(2x)− 8f(x)

in real numbers. It is easily verified that the function f(x) = αx5 + βx is a
solution of the functional equation (1.3).

2. Main Results

Throughout this paper, we denote the set of real number by R. Before
proceeding the proof of main results in this section, we shall need the following
lemma.

Lemma 2.1. The only nonzero solution f : R→ R such that f(x) = g(x)+

h(x) admitting a finite limit of the quotient g(x)
x and h(x)

x5 at zero, of the
equation (1.3) is of the form g(x) = ax and h(x) = bx5 for all x ∈ R.

Proof. Putting y = 0 in (1.3), we have

(2.1) f(3x)− 8f(2x) + 13f(x) = 0

for all x ∈ R. Replacing (x, y) by (x, x) in (1.3) and using (2.1), we get

(2.2) f(4x)− 34f(2x) + 64f(x) = 0

for all x ∈ R. Setting g(x) = f(2x)− 32f(x) in (2.2), we obtain

(2.3) g(2x) = 2g(x)

for all x ∈ R. The relation (2.3) implies that

g(x)

x
= lim
n→∞

g
(
x
2n

)
x
2n

= a

for some a ∈ R. Note that a cannot be zero, otherwise, we will have g = 0.
Now, setting h(x) = f(2x)− 2f(x) in (2.2), we get

(2.4) h(2x) = 32h(x)
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for all x ∈ R. It follows from (2.4) that

h(x)

x5
= lim
n→∞

h
(
x5

2n

)
x
2n

= b

for some b ∈ R, as claimed. Clearly, b cannot vanishes. This completes the
proof. �

From now on, we use the abbreviation for the given mapping f : R → R
as follows:

Dqf(x, y) = f(3x+ y)− 5f(2x+ y) + f(2x− y) + 10f(x+ y)

− 5f(x− y)− 10f(y)− 4f(2x) + 8f(x).

Theorem 2.2. Let φ : R× R→ [0,∞) be a mapping such that

(2.5)
∞∑
j=0

1

2j
φ(2jx, 2jy) <∞

for all x, y ∈ R in which x ∈ {x, 0} and y ∈ {x,−x}. Suppose that a mapping
f : R→ R with f(0) = 0 satisfies the inequality

(2.6) |Dqf(x, y)| ≤ φ(x, y)

for all x, y ∈ R. Then the limit

(2.7) A(x) = lim
n→∞

1

2n
{f(2n+1x)− 32f(2nx)}

exists for all x ∈ R and the mapping A : R→ R is a unique additive mapping
satisfying

(2.8) |f(2x)− 32f(x)−A(x)| ≤ 1

2

∞∑
n=0

ψ(2nx)

2n

for all x ∈ R where

(2.9) ψ(x) = φ(x, x) +
25

2
φ(0, x) + 5φ(x,−x).
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Proof. Replacing (x, y) by (0, x) in (2.6), we get

(2.10) |f(x) + f(−x)| ≤ 1

4
φ(0, x)

for all x ∈ R. Letting x = y in (2.6), we have

(2.11) |f(4x)− 5f(3x) + 6f(2x)− f(x)| ≤ φ(x, x)

for all x ∈ R. Substituting (x, y) by (x,−x) in (2.6), we obtain

(2.12) | − 8f(2x) + f(3x) + 3f(x)− 10f(−x)| ≤ φ(x,−x)

for all x ∈ R. It follows from (2.10)–(2.12) that

(2.13) |f(4x)− 34f(2x) + 64f(x)| ≤ 25

2
φ(0, x) + φ(x, x) + 5φ(x,−x)

for all x ∈ R. Let g : R→ R be a mapping defined by g(x) := f(2x)− 32f(x)
and let

(2.14) ψ(x) =
25

2
φ(0, x) + φ(x, x) + 5φ(x,−x)

for all x ∈ R. In other words, (2.13) means

(2.15) |g(2x)− 2g(x)| ≤ ψ(x)

for all x ∈ R. By (2.5), we see that

(2.16)
∞∑
j=0

1

2j
ψ(2jx) <∞

for all x ∈ R. Interchanging x into 2nx in (2.15) and dividing both sides of
(2.15) by 2n+1, we get

(2.17)
∣∣∣∣ 1

2n+1
g(2n+1x)− 1

2n
g(2nx)

∣∣∣∣ ≤ 1

2n+1
ψ(2nx)



40 Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee

for all x ∈ R and all non-negative integers n. We have∣∣∣∣ 1

2n+1
g(2n+1x)− 1

2m
g(2mx)

