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ON APPROXIMATE n-JORDAN HOMOMORPHISMS

Eszter Gselmann

Abstract. The aim of this paper it to characterize n-Jordan homomorphisms
and to investigate their connection with n-homomorphisms as well as ho-
momorphisms. Furthermore, the following implication is also verified: if a
function ϕ is additive and (for a fixed integer n ≥ 2) the mapping x 7−→
ϕ(xn)− ϕ(x)n satisfies some mild regularity assumption, then the function ϕ
is an n-homomorphism or it is a continuous additive function.

1. Introduction and preliminaries

The study of additive mappings from a ring into another ring which pre-
serve squares was initiated by G. Ancochea in [1] in connection with prob-
lems arising in projective geometry. Later, these results were strengthened by
(among others) Kaplansky [8] and Jacobson–Rickart [7].

In this paper we will present some characterization theorems concerning
n-Jordan homomorphisms. Firstly, we will investigate the connection between
n-Jordan homomorphisms and n-homomorphisms. Then, n-Jordan homomor-
phisms will be characterized among additive functions. Our main results will
have the following form: if a function ϕ is additive and (for a fixed integer
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n ≥ 2) the mapping x 7−→ ϕ(xn) − ϕ(x)n satisfies some mild regularity as-
sumption, then the function ϕ is an n-homomorphism or it is a continuous
additive function.

We remark that the topic of ’approximate homomorphisms’ was investi-
gated by several authors, see e.g. Badora [2], Šemrl [10, 11]. In the cited
papers however the stability of homomorphisms was dealt with which is a
different approach than ours.

In the remaining part of this section we will fix the notation and the
terminology as well as the preliminaries that will be necessary in what follows.

Henceforth, N will denote the set of the positive integers.
Let R,R′ be rings, the mapping ϕ : R→ R′ is called a homomorphism if

ϕ(a+ b) = ϕ(a) + ϕ(b) (a, b ∈ R)

and

ϕ(ab) = ϕ(a)ϕ(b) (a, b ∈ R) .

Furthermore, the function ϕ : R→ R′ is an anti-homomorphism if

ϕ(a+ b) = ϕ(a) + ϕ(b) (a, b ∈ R)

and

ϕ(ab) = ϕ(b)ϕ(a) (a, b ∈ R) .

Let n ∈ N, n ≥ 2 be fixed. The function ϕ : R → R′ is called an n-
homomorphism if

ϕ(a+ b) = ϕ(a) + ϕ(b) (a, b ∈ R)

and

ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an) (a1, . . . , an ∈ R) .

The function ϕ : R→ R′ is called an n-Jordan homomorphism if

ϕ(a+ b) = ϕ(a) + ϕ(b) (a, b ∈ R)

and

ϕ(an) = ϕ(a)n (a ∈ R) .
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Finally, we remark that in case n = 2 we speak about homomorphisms and
Jordan homomorphisms, respectively. The concept of n-homomorphisms was
introduced in Hejazian et al. [5]. Furthermore, the notion of n-Jordan homo-
morphisms was dealt with firstly in Herstein [6]. From the above definitions
immediately follows that every n-homomorphism is an n-Jordan homomor-
phism. The converse, however, does not hold in general.

Before reviewing the known results we recall some basic definitions from
ring theory. Let n ∈ N, we say that a ring R is of characteristic larger than n
if n!x = 0 implies that x = 0.

The ring R is termed to be a prime ring if

a, b ∈ R and aRb = {0}

imply that either a = 0 or b = 0.
As we wrote above it was G. Ancochea who firstly dealt with the connec-

tion of Jordan homomorphisms and homomorphisms, see [1]. The results of
G. Ancochea were generalized and extended in several ways, see for instance
[7], [8], [13]. Later, in 1956 I.N. Herstein proved the following.

Theorem 1.1 (Herstein [6]). If ϕ is a Jordan homomorphism of a ring R
onto a prime ring R′ of characteristic different from 2 and 3 then either ϕ is
a homomorphism or an anti-homomorphism.

In [6] not only Jordan homomorphisms but also n-Jordan mappings were
considered. Concerning this the following statement was verified.

Theorem 1.2 (Herstein [6]). Let ϕ be an n-Jordan homomorphism from a
ring R onto a prime ring R′ of characteristic larger than n. Suppose further
that R has a unit element. Then ϕ = ετ where τ is either a homomorphism or
an anti-homomorphism and ε is an (n− 1)st root of unity lying in the center
of R′.

At the end of the paper I.N. Herstein suggests: ’...One might conjecture
that an appropriate variant of this theorem would hold even if R does not have
a unit element.’ This problem was solved by M. Brešar, W. Martindale and
R.C. Miers. In [3] they proved the following.

