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ON SOME GENERALIZATION OF THE GOLAB-SCHINZEL
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Abstract. Inspired by a problem posed by J. Matkowski in [10] we investigate
the equation

flo@,y)(@f(y) +y) + (1 —p(z,v)(yf(z) +2)) = f(@)f(y), =z,y€ER,

where functions f: R — R, p: R2 — R are assumed to be continuous.

1. Introduction

The composite functional equation

(1) fla+yf@) =f@)fy), zyeX,

where X is a real linear space and f: X — R is an unknown function, is the
well-known Gotab—Schinzel equation. For details concerning this equation, its
origin, generalizations and applications, we refer e.g. to J. Aczél [1], J. Aczél
[2, pp. 132-135|, J. Aczél, J. Dhombres [3, Chapter 19], J. Aczél, S. Gotab
[4], S. Golab, A. Schinzel [5], K. Baron [6], N. Brillouet, J. Dhombres [7], J.
Brzdzek [8], P. Javor [9], S. Wotodzko [12].
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There are several papers devoted to some generalizations of equation (1),
cf. a survey paper Brzdek [8], Mureriko [11], J. Matkowski [10]. The last one
inspired our paper. In [10] the following generalization of (1) is considered:

2 flpfy) +y)+ 1 —p)yf(z)+=) = fl2)fly), =yeX.

Roughly speaking, it turns out that the continuous solutions of (2) are the
same as the continuous solutions of (1). To be more precise, the main result
of J. Matkowski [10] reads as follows:

THEOREM 1 ([10]). Let X be a real linear topological space and p € R be
fizred. A continuous function f: X — R satisfies the equation

folefw) +y) + @ —p)yflx)+ ) = f2)f(y), =zyeX,
if, and only if, either
flz)=0, zelX,

or there is an x* € X* \ {0} such that

flz)=14+2"(x), zelX,
or p € [0,1] and there exists x* € X* \ {0} such that

f(z) =sup(l1 +2*(z),0), zeX.
Let a function f: R — R be continuous and a function p: R? — R be

continuous with respect to each variable. Let Ff,: R? — R be defined by the
formula

(3)  Frplz,y) =plx,y)(@f(y) +y) + (1 —p(z,9)(yf(x) + ), z,y€R.

In this note we consider the generalization of (2) of the form:

(4) fFrp(z,y)) = f(@)f(y), =yekR

The following question naturally arises and was posed in [10]: what are
the solutions of equation (4)? Our main result (Theorem 4) states that any
real continuous function f fulfilling equation (4) is also of one of the forms
described in the Theorem 1.
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2. Technical lemmas

For arbitrary function f: R — R and ¢ € R let denote
Al =" ({eh)

and define g R\A{ — R by

gr(z) = %f(a:)

2.1. Part I: We establish a form of the function f on the set
f7Y((~1,1)) and a form of the set A/

LEMMA 1. Let f: R — R, p: R? — R satisfy equation (4). Then

n— j —f(x)?"
(1) H]:Ol(]' + f(x)QJ) = ll;fgl‘()x) ) x g A{? n e N7

2) fIIZ L+ f(@)?)z) = f(2)?", z€R, neN.

PRrROOF. By induction and by using Fy ,(z,2) = z(1 + f(z)) with

n—1

2= [+ f@)?)e. O

=0

LEMMA 2. Suppose that a continuous function f: R — R and a function
p: R? = R satisfy equation (4). Then g¢(f~1((—1,1))) C Al

ProOOF. Take arbitrary zg € f~'((—1,1)). Then lim, 1o f(20)?" = 0,
so Lemma 1 and continuity of f imply that

n—1

0= lm_f@o)* = tim f(T]0+f@0)*)a0)

=0

n—1

= f( lim_ 10+ F () )ao)

Hence g¢(x0) € Ao. O
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LEMMA 3. Let f: R — R, p: R? — R satisfy equation (4). Then f(0) =0
or f(0)=1

PROOF. Put z =y =0 in (4) in order to obtain f(0) = f(0)%. O

LEMMA 4. Let f: R — R, p: R? — R satisfy equation (4). If there exists
xo € R such that f(xo) = —1, then f(0) = 1.