∣∣∣∣ ≤ n∑
j=m

∣∣∣∣ 1

2j+1
g(2j+1x)− 1

2j
g(2jx)

∣∣∣∣
≤ 1

2

n∑
j=m

1

2j
ψ(2jx)(2.18)

for all x ∈ R and all non-negative integers n and m with n ≥ m. Therefore
we conclude from (2.16) and (2.18) that the sequence { 1

2n g(2
nx)} is a Cauchy

sequence in R for all x ∈ R. Thus, the sequence { 1
2n g(2

nx)} is convergent to
the mapping A : R→ R. Indeed,

(2.19) A(x) := lim
n→∞

1

2n
g(2nx)

for all x ∈ R. Letting m = 0 and allowing n→∞ in (2.18), we get

(2.20) |g(x)−A(x)| ≤ 1

2

∞∑
j=0

1

2j
ψ(2jx)

for all x ∈ R. Using (2.14) in (2.20), we arrive at the result (2.8). It follows
from (2.5), (2.6) and (2.7) that

(2.21) |DqA(x, y)| = lim
n→∞

1

2n
|DqA(2

nx, 2ny)| ≤ lim
n→∞

1

2n
φ(2nx, 2ny)

for all x, y ∈ R. Therefore the mapping A satisfies (1.3). By Lemma 2.1, we see
that the mapping A is additive. To prove the uniqueness of A, let T : R→ R
be another additive mapping satisfying (2.8). We have

lim
n→∞

1

2n

∞∑
j=0

1

2j
φ
(
2n+jx, 2n+jy

)
= lim
n→∞

∞∑
j=n+1

1

2j
φ
(
2jx, 2jy

)
= 0

for all x, y ∈ R for which x ∈ {x, 0} and y ∈ {x,−x}. It follows the above
relation and (2.8) that

|A(x)− T (x)| = lim
n→∞

1

2n
|g(2nx)− T (2nx)|

≤ 1

2p
lim
n→∞

1

2n
ψ(2nx) = 0

for all x ∈ R. So A = T . Hence the theorem is proved. �
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The upcoming result is a different form of Theorem 2.2.

Theorem 2.3. Let φ : R× R→ [0,∞) be a mapping such that

(2.22)
∞∑
j=0

2jφ
( x

2j+1
,
y

2j+1

)
<∞

for all x, y ∈ R in which x ∈ {x, 0} and y ∈ {x,−x}. Suppose that a mapping
f : R→ R with f(0) = 0 satisfies the inequality

(2.23) |Dqf(x, y)| ≤ φ(x, y)

for all x, y ∈ R. Then the limit

(2.24) A(x) = lim
n→∞

2n
{
f
(
2
x

2n

)
− 32f

( x
2n

)}
exists for all x ∈ R and the mapping A : R→ R is a unique additive mapping
satisfying

(2.25) |f(2x)− 32f(x)−A(x)| ≤
∞∑
n=0

2nψ
( x

2n+1

)
for all x ∈ R where ψ(x) is defined in (2.9).

Proof. Similar to the proof of Theorem 2.2, we have

(2.26) |g(2x)− 2g(x)| ≤ ψ(x)

for all x ∈ R, in which g : R → R is a mapping defined by g(x) := f(2x) −
32f(x) and ψ(x) is defined in (2.9). It follows (2.22) that

(2.27)
∞∑
j=0

2jψ
( x

2j+1

)
<∞

for all x ∈ R. Replacing x by x
2n+1 in (2.26) and multiply both sides of (2.26)

by 2n, we get

(2.28)
∣∣∣2n+1g

( x

2n+1

)
− 2ng

( x
2n

)∣∣∣ ≤ 2nψ
( x

2n+1

)
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for all x ∈ R and all non-negative integers n. We have

∣∣∣2n+1g
( x

2n+1

)
− 2mg

( x

2m

)∣∣∣ ≤ n∑
j=m

∣∣∣2j+1g
( x

2j+1

)
− 2jg

( x
2j

)∣∣∣
≤

n∑
j=m

2jψ
( x

2j+1

)
(2.29)

for all x ∈ R and all non-negative integers n andm with n ≥ m. It follows from
(2.27) and (2.29) that for each x ∈ R the sequence {2ng

(
x
2n

)
} is a Cauchy.

