1. Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.
2. Bodaghi A., Quintic functional equations in non-Archimedean normed spaces, J. Math. Extension 9 (2015), no. 3, 51–63.
3. Bodaghi A., Moosavi S.M., Rahimi H., The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara 59 (2013), 235–250.
4. Cădariu L., Radu V., Fixed points and the stability of quadratic functional equations, An. Univ. Timișoara, Ser. Mat. Inform. 41 (2003), 25–48.
5. Cădariu L., Radu V., On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43–52.
6. Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59–64.
7. Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.
8. Hyers D.H., Isac G., Rassias Th.M., Stability of functional equations in several variables, Birkhauser, Boston, 1998.
9. Jung S.-M., Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011.
10. Kannappan P., Functional equations and inequalities with applications, Springer, New York, 2009.
11. Najati A., Moghimi M.B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 339–415.
12. Park C., Cui J., Eshaghi Gordji M., Orthogonality and quintic functional equations, Acta Math. Sinica, English Series 29 (2013), 1381–1390.
13. Rassias J.M., On approximation of approximately linear mappings by linear mapping, J. Funct. Anal. 46 (1982), no. 1, 126–130.
14. Rassias J.M., On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2) 108 (1984), no. 4, 445–446.
15. Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
16. Rassias Th.M., Brzdęk J., Functional equations in mathematical analysis, Springer, New York, 2012.
17. Ulam S.M., Problems in modern mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
18. Xu T.Z., Rassias J.M., Rassias M.J., Xu W.X., A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. (2010), Article ID 423231, 23 pp, doi:10.1155/2010/423231.
Google Scholar