PROOF. Put & =y = o in (4) in order to get
F(0) = F((1+ f(xo))xo) = f(a0)* = (=1) = L. O

LEMMA 5. Suppose that a continuous function f: R — R and a func-
tion p: R? — R satisfy equation (4). If f is not identically equal zero, then
f(0)=1.

PROOF. Assume, in search of a contradiction, that f is not identically
equal to 0 and f(0) = 0 (cf. Lemma 3). Let Sy = (A, B) with some —oo <
A <0< B < oo be a component of f~1((—1,1)) which contains 0. Then
from Lemma 2 it follows that g(So) C AJ and 0 = g7(0) € g;(So). Moreover,
gy is continuous on f~((—1,1)). So, g¢(So) is an interval contained in Ag.
Since g¢(0) = 0, we have gf(So) = |C, D| with some C <0 < D. If C =0,
then for every x € Sy we have gr(z) = % > 0, which can occur (in
the set f~1((—1,1))) only when x > 0 for every x € Sy, which is impossible
since Sy is open and contains 0. Analogically, D = 0 can be excluded. Thus
C < 0 < D and at least one of numbers C, D is real (because f # 0). If for
example D € R then for every z € Sy we have % < D, which is equivalent
to f(z) <1— %. Regarding f(z) € (—1,1) for every = € (A, B), we conclude
that B € R and f(B) = —1. Then from Lemma 4 we get f(0) = 1, which
contradicts with our assumption. O

LEMMA 6. Suppose that a continuous function f: R — R and a function
p: R?2 = R continuous with respect to each variable satisfy equation (4). Then
set Ag 18 a closed interval or is empty.

PROOF. Assume that Ag # (). If f is identically equal to 0, then Al =R
and the thesis holds.

If f#0, then f(0) =1 (cf. Lemma 5). Let zg, z1 € Ag, xg < x1. For
every y € R we have

F(Fpp(xo,y)) = f(20)f(y) =0 and f(Frp(y,z1)) = f(y)f(z1) =0,
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s0 Fy (0, R) and Fy (R, x;) are intervals contained in AJ. Obviously,
Frp(0,21) =21 and  Fyp(z0,0) = zo.
Furthermore, Ff ,(zo,x1) € Ffp(x0,R) N Ffp(R,21). Thus,
[0, 1] C Ffp(x0,R) U Ffp(R, 1) C Ag.

Therefore Ag is an interval. It is closed, since Ag = f~1({0}) and the function
f is continuous. 0

LEMMA 7. Suppose that a continuous function f: R — R and a function

p: R?2 = R continuous with respect to each variable satisfy equation (4). If f

s not identically equal to 0, then Ag is the empty set and f(R) C [1,400) or

there exists a € R* such that either

(1) a <0, Ag = (—o00,a] and f(z) =1-2 forx € (a,0), f(x) > 1 forz >0
or

(2) <0, Ag ={a} and f(z) = 1-7% forx € (2a,0), f(z) < —1 forx < 2a,
f(x)>1 forz>0 or

(3) a>0, Al = [a,400) and f(z) = 1-2 forxz e (0,a), f(x) > 1 forz <0
or

(4) a>0, Al ={a} and f(z) = 1—2 forx € (0,2a), f(z) < —1 forz > 2a
and f(x) > 1 for x <O0.

PROOF. Assume in search of a contradiction that Ag = [o, B] with some
—00 < a < ff < 400 (cf. Lemma 6).

If f(x) >0 for x> S, f(x) <0 for x < a (the case f(z) < 0 for z > S,
f(z) > 0 for x < « can be treated similarly), then for z,y < a we have
f(Fpp(z,y)) = f(z)f(y) >0, s0 Fyp(z,y) > . Hence for every x < a we get

Frp(r,a) = lim_ Frp(z,y) > B
y—a
and

a=Fpla,a) = lim Fyp(z,a) > B,
T—a
which is a contradiction with a < .
If f(z) < 0 for x € (—o0,) U (B,+00), then for z,y < a, we have
f(Fyp(z,y)) = f(z)f(y) > 0, which is impossible.
To finish the proof of the first part of the thesis it is enough to consider the
case f(z) > 0 for x € (—oo,a) U (B, +00). Let (7,9) be such a component of
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F71((—1,1)) that [o, 8] C (v,0). From Lemma 2 it follows that g;((v,d)) C
[ar, B]. Hence for x € (,d) we have

af(r)>a—x and [f(zr) <p—x.