Theorem 1.3 (Brešar–Martindale–Miers [3]). Let n ≥ 3 and let ϕ be an
n-Jordan homomorphism of the ring R onto the prime ring R′. Suppose
further that the characteristic of R′ is zero or larger than 2m(m + 1) with
m = 4n− 8. Then there exists ε ∈ C ′ (the extended centroid of R′) such that
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εn−1 = 1 and a homomorphism or an anti-homomorphism τ : R→ R′C ′ such
that

ϕ(x) = ετ(x) (x ∈ R) .

On the score of the above theorems, we notice that the fact that the
mapping in question is surjective and its range is a prime ring, is essential.
However, there has been proved statements in which the surjectivity is not
assumed. At the expense of this, we have to suppose more about the domain
and also about the range. In 2009 M. Eshaghi Gordji proved that in case
n ∈ {3, 4} is fixed, A,B are commutative algebras, then every ϕ : A → B
n-Jordan homomorphism is an n-homomorphism, see [4].

In this paper we would like to extend the results of Eshaghi Gordji [4] in
several ways. Furthermore, we also would like to prove results similar to the
above cited ones. To do this, we need to recall some definitions and statement,
these can be found e.g. in Kuczma [9].

Let G,H be abelian groups, let h ∈ G be arbitrary and consider a function
f : G → H. The difference operator ∆h with the span h of the function f is
defined by

∆hf(x) = f(x+ h)− f(x) (x ∈ G) .

The iterates ∆n
h of ∆h, n = 0, 1, . . . are defined by the recurrence

∆0
hf = f, ∆n+1

h f = ∆h (∆n
hf) (n = 0, 1, . . .) .

Furthermore, the superposition of several difference operators will be denoted
shortly

∆h1...hnf = ∆h1 . . .∆hnf,

where n ∈ N and h1, . . . , hn ∈ G.
Let n ∈ N and G,H be abelian groups. A function F : Gn → H is called

n-additive if, for every i ∈ { 1 , 2 , . . . , n } and for every x1, . . . , xn, yi ∈ G ,

F (x1, . . . , xi−1, xi + yi, xi+1, . . . , xn)

= F (x1, . . . , xi−1, xi, xi+1, . . . , xn) + F (x1, . . . , xi−1, yi, xi+1, . . . , xn) ,

i.e., F is additive in each of its variables xi ∈ G, i = 1, . . . , n. For the sake
of brevity we use the notation G0 = G and we call constant functions from G
to H 0-additive functions. Let F : Gn → H be an arbitrary function. By the
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diagonalization (or trace) of F we understand the function f : G→ H arising
from F by putting all the variables (from G) equal:

f(x) = F (x, . . . , x) (x ∈ G) .

It can be proved by induction that for any symmetric, n-additive function
F : Gn → H the equality

(1.1) ∆y1,...,ykf(x) =

{
n!F (y1, . . . , yn) for k = n,
0 for k > n,

holds, whenever x, y1, . . . , yn ∈ G, where f : G → H denotes the trace of the
function F . This means that a symmetric, n-additive function is uniquely
determined by its trace.

The function f : G→ H is called a polynomial function of degree at most
n, where n is a nonnegative integer, if

∆y1,...,yn+1f(x) = 0

is satisfied for all x, y1, . . . , yn+1 ∈ G.

Theorem 1.4. The function p : G→ H is a polynomial at degree at most
n if and only if there exist symmetric, k-additive functions Fk : Gk → H,
k = 0, 1, . . . , n such that

p(x) =

n∑

k=0

fk(x) (x ∈ G) ,

where fk denotes the trace of the function Fk, k = 0, 1, . . . , n. Furthermore,
this expression for the function p is unique in the sense that the functions Fk
different from identically zero are uniquely determined.

The following theorems will play a key role during the proof of our main
result.

Theorem 1.5 (Székelyhidi [12]). Let G be an abelian group and let X be
a locally convex topological linear space. If a polynomial p : G→ X is bounded
on G, then it is constant.

Theorem 1.6 (Székelyhidi [12]). Let G be an abelian group which is gen-
erated by any neighborhood of the zero, and let X be a topological linear space,
and p : G→ X be a polynomial function. Then the following statements hold.
(i) If p : G→ X is continuous at a point, then it is continuous on G.
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(ii) Assume that G is locally compact and X is locally convex. If p : G→ X
is bounded on a measurable set of positive measure, then it is continuous.

(iii) Suppose that G is locally compact and X is locally convex and locally
bounded. If p : G → X is measurable on a measurable set of positive
measure, then it is continuous.

2. Main results

The commutative case. We begin with the following generalization of
Theorem 2.2 of [4].