Hence, the mentioned sequence converges for all x ∈ R. So one can define the
mapping A : R→ R by

(2.30) A(x) := lim
n→∞

2ng
( x
2n

)
for all x ∈ X. Putting m = 0 and tending n to infinity in (2.29), we obtain

|g(x)−A(x)| ≤
∞∑
j=0

2jψ
( x

2j+1

)
for all x ∈ R. Therefore, the inequality (2.25) hold. The rest of the proof is
same as the proof of Theorem 2.2. �

The following corollaries are the direct consequences of Theorems 2.2 and
2.3 concerning the stability of (1.3).

Corollary 2.4. Let λ be a nonnegative real number with λ 6= 1 and let
f : R→ R be a function satisfies the functional equation

|Dqf(x, y)| ≤ ε(|x|λ + |y|λ)

for some ε > 0 and for all x, y ∈ R. If g : R → R is a mapping defined by
g(x) := f(2x)−32f(x), then there exists a unique additive function A : R→ R
such that

|g(x)−A(x)| ≤

49 ε
2(2−2λ) |x|

λ, λ < 1,

49 2λε
2(2λ−2) |x|

λ, λ > 1,
(2.31)

for all x ∈ R.
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Proof. In Theorem 2.2 and Theorem 2.3, take φ(x, y) = ε(|x|λ+ |y|λ) for
all x, y ∈ R. By equation (2.8) and (2.25), we obtain the desired result. �

Corollary 2.5. Let r and s be nonnegative real numbers with λ := r+s 6=
1 and let f : R→ R be a function satisfies the functional equation

|Dqf(x, y)| ≤ ε |x|r |y|s

for some ε > 0 and for all x, y ∈ R. If g : R → R is a mapping defined by
g(x) := f(2x)−32f(x), then there exists a unique additive function A : R→ R
such that

|g(x)−A(x)| ≤


6ε

2−2λ |x|
λ, λ < 1,

6ε2λ

2λ−2 |x|
λ, λ > 1,

(2.32)

for all x ∈ R.

Proof. The result follows from the equations (2.8) and (2.25) by defining
φ(x, y) = ε |x|r |y|s. �

Corollary 2.6. Let r and s be nonnegative real numbers with λ := r+s 6=
1 and let f : R→ R be a function satisfying the functional equation

|Dqf(x, y)| ≤ ε
(
|x|λ + |y|λ + |x|r |y|s

)
for some ε > 0 and for all x, y ∈ R. If g : R → R is a mapping defined by
g(x) := f(2x)−32f(x), then there exists a unique additive function A : R→ R
such that

|g(x)−A(x)| ≤


61ε

2(2−2λ) |x|
λ, λ < 1

61ε2λ

2(2λ−2) |x|
λ, λ > 1,

(2.33)

for all x ∈ R.

Proof. Putting φ(x, y) = ε(|x|λ+|y|λ+|x|r |y|s) and employing Theorem
2.2 and Theorem 2.3, we get the result. �

We have the following theorem which is analogous to Theorem 2.2. The
proof is similar but we bring some parts.
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Theorem 2.7. Let φ : R× R→ [0,∞) be a mapping such that

(2.34)
∞∑
j=0

1

32j
φ(2jx, 2jy) <∞

for all x, y ∈ R and all x ∈ {x, 0} and y ∈ {x,−x}. Suppose that a mapping
f : R→ R with f(0) = 0 satisfies the inequality

(2.35) |Dqf(x, y)| ≤ φ(x, y)

for all x, y ∈ R. Then the limit

(2.36) lim
n→∞

1

32n
{f(2n+1x)− 2f(2nx)}

exists for all x ∈ R and the mapping Q : R → R is a unique quintic mapping
satisfying

(2.37) ‖f(2x)− 2f(x)−Q(x)‖Y ≤
1

32

∞∑
n=0

ψ(2nx)

32n

for all x ∈ R where ψ(2nx) is defined in (2.9).

Proof. Similar to the proof of Theorem 2.2, one can show that

(2.38) |h(2x)− 32h(x)| ≤ ψ(x)

for all x ∈ R, where h(x) = f(2x) − 2f(x) and ψ(x) is defined in (2.9). The
rest of the proof is the same as the proof of Theorem 2.2. �

Theorem 2.8. Let φ : R× R→ [0,∞) be a mapping such that

(2.39)
∞∑
j=0

32jφ
( x

2j+1
,
y

2j+1

)
<∞

for all x, y ∈ R and all x ∈ {x, 0} and y ∈ {x,−x}. Suppose that a mapping
f : R→ R with f(0) = 0 satisfies the inequality

(2.40) |Dqf(x, y)| ≤ φ(x, y)
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for all x, y ∈ R. Then the limit

(2.41) lim
n→∞

32n
{
f
(
2
x

2n

)
− 2f

( x
2n

)}
exists for all x ∈ R and the mapping Q : R → R is a unique quintic mapping
satisfying

(2.42) |f(2x)− 2f(x)−Q(x)| ≤
∞∑
n=0

32nψ
( x

2n+1

)
for all x ∈ R where ψ(x) is defined in (2.9).