If a <0, then f(z) <1— %, so for z € (7,a) we would have f(x) < 0, which
contradicts with the assumption.

If « >0, then § > 0 and f(z) < 1— 3. Thus, for z € (8,6) we would
have f(z) < 0, which is again a contradiction with the assumption. Therefore
eithera = €Ror a=—o0 or § = +c0.

If A] =0, then from Lemma 2 it follows that f~1((—1,1)) = §. Lemma 3
and the continuity of f imply f(R) C [1,4+c0).

Now assume that A} # () and fix zo € f~*((—1,1)) \ 4. Then according
to Lemma 2 g7 (x0) € Al. If A} = {a}, then g;(x0) = o, s0 f(xg) = 1— oIf
Al = (=00, 0], then gr(xo) <, s0 f(wg) > 1 -2 (o < 0 because f(0) =1).
Hence f(xo) =1 — %2 with some ¢ < a. Assume in search of a contradiction
that ¢ < a. From Lemma 1 it follows that

1-— f($0)2n> N on
f(xo 1 . f(fL'O) - f('rO)
for every n € N. Thus f(xo%) > 0 for every n € N. On the other
hand,
_ 2"
lim xg L~ f(zo) o0 =c<a,

netoo U 1= f(zg)  1— f(xo)

2N
so there exist N € N such that xo% < «. Then

f(woll_ﬂ;(;gv) = f(z0)?" =0,

which is not possible. To conclude, for every xo € f~1((—=1,1))\ Ag we have
flwo) =1 -

Furthermore, ing = {a} and a < 0, then for every zg € f~1((—1,1))\{a}
we have both f(zo) = 1 — % and f(x) € (—1,1), which is possible if and
only if zg € (2,0). Hence f~((—1,1)) = (2a,0). Moreover, f(2a) =
—1, £(0) =1, so f((—00,20]) C (=00, —1], F([0,+00) C [1,400). If Al =
{a} and a > 0, then similarly as above we get f((—00,0]) C [1,+00) and
f([2a, +00) C (—o0, —1].
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Finally, we consider the case of A(’; = (—o0,a] with @ < 0 (the case
of Ag = [o,+00) with @ > 0 may be analyzed analogically). For every
zo € f71((—=1,1))\ (—o0, a] we have both f(zg) =1—22 and f(xo) € (—1,1),
which is possible if and only if 29 € (,0). Hence f~1((—1,1)) = (—o0,0)
and f([0, +00)) C [1,400). O

2.2. Part II: We prove that if f 20, f # 1 is a solution of (4), then
A{ = {0}, so either f takes values greater than 1 for positive
arguments and smaller than 1 for negative arguments or the

reverse

LEMMA 8. Let f: R — R and p: R? — R satisfy equation (4). The set A{
1S a semigroup.

PROOF. Put in (4) z,y € A{ in order to obtain f(x +y) = 1. O

LEMMA 9. Suppose that a continuous function f: R — R and a function
p: R?2 = R continuous with respect to each variable satisfy equation (4). If for
some € > 0 we have f((—e,¢)) C [1,400) or f((—e,¢)) C (0,1], then f = 1.

PROOF. Assume that f((—e,e)) C [1,+00) for some £ > 0.Observe that
Fip(0,2) = o = Fj,(x,0) for every z € R. Continuity of Fy,(-,¢) and
Fy (-, —¢) at the point 0 implies that there exists § > 0, § < ¢ such that for
every |z| < ¢ we have

€
|Fyp(x,€) — el = |Frp(,€) = Frp(0,6)| < 5
and
€
|Ff7p(33a —€) +¢| = |Ff7p(x7 —€) — Ff,p(oa —e)| < 3

Hence

e 3¢ 3 ¢
Fip(z,e) € (2,2> and Fy,(xz,—¢) € (—2,—2> .zl <.

For every |z| < 0 from Darboux property of function Fy ,(z,-) it follows that
there exists y(x) € (—¢,¢) such that Fy ,(z,y(z)) = 0. Therefore from (4) we
have

1= f(0) = f(Frp(z,y(x))) = f(2)f(y(x)) =1 for [z < ¢
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and equality holds if and only if f(z) = f(y(x)) = 1. Thus we have proved
that (—8,8) C AJ. However, the set A is a semigroup (cf. Lemma 8), so
R = Al O

COROLLARY 1. Suppose that a continuous function f: R — R and a func-
tion p: R? — R continuous with respect to each variable satisfy equation (4).

