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ON THE ORBIT OF AN A-m-ISOMETRY

Rchid Rabaoui, Adel Saddi

Abstract. An A-m-isometry is a bounded linear operator T on a Hilbert

space H satisfying an identity of the form
m∑

k=0

(−1)m−k
(m
k

)
T ∗kATk = 0,

where A is a positive (semi-definite) operator. In this paper, we show that the
results for the supercyclicity and the hypercyclicity of m-isometries described
in [6, 8] remain true for A-m-isometries.

1. Introduction and Preliminaries

A few years ago, the class of m-isometric operators attracted much at-
tention. They have been the object of some intensive studies. The theory
of these operators was investigated especially by Agler and Stankus [1, 2, 3].
Recently, in [13], A. Saddi and O.A.M. Sid Ahmed generalized the concept
of m-isometry on a Hilbert space when an additional semi-inner product is
considered.

In this framework, we show that many results from [6, 8] remain true if we
consider an additional semi-inner product defined by a positive semi-definite
operator A. We are interested in studying the orbit of an A-m-isometry.

The contents of the paper are the following. In Section 1, we give no-
tation and results about the concept of A-m-isometries that will be useful
in the sequel. In Section 2, some results about the behavior of the orbit of
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an A-m-isometry are shown. In Section 3, we focus on the supercyclicity and
more generally, the N -supercyclicity of A-m-isometries. In particular it is
shown that no power-bounded A-isometry is supercyclic and for invertible A,
an A-m-isometry which is not an A-(m− 1)-isometry with m is even cannot
be N -supercyclic. In the closing section, we prove that an A-m-isometry is
never weakly hypercyclic.

In the following, we shall introduce much of the notation of the paper and
give some basic properties of A-m-isometries. For more details on such a class
of operators, we refer the readers to [13].

Throughout this paper H represents a complex separable Hilbert space
with inner product 〈·, ·〉. By L(H), we denote the Banach algebra of all linear
operators on H. L(H)+ represents the cone of positive (semi-definite) oper-
ators on H (i.e. L(H)+ := {A ∈ L(H) : 〈Au, u〉 ≥ 0, for all u ∈ H}). The
null space and the range of an operator T ∈ L(H) are denoted respectively
by N(T ) and R(T ). If V ⊂ H is a closed subspace, PV is the orthogonal
projection onto V . Finally let the set LA(H) given by

LA(H) := {T ∈ L(H) : R(T ∗A) ⊂ R(A)}.

Any A ∈ L(H)+ defines a positive semi-definite sesquilinear form:

〈·, ·〉A : H×H −→ C, 〈u, v〉A = 〈Au, v〉.

By ‖ · ‖A we denote the semi-norm induced by 〈·, ·〉A, i.e. ‖u‖A = 〈u, u〉
1
2

A.
Observe that ‖u‖A = 0 if and only if u ∈ N(A). Then ‖.‖A is a norm if and
only if A is an injective operator. For T ∈ LA(H), set

‖T‖A = sup
u∈R(A), u 6=0

‖Tu‖A
‖u‖A

(<∞).

It is straightforward to notice that

‖T‖A = sup{|〈Tu, v〉A| : u, v ∈ H and ‖u‖A ≤ 1, ‖v‖A ≤ 1}.

N denotes the set of non-negative integers (N = {1, 2, 3, . . .}), I is the identity
operator on H, from now A represents a nonzero (A 6= 0) positive operator on
H and denote B its square root (i.e. B =

√
A).

Let T ∈ L(H), an operator W ∈ L(H) is called an A-adjoint of T if
AW = T ∗A. By the Douglas Theorem ([13, Theorem 1.1]), an operator T ∈
L(H) admits an A-adjoint if and only if T ∈ LA(H). Moreover, there exists
a distinguished A-adjoint operator T ] of T , namely, the reduced solution
of the equation AX = T ∗A, i.e. T ] = A†T ∗A, where A† is the Moore–
Penrose inverse of A. Recall that given A ∈ L(H) the Moore–Penrose inverse
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of A, denoted by A†, is defined as the unique linear extension of A−1 to
D(A†) := R(A) + R(A)⊥ with N(A†) = R(A)⊥ where A is the isomorphism
A|N(A)⊥ : N(A)⊥ −→ R(A). Moreover, A† is the unique solution of the four
Moore–Penrose equations: AXA = A, XAX = X, XA = PN(A)⊥ , AX =
P
R(A)
|D(A†) (for more details we refer the reader to [11]).

Definition 1.1 ([13]). An operator T ∈ LA(H) is said to be A-power
bounded if

sup
n∈N
‖Tn‖A < +∞.

An I-power bounded operator is called power-bounded.

