Linear dependence of powers of linear forms



Abstract

The main goal of the paper is to examine the dimension of the vector space spanned by powers of linear forms. We also find a lower bound for the number of summands in the presentation of zero form as a sum of d-th powers of linear forms.


Keywords

linear form; sums of powers of linear forms; ticket of the set of polynomials

1. Białynicki-Birula A., Schinzel A., Representations of multivariate polynomials by sums of univariate polynomials in linear forms, Colloq. Math. 112 (2008), 201–233. [Corrigendum. Colloq. Math. 125 (2011), 139.]
2. Chlebowicz A., Wołowiec-Musiał M., Forms with a unique representation as a sum of powers of linear forms, Tatra Mt. Math. Publ. 32 (2005), 33–39.
3. Reznick B., Sums of even powers of real linear forms, Memoirs Amer. Math. Soc. 96 (1992), no. 463.
4. Reznick B., Patterns of dependence among powers of polynomials, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60 (2003), 101–121.
Download

Published : 2022-07-14


SładekA. (2022). Linear dependence of powers of linear forms. Annales Mathematicae Silesianae, 29, 131-138. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/13983

Andrzej Sładek  andrzej.sladek@us.edu.pl
Instytut Matematyki, Uniwersytet Śląski w Katowicach  Poland



The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.

  1. License
    This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.
  2. Author’s Warranties
    The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s.
  3. User Rights
    Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor.
  4. Co-Authorship
    If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.