If f=1((~=1,1)) =0, then f = 1.

PROOF. If f~1((—1,1)) = 0, then obviously A(’; = (), so from Lemma 7 it
follows that f(R) C [1,+00). Therefore, Lemma 9 implies that f = 1. O

LEMMA 10. Suppose that a continuous function f: R — R and a function
p: R? — R satisfy equation (4). If 0 is a leftside accumulation point (rightside
accumulation point) of AL, then f([0,+00)) = {1} (f((—oc,0]) = {1}).

PROOF. Let (z,)nen € (AT)N be a decreasing sequence of points tending
to 0. Fix g > 0. For every n € N there exists [(n) € N such that (I(n)—1)z,, <
g <l(n)x,. Then |l(n)x, — g| < ,, so

nll}rfoo l(n)x, =g.

Moreover, A{ is a semigroup, so I(n)z, € A{. Thus, A{ is dense in [0, +00).
On the other hand, AY = f=1({1}) is closed as a counterimage of a closed set
by a continuous function. Hence f([0,+00)) = {1}. O

COROLLARY 2. Suppose that a continuous function f: R — R and a func-
tion p: R?Z — R continuous with respect to each variable satisfy equation (4).
If condition (1) or (2) from Lemma 7 is satisfied, then there exists € > 0 such
that f((0,e)) € (1,400). If condition (3) or (4) from Lemma 7 is satisfied,
then there exists € > 0 such that f((—¢,0)) C (1, +00).

PROOF. Assume that condition (1) or (2) from Lemma 7 is fulfilled. From
Lemma 7 follows that f((—00,0)) C (—o0,1), f([0,400)) C [1,400). If
the thesis of the corollary did not hold, then 0 would be a righthand side
accumulation point of the set A7 and Lemma 1 would imply A = [0, +00).
Then we would have f(R) C (—o0,1] and from Lemma 9 we would get f =1,
which is a contradiction with the assumption of the lemma.

The proof is similar for condition (3) or (4). O

LEMMA 11. Suppose that a continuous function f: R — R and a function
p: R2 — R continuous with respect to each variable satisfy equation (4). If
condition (1) or (2) from Lemma 7 is fulfilled, then f((0,400)) C (1,+00). If
condition (3) or (4) from Lemma 7 is fulfilled, then f((—o00,0)) C (1,400).



On some generalization of the Golagb—Schinzel equation 69

Proor. Without lost of generality we can assume that condition (1) or (2)
from Lemma 7 is satisfied.

Assume for contradiction that (0,+00) N A7 % 0. From Corollary 2 it
follows that a = inf((0,+00) N Af) > 0. Define h: R — R by the formula
h(z) = x(1 + f(x)). Then h([0,a]) is a compact interval which contains
h(O) 0 and h(a) = 2. If there is f € («,2«) such that f(5) = 1, then

h(vy) with some 7 € (0, «) and according to (4) we would have

1= f(B) = f(h() = fF(0)?,

which is equivalent to f(7y) =1 (cf. Lemma 7). However, this is a contradic-
tion with the definition of a. Thus we proved that f((«,2«)) C (1,400).
Obviously h(a) = 2a, h(2a) = 4a, so [2a,4a] C h(]o, 2a]). Hence 3a =
h(v) with some 7 € (a,2a) and f(3a) = f(h(y)) = f(v)?> > 1. On the other
hand 3a € Af, because A7 is a semigroup (cf. Lemma 8). O

2.3. Part III: We establish the form of function f on the set

TR\ (-1, 1))

THEOREM 2. Suppose that a continuous function f: R — R and a function
p: R2 — R continuous with respect to each variable satisfy equation (4). If
condition (1) or (2) from Lemma 7 is fulfilled, then f(x) =1— £ for x > 0.
If condition (3) or (4) from Lemma 7 is fulfilled, then f(x) =1—% for x <O0.

Proor. Without lost of generality we can assume that condition (1) or (2)
from Lemma 7 is satisfied.