Theorem 2.1. Let n ∈ N, n ≥ 2, R,R′ be commutative rings such that
char(R′) > n, and assume that the mapping ϕ : R → R′ is an n-Jordan
homomorphism. Then ϕ is an n-homomorphism. Moreover, if R is unitary
then ϕ(1) = ϕ(1)n and the function ψ defined by

ψ(x) = ϕn−2(1)ϕ(x) (x ∈ R)

is a homomorphism between R and R′.

Proof. With the aid of the function ϕ, let us define the function Φ on
Rn by

Φ(x1, . . . , xn) = ϕ(x1 · · ·xn)− ϕ(x1) · · ·ϕ(xn) (x1, . . . , xn ∈ R) .

Due to the additivity of the function ϕ, the function Φ is a symmetric, n-
additive function. Furthermore, its trace

φ(x) = Φ(x, . . . , x) = ϕ(xn)− ϕ(x)n (x ∈ R)

is identically zero on R, because of our assumptions. Therefore,

∆y1,...,ynφ(x) = 0

also holds for all x, y1, . . . , yn ∈ R. In view of formula (1.1), this yields that

n!Φ(y1, . . . , yn) = 0
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for all y1, . . . , yn ∈ R. Due to the suppositions of the theorem, we obtain that
the function Φ is identically zero on the set Rn. From this we get, however,
that

ϕ(x1 · · ·xn) = ϕ(x1) · · ·ϕ(xn) (x1, . . . , xn ∈ R) ,

that is, the function ϕ is an n-homomorphism.
In the second part of the proof let us assume that the ring R is unitary

with the unit element 1. If n = 2 then there is nothing to prove. If n > 2,
then the previous equation with the substitution x3 = . . . = xn = 1 implies
that

ϕ(x1x2) = ϕ(x1)ϕ(x2)ϕ(1)n−2

is fulfilled for all x1, x2 ∈ R. Multiplying both the sides with ϕ(1)n−2, we get
that

ϕ(1)n−2ϕ(x1x2) = ϕ(1)n−2ϕ(x1)ϕ(1)n−2ϕ(x2)

holds for all x1, x2 ∈ R, that is, the function ψ defined by ψ(x) = ϕ(1)n−2ϕ(x)
is a homomorphism between the rings R and R′. �

A characterization of n-Jordan homomorphisms

Theorem 2.2. Let n ∈ N, n ≥ 2 R be a ring, R′ be a locally convex algebra
over the field F of characteristic zero, ϕ : R→ R′ be an additive function and
assume that the mapping

R 3 x 7−→ ϕ(xn)− ϕ(x)n

is bounded on R. Then the function ϕ is an n-Jordan homomorphism.

Proof. With the help of the function ϕ we define the mapping Φ on Rn
through

Φ(x1, . . . , xn)

=
∑

σ∈Sn

ϕ(xσ(1) · · ·xσ(n))− ϕ(xσ(1)) · · ·ϕ(xσ(n)) (x1, . . . , xn ∈ R) ,
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where Sn denotes the symmetric group of {1, . . . , n}. It is obvious that the
function Φ is symmetric under all permutations of its variables. Furthermore,
the additivity of ϕ yields that Φ is an n-additive mapping. Therefore, its trace

φ(x) = Φ(x, . . . , x) = n! (ϕ(xn)− ϕ(x)n) (x ∈ R)

is a polynomial function of degree at most n. On the other hand, from the sup-
positions of the theorem, the function φ is bounded on R. Thus, by Theorem
1.5,

φ(x) = const. (x ∈ R) .

Let us observe however that

φ(0) = Φ(0, . . . , 0) = n! (ϕ(0n)− ϕ(0)n) = 0,

since ϕ(0) = 0. Therefore, the function φ is identically zero on R, that is, for
the additive function ϕ,

ϕ(xn) = ϕ(x)n

holds for any x ∈ R. This yields that ϕ is an n-Jordan mapping. �

Consequences of Theorem 2.1

Theorem 2.3. Let n ∈ N, n ≥ 2, F be a field of characteristic zero, R be a
commutative topological ring and R′ be a commutative topological algebra over
the field F. Furthermore, let us consider the additive function ϕ : R→ R′ and
suppose that for the map φ defined on R by

φ(x) = ϕ(xn)− ϕ(x)n (x ∈ R)

one of the following statements hold.
(i) the function φ is continuous at a point ;
(ii) assuming that R′ is locally convex, the function φ is bounded on a non-

void open set of B;
(iii) assuming that R is locally compact, R′ is locally convex, the function φ

is bounded on a measurable set of positive measure;
(iv) assuming that R is locally compact and R′ is locally bounded and locally

convex, the function φ is measurable on a measurable set of positive
measure.

