1. Ancochea G., Le théorème de von Staudt en géométrie projective quaternionienne, J. Reine Angew. Math. 184 (1942), 193–198.
2. Badora R., On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), no. 2, 589–597.
3. Brešar M., Martindale 3rd W.S., Miers C.R., Maps preserving n-th powers, Comm. Algebra 26 (1998), no. 1, 117–138.
4. Eshaghi Gordji M., n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80 (2009), no. 1, 159–164.
5. Hejazian Sh., Mirzavaziri M., Moslehian M.S., n-homomorphisms, Bull. Iranian Math. Soc. 31 (2005), no. 1, 13–23.
6. Herstein I.N., Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341.
7. Jacobson N., Rickart C.E., Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502.
8. Kaplansky I., Semi-automorphisms of rings, Duke Math. J. 14 (1947), 521–525.
9. Kuczma M., An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, Second edition, Birkhäuser Verlag, Basel, 2009.
10. Šemrl M., Nonlinear perturbations of homomorphisms on C(X), Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 197, 87–109.
11. Šemrl P., Almost multiplicative functions and almost linear multiplicative functionals, Aequationes Math. 63 (2002), no. 1–2, 180–192.
12. Székelyhidi L., Regularity properties of polynomials on groups, Acta Math. Hungar. 45 (1985), no. 1–2, 15–19.
13. Żelazko W., A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83–85.
Google Scholar