Equation (4), Lemma 11 and Lemma 7 imply that for arbitrary x > 0
there exists exactly one k(z) € («,0) such that f(x)f(k(z)) = 1. Thus,
f(z) = —= o for every x> 0.

Letx>0 a <y <0. Then f(z ):ﬁ(m), f():%,sof(x)f(y)z

m Therefore, from Lemma 7 for z > 0, y < 0 we have

Frp(w,y) € (a,0) <= f(Fyp(z,y) = f(2)f(y) € (0,1) <=y € (o, k(x))
and
Frp(z,y) > 0= f(Fyp(r,y) = f(2)f(y) > 1 =y € (k(x),0).

Fix x >0, y € (o, k(x)). Then

FEpplay)) = 1 - D220
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Y o o
Frp(z,y) :p(x,y)<x(1 - a) +Z/—ym —33> +ym t+z
e y(xk(z) — axr — ak(z))  ax+ ay — zk(z)
Ry a— k(z)

Thus

y(zk(x) — ax — ak(z)) n xk(z)
o2(a = k() ala— k(@)

f(Fyp(m,y) =1—p(z,y)

SO

(xk(z) — ax — ak(z)) xk(z) —azr —ay _a-y
a?(a—k(x)) ala —k(z)) a—k(x)

1 p(z,y)”
and
o®(a — k(z)) = pla,y)y(zk(z) — az — ak(z))
+ a(zk(z) — axr — ay) = o®(a —y),
which implies
p(z,y)y(ax + ak(z) — zk(x)) = alax + ak(z) — zk(x)).

Therefore, either

k(z) = ﬂ, which is equivalent to f(x) =1 — E,
e o
or
a
nz,y) = —.
(z,y) ,

Assume that there exists a sequence (x,)nen decreasing to 0 such that
f(xn) #1 =22 Fix yo € (o, 0). Since lim,_,o+ k(x) = 0, there is N € N such

that for every n > N we have yo € (e, k(n)), s0 p(@n, yo) = ;. Then

a o«
= 1. ns = 1. _— = —,
pO0.30) = Tim planuo) = T =
Thus,
p(0,0) = lim p(0,y9) = +o0.

’yg—)O*

This contradiction proves that such a sequence (x,)nen does not exists. So,
there is an € > 0 such that f(z) =1 — £ for every x € [0,¢].
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If flx)=1- ., f(y) :1—%, then F,(x,y) :x—l—y—%y and
x+y_%:1_Ff7P(x’y)
@ « '

f(Frp(z,y) = f(@)fly) =1~

Therefore, f(z) = 1— £ for every z € Fy ,([0,¢]?). In particular, for z € [0, ]
we have Fy,([0,€]%) 2 Fp(z,2) = (1 + f(x)) > 2z, so [0,2¢] C Fy,([0,¢]?)
and f(z) =1 — Z for every z € [0,2¢]. Repeating this reasoning, we get that
f(z) =1~ Z for every z > 0. O

THEOREM 3. Suppose that a continuous function f: R — R and a function
p: R?2 — R continuous with respect to each variable satisfy equation (4). If
condition (2) from Lemma 7 is fulfilled, then f(x) = 1 — % for x < 0. If
condition (4) from Lemma 7 is fulfilled, then f(x) =1— £ forx > 0.

Proor. Without lost of generality we can assume that condition (2) from
Lemma 7 is satisfied.

Suppose that there exist x < 2« such that f(x) < —1. Then z(f(z)+1) >
0, so from Theorem 2 and (4) we have

(14 f(@)

«

1 = fa(1+ f(2))) = f(2)*,
so af(z)? + zf(z) + # — a = 0 and solving this quadratic equation we get
f(r) =1—Zor f(xr) = —1. We have chosen x such that f(z) < —1, so finally
fla)=1-%

Let A= {x € (—00,2a): f(zr) = —1} and

B = {x € (—o0,20): f(z)=1— g}

The sets A, B are disjoint, their union is (—oo,2a) and they are closed in
(—o0,2a), since the function f is continuous. Connectedness of (—oo,2a)
implies that A =0 or B =0, so

flz)=—1 foreveryz <2a or f(z)=1-— L for every = < 2a.
«

Now we show that the first case leads to a contradiction. Indeed, in this case
we would have f(z) = max{—1,1 — 2} and we could choose 29 > 0,y <
2cc and get f(Fyp(zo,y0)) = f(20)f(yo) = —(1 — %2) < —1. However, in
the considered situation f(R) N (—oo,—1) = @, which implies the desired
contradiction. O
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3. Main result