Proof. The proof is the same as the proof of Theorem 2.3 with h(x) =
f(2x)− 2f(x). �

The following corollaries are the direct consequences of Theorems 2.7 and
2.8 concerning the stability of (1.3). Since the proofs are similar to the previous
corollaries, we omit them.

Corollary 2.9. Let λ be a nonnegative real number with λ 6= 5 and let
f : R→ R be a function satisfying the functional equation

|Dqf(x, y)| ≤ ε(|x|λ + |y|λ)

for some ε > 0 and for all x, y ∈ R. If h : R → R is a mapping defined by
h(x) := f(2x)− 2f(x), then there exists a unique quintic function Q : R→ R
such that

|h(x)−Q(x)| ≤

392 ε
32−2λ |x|

λ, λ < 5,

49 2λε
2(2λ−32) |x|

λ, λ > 5,
(2.43)

for all x ∈ R.

Corollary 2.10. Let r and s be nonnegative real numbers with λ :=
r + s 6= 5 and let f : R→ R be a function satisfying the functional equation

|Dqf(x, y)| ≤ ε (|x|r |y|s)

for some ε > 0 and for all x, y ∈ R. If h : R → R is a mapping defined by
h(x) := f(2x)−32f(x), then there exists a unique additive function Q : R→ R
such that
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|h(x)−Q(x)| ≤


96ε

32−2λ |x|
λ, λ < 5,

6ε2λ

2λ−32 |x|
λ, λ > 5,

(2.44)

for all x ∈ R.

Corollary 2.11. Let r and s be nonnegative real numbers with λ :=
r + s 6= 5 and let f : R→ R be a function satisfying the functional equation

|Dqf(x, y)| ≤ ε(|x|λ + |y|λ + |x|r |y|s)

for some ε > 0 and for all x, y ∈ R. If h : R → R is a mapping defined by
h(x) := f(2x)−2f(x), then there exists a unique additive function Q : R→ R
such that

|h(x)−Q(x)| ≤


488ε

32−2λ |x|
λ, λ < 5,

61ε2λ

2(2λ−32) |x|
λ, λ > 5,

(2.45)

for all x ∈ R.

The upcoming theorems show that the equation (1.3) is stable under some
mild conditions.

Theorem 2.12. Let φ : R× R→ [0,∞) be a mapping such that

(2.46)
∞∑
j=0

1

2j
φ(2jx, 2jy) <∞

for all x, y ∈ R in which x ∈ {x, 0} and y ∈ {x,−x}. Suppose that a mapping
f : R→ R with f(0) = 0 satisfies the inequality

(2.47) |Dqf(x, y)| ≤ φ(x, y)

for all x, y ∈ R. Then there exist a unique additive mapping A : R→ R and a
unique quintic mapping Q : R→ R such that

(2.48) |f(x)−A(x)−Q(x)| ≤ 1

30

[
1

2

∞∑
n=0

ψ(2nx)

2n
+

1

32

∞∑
n=0

ψ(2nx)

32n

]

for all x ∈ R where ψ(x) is defined in (2.9).
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Proof. By Theorems 2.2 and 2.7, there exist an additive mapping A0 :
R→ R and a quintic mapping Q0 : R→ R such that

|f(2x)− 32f(x)−A0(x)| ≤
1

2

∞∑
n=0

ψ(2nx)

2n

and

|f(2x)− 2f(x)−Q0(x)| ≤
1

32

∞∑
n=0

ψ(2nx)

32n

for all x ∈ R. Therefore it follows from the above inequalities that∣∣∣∣f(x)− (− 1

30
A0(x))−

1

30
Q0(x)

∣∣∣∣ ≤ 1

30

[
1

2

∞∑
n=0

ψ(2nx)

2n
+

1

32

∞∑
n=0

ψ(2nx)