Then and only then the function ϕ is a continuous function or it is an n-
homomorphism.
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Proof. Let us define the function Φ on Rn by

Φ(x1, . . . , xn) = ϕ(x1 · · ·xn)− ϕ(x1) · · ·ϕ(xn). (x1, . . . xn ∈ R)

By our assumptions the function Φ is a symmetric, n-additive function, and
its diagonalization

φ(x) = Φ(x, . . . , x) = ϕ(xn)− ϕ(x)n (x ∈ R)

fulfills one of the suppositions (i), (ii), (iii), (iv). On the other hand, the
function φ, being the trace of a symmetric, n-additive function, is a polynomial
of degree at most n. On the other hand, due to the additivity of the function
ϕ, the polynomial φ is in fact a continuous monomial function.

All in all, this means that there exists a continuous monomial function
φ : R→ R′ such that

ϕ(xn)− ϕ(x)n = φ(x) (x ∈ R) .

In case φ ≡ 0, this means that ϕ is an n-homomorphism. Thus, in the
remaining part of the proof, we can and we do suppose that the continuous
monomial function φ is not identically zero. Due to the additivity, the function
ϕ is either continuous (everywhere) ot it is nowhere continuous. Suppose
that ϕ is nowhere continuous. Then the mapping x 7−→ ϕ(xn) − ϕ(x)n is a
nowhere continuous monomial function. This contradicts to the fact the φ is
continuous.

All in all, the additive function ϕ is continuous or it is an n-homomor-
phism. �

Obviously, it may occur that some rings admit n-homomorphisms that
are continuous, too. Thus the disjunctions appearing in our results are not
necessarily exclusive.

In case R = R′ = R the situation is rather simple because the notions
of n-homomorphisms as well as n-Jordan homomorphisms coincides with the
notion of homomorphisms. Furthermore, in R if a function ϕ : R → R is a
homomorphism, then it is either identically zero or ϕ = id. Concerning this
case we can state the following.

Corollary 2.1. Let n ∈ N, n ≥ 2 be arbitrarily fixed and assume that
for the additive function ϕ : R→ R the mapping defined by

R 3 x 7−→ ϕ(xn)− ϕ(x)n
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fulfills at least one of (i), (ii), (iii) and (iv) appearing in Theorem 2.3. Then
and only then

ϕ(x) = ϕ(1) · x

is satisfied for any x ∈ R.

However, in C the situation is completely different. Since the only contin-
uous endomorphisms ϕ : C→ C are

ϕ(x) = 0 or ϕ(x) = x or ϕ(x) = x (x ∈ C) ,

where x denotes the complex conjugate of x.
These endomorphisms are referred to trivial endomorphisms. Of these the

identically zero function is only an endomorphism, whereas the others are
automorphisms.

In view of [9, Theorem 14.5.1], there exist nontrivial automorphisms of
C. Such functions behave rather pathologically. We just mention for example
that if ϕ : C → C is a nontrivial automorphisms then the set ϕ(R) is dense
in C.

Especially, our main result in this case reads as follows.

Corollary 2.2. Let n ∈ N, n ≥ 2 be arbitrarily fixed and assume that
for the additive function ϕ : C→ C the mapping defined by

C 3 x 7−→ ϕ(xn)− ϕ(x)n

fulfills at least one of (i), (ii), (iii) and (iv) appearing in Theorem 2.3. Then
and only then the function ϕ is a continuous additive function or it is an
automorphism of C.

Surjective maps to prime algebras.

Theorem 2.4. Let n ∈ N, n ≥ 2, R be a ring, R′ be a locally convex
algebra over the field F of characteristic zero, ϕ : R → R′ be a surjective
additive function, and assume that the mapping

R 3 x 7−→ ϕ(xn)− ϕ(x)n

is bounded on R. Then the function ϕ is an n-Jordan homomorphism.
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Furthermore, in case R′ is prime, there exists ε ∈ C ′ (the extended centroid
of R′) such that εn−1 = 1 and a homomorphism or an anti-homomorphism
τ : R→ R′C ′ such that

ϕ(x) = ετ(x) (x ∈ R) .

Proof. In view of Theorem 2.2, we immediately obtain that ϕ is an n-
Jordan mapping. Now, the last part of our statement immediately follows
from Theorem 1.3. �

Finally, we end our paper with the unitary version of the previous theorem.

Corollary 2.3. Let n ∈ N, n ≥ 2, R be a ring, R′ be a locally convex
algebra over the field F of characteristic zero, ϕ : R → R′ be a surjective
additive function, and assume that the mapping

R 3 x 7−→ ϕ(xn)− ϕ(x)n

is bounded on R. Then the function ϕ is an n-Jordan homomorphism.
Furthermore, in case R′ is prime, R is unitary and ϕ is surjective then

ϕ = ετ

where τ is either a homomorphism or an anti-homomorphism and ε is an
(n− 1)st root of unity lying in the center of R′.
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