Our main result reads as follows:

THEOREM 4. Let a continuous function f: R — R and a continuous with
respect to each variable function p: R? — R satisfy equation (4). Then one of
the following conditions is satisfied:

(1) f =0, p arbitrary continuous function or
(2) =1, p arbitrary continuous function or
(3) f(z) =1— 2 with a # 0, p arbitrary continuous function or
(4) f(r) = max{0,1— 2} with some a < 0 and p being a continuous function
satisfying conditions:
eifriy>aorx=y<aorzx= 0 ory =0, then p(x,y) is arbitrary,
o if v <y <a, then p(z,y) <$

—x’
$

o ify <z <a, then p(z,y) >

. ifz € (,0), y<athenp(,)21—%,
o ifr >0, y<a, then p(z,y) <1- 2,
e ifx<a, ye(a0), thenp( y) <5

o ifx <a, y>0, then p(x,y) > 9,07’

(5) f(x) max{0,1— £} with some a > 0 and p being a continuous function
satisfying conditions:
eifry<aorr=y>a«a 07“0 =y orx =0, then p(x,y) is arbitrary,
o if x>y > a, then p(x,y) < 2==

— I7
o ify>ux>a, then p(x,y) > g‘_”
.if:(;<0,y>a,thenp(:cy)§1—%,
o ifre(0,a), y>a, then p(r,y) >1 -2,
e ifx>a, y€(0,a), then p(x, )g%,
e ifr>a, y<o, thenp(x,y)_%

Conwersely, if functions f: R — R, p: R> — R satisfy one of the conditions
(1) — (5), then f, p is a solution of equation (4).

PRrOOF. From Lemma 7, Theorem 2, Theorem 3 follows that if f is not
identically equal neither to 0 nor to 1, then f(z) = 1—2 or f(r) = max{0,1—
2}. Obviously, if f(z) = 1— £, then the function p is arbitrary. Therefore, to
complete the proof it is enough to show that in cases (4) and (5) the function
p must satisfy conditions mentioned in, respectively, (4) or (5).

Now we consider the case f(z) = max{0,1 — £} and o < 0. For z,y >
a equation (4) is satisfied independently of p(x,y). For z,y < a we have
f(F(z,y)) =0, so F(z,y) < a and F(z,y) = p(x,y)(y — x) + . Thus, if
x <y < «, then p(z,y) < S=eiif ¥ =y < a, then p(x,y) is arbitrary; if
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y <z < a, then p(z,y) > {=F. For x> a, y < a we have f(z)f(y) =0, so

F(z,y) < a. The definition of F' gives

F(x,y) zp(ﬂf,y)(y—y(l—g) —x) +y(1—§) e

e
T
= fafp(a?,y)(l - g) trty- 2 <a,
a e
so —zp(z,y) =Y < L(a — z)(a — y). Thus, p(0,y) are arbitrary; if z €
(a,0), y < a, then p(z,y) > 1 - %;if x > 0, y < «, then p(z,y) <1- 2.
Similarly, if z < «, y > «, then F(z,y) < a and

F(z,y) :p(aﬁ,y)(w(l—%) +y—x) +x:yp(m,y)(1—§) +z <a,

so yp(z,y)*5* < a—x. Thus, p(z,0) are arbitrary; if + < o,y € (,0), then
p(z,y) < %; if 2 < a,y > 0, then p(x,y) > %

The case (5) is treated analogically to the case (4).

It is easy to check that function fulfilling one of the conditions (1)—(5) is
a solution of (4). O

In the end observe, that there exist a lot of continuous functions p which
satisfy conditions from (4) or (5) of Theorem 4, e.g. for @ > 0 one may take

5 for [yl >
%y, for |y| <

i) = {

N[RN[R

Let p;: R? — R be an arbitrary function continuous with respect to each
variable and such that p;(z,y) # 0 only for z < 0 and y < 0. Then the
function py + p; satisfies conditions (5) of Theorem 4, too.
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