32n

]

for all x ∈ R. So we obtain (2.48) by letting A(x) = − 1
30A0(x) and Q(x) =

1
30Q0(x) for all x ∈ R. To prove the uniqueness of A and Q, let A1, C1 : R→ R
be another additive and quintic mappings satisfying (2.48). Put A′ = A−A1

and Q′ = Q−Q1. Hence,

|A′(x) +Q′(x)| ≤ |f(x)−A(x)−Q(x)|+ |f(x)−A1(x)−Q1(x)|(2.49)

≤ 1

15

[
1

2

∞∑
n=0

ψ(2nx)

2n
+

1

32

∞∑
n=0

ψ(2nx)

32n

]
(2.50)

for all x ∈ R. Since limn→∞
1

32nφ(2
nx, 2ny) = 0, we have

lim
n→∞

1

32n
|A′(2nx) +Q′(2nx)| = 0

for all x ∈ R. Thus Q′ = 0. Now it follows from (2.48) that A′ = 0. �

The next theorem is an alternative result of Theorem 2.12.

Theorem 2.13. Let φ : R× R→ [0,∞) be a mapping such that

(2.51)
∞∑
j=0

2jφ
( x

2j+1
,
y

2j+1

)
<∞
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for all x, y ∈ R in which x ∈ {x, 0} and y ∈ {x,−x}. Suppose that a mapping
f : R→ R with f(0) = 0 satisfies the inequality

(2.52) |Dqf(x, y)| ≤ φ(x, y)

for all x, y ∈ R. Then there exist a unique additive mapping A : R→ R and a
unique quintic mapping Q : R→ R such that

(2.53) |f(x)−A(x)−Q(x)| ≤ 1

30

[ ∞∑
n=0

2nψ
( x

2n+1

)
+

∞∑
n=0

32nψ
( x

2n+1

)]

for all x ∈ R where ψ(x) is defined in (2.9).

Proof. The proof is similar to the proof of Theorem 2.12 and the result
follows from Theorems 2.3 and 2.8. �

In the next corollaries, by using Theorems 2.12 and 2.13, we show that the
equation (1.3) can be stable when |Dqf(x, y)| is controlled by the sum and
product of powers of absolute values. Due to similarity of the proofs with the
previous corollaries, we present them without proof.

Corollary 2.14. Let λ be a nonnegative real number with λ 6= 1, 5 and
let f : R→ R be a function satisfying the functional equation

|Dqf(x, y)| ≤ ε(|x|λ + |y|λ)

for some ε > 0 and for all x, y ∈ R. Then there exist a unique additive
mapping A : R→ R and a unique quintic mapping Q : R→ R such that

|f(x)−A(x)−Q(x)| ≤


1
30

[
49 ε

2(2−2λ) + 392 ε
32−2λ

]
|x|λ, λ < 1,

1
30

[
49 2λε

2(2λ−2) + 392 ε
32−2λ

]
|x|λ, 1 < λ < 5,

1
30

[
49 2λε

2(2λ−2) + 49 2λε
2(2λ−32)

]
|x|λ, λ > 5,

for all x ∈ R.

Corollary 2.15. Let r and s be positive numbers with λ := r + s 6= 1, 5
and let f : R→ R be a function satisfying the functional equation

|Dqf(x, y)| ≤ ε(|x|r |y|s)
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for some ε > 0 and for all x, y ∈ R. Then there exist a unique additive
mapping A : R→ R and a unique quintic mapping Q : R→ R such that

|f(x)−A(x)−Q(x)| ≤


1
30

[
61ε

2(2−2λ) +
96ε

32−2λ

]
|x|λ, λ < 1,

1
30

[
6ε2λ

2λ−2 + 96ε
32−2λ

]
|x|λ, 1 < λ < 5,

1
30

[
6ε2λ

2λ−2 + 6ε2λ

2λ−32

]
|x|λ, λ > 5,

for all x ∈ R.

Corollary 2.16. Let r and s be positive numbers with λ := r + s 6= 1, 5
and let f : R→ R be a function satisfying the functional equation

|Dqf(x, y)| ≤ ε(|x|λ + |y|λ + |x|r |y|s)

for some ε > 0 and for all x, y ∈ R. Then there exist a unique additive
mapping A : R→ R and a unique quintic mapping Q : R→ R such that

|f(x)−A(x)−Q(x)| ≤


1
30

[
6ε

2−2λ + 488ε
32−2λ

]
|x|λ, λ < 1,

1
30

[
61ε2λ

2(2λ−2) +
488ε

32−2λ

]
|x|λ, 1 < λ < 5,

1
30

[
61ε2λ

2(2λ−2) +
61ε2λ

2(2λ−32)

]
|x|λ, λ > 5,

for all x ∈ R.
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