1. Aczél J., Beirtäge zur Theorie der geometrischen Objecte III-IV, Acta Math. Acad. Sci. Hungar. 8 (1957), 19–52.
2. Aczél J., Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
3. Aczél J., Dhombres J., Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1989.
4. Aczél J., Gołąb S., Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphims, Aequationes Math. 4 (1970), no. 1–2, 1–10.
5. Gołąb S., Schinzel A., Sur l’ équation fonctionnelle f [ x + yf ( x )] = f ( x ) f ( y ), Publ. Math. Debrecen 6 (1960), 113–125.
6. Baron K., On the continuous solutions of the Gołąb–Schinzel equation, Aequationes Math. 38 (1989), no. 2–3, 155–162.
7. Brillouet N., Dhombres J., Equations fonctionelleset recherche de sous-groupes, Aequationes Math. 31 (1986), 253–293.
8. Brzdzęk J., The Gołąb–Schinzel equation and its generalization, Aequationes Math. 70 (2005), no. 1–2, 14–24.
9. Javor P., On the general solution of the functional equation f [ x + yf ( x )] = f ( x ) f ( y ), Aequationes Math. 1 (1968), 235–238.
10. Matkowski J., A generalization of the Gołąb–Schinzel functional equation, Aequationes Math. 80 (2010), 181–192.
11. Mureńko A., On the general solution of a generalization of the Gołąb–Schinzel equation, Aequationes Math. 77 (2009), 107–118.
12. Wołodźko S., Solution générale de l’équation fonctionelle f [ x + yf ( x )] = f ( x ) f ( y ), Aequationes Math. 2 (1968), 12–29.
Google Scholar