Since we are interested in studying the class of A-m-isometric operators,
we recall the following definition.

Definition 1.2 ([13]). For m ∈ N, A ∈ L(H)+, an operator T ∈ L(H) is
called an A-m-isometry if

T ∗mATm−
(
m

1

)
T ∗m−1ATm−1+. . .+(−1)m−1

(
m

m− 1

)
T ∗AT+(−1)mA = 0,

where T ∗ denotes the adjoint operator of T .
Equivalently, for all u ∈ H

(1)
m∑

k=0

(−1)k
(
m

k

)
‖Tm−ku‖2A =

m∑

k=0

(−1)m−k
(
m

k

)
‖T ku‖2A = 0.

Remark 1.1. 1. If T satisfies (1), then it is an m-isometry with respect
to the semi-norm on H induced by A.

2. If A = I, then an A-m-isometry is an m-isometry.
3. An A-1-isometry will be called an A-isometry.

For n, k = 0, 1, 2, . . . , we denote

n(k) =

{
1, if n = 0 or k = 0;

n(n− 1)(n− 2) . . . (n− k + 1), otherwise.

For T ∈ L(H) and k = 0, 1, 2, . . ., we consider the operator

βk(T ) =
1

k!

k∑

j=0

(−1)k−j
(
k

j

)
T ∗jAT j .
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The symbol ST (n) := T ∗nATn of T can be written

ST (n) =

∞∑

k=0

n(k)βk(T ).

Observe that β0(T ) = A and if T is an A-m-isometry, then βk(T ) = 0 for
every k ≥ m. Hence,

ST (n) =

m−1∑

k=0

n(k)βk(T )

and consequently

(2) ‖Tnu‖2A =

m−1∑

k=0

n(k) 〈βk(T )u, u〉, for all u ∈ H.

The A-covariance operator ∆T is defined by

(3) ∆T := βm−1(T ) =
1

(m− 1)!

m−1∑

j=0

(−1)m−1−j
(
m− 1

j

)
T ∗jAT j .

Theorem 1.1 ([13]). Let T ∈ L(H). If T is an A-m-isometry, then the
following properties hold.
1. ∆T is positive and for all u ∈ H,

〈∆Tu, u〉 =

m−1∑

k=0

(−1)m−k−1 1

k!(m− k − 1)!
‖T ku‖2A.

2. The null space N(∆T ) of ∆T is an invariant subspace for T . Moreover, if
N(∆T ) is invariant for A and A0 = A|N(∆T ), then the restriction operator
T |N(∆T ) is an A0-(m− 1)-isometry.

3. If M ⊂ H is an invariant subspace for T and A such that T |M is an A|M-
(m− 1)-isometry, then M ⊂ N(∆T ).

Given T ∈ L(H), the orbit of a subspace E ⊂ H under T is defined by

Orb(T,E) := {Tnu : u ∈ E, n ∈ N}.

In the particular case in which E = {u} is a singleton, we write

Orb(T, u) := {u, Tu, T 2u, . . .}.
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Definition 1.3 ([6, 8]). We say that an operator T ∈ L(H) is:
1. Hypercyclic (weakly hypercyclic) if there exists an element u ∈ H such that
Orb(T, u) is dense (weakly dense).

2. Supercyclic (weakly supercyclic) if there is an element u ∈ H such that the
set

COrb(T, u) := {λu, λTu, λT 2u, . . . , λ ∈ C}

(the closure with respect to the weak topology of Orb(T, u)) is dense.
3. N-supercyclic if there exists an N-dimensional subspace E of H such that
Orb(T,E) is dense.

4. Finitely supercyclic if there exists a finite subset E = {u1, u2, . . . , un} such
that

⋃n
i=1 COrb(T, ui) is dense.

It is clear that a scalar multiple of a hypercyclic vector is a hypercyclic
vector, but in general the sum of two hypercyclic vectors my fail to be a hy-
percyclic vector. Moreover, since the norm topology is strictly stronger than
the weak topology, every hypercyclic operator is weakly hypercyclic, but not
viceversa. The notion of hypercyclicity corresponds to the invariant subset
problem as that cyclicity does to the invariant subspace problem. An operator
T has no non-trivial closed invariant subset if and only if every vector x 6= 0
is hypercyclic for T .

2. Properties of A-m-isometries

In this section we establish some results concerning the family of A-m-
isometric operators that will be useful in Section 3. We start with the following
elementary result.

Lemma 2.1. Let T ∈ L(H) be invertible. If T is an A-m-isometry, then
so is the operator T−1.

Proof. If T is an A-m-isometry, then by replacing u by T−mu in (2), we
get

0 =

m∑

k=0

(−1)k
(
m

k

)
‖T−(m−k)u‖2A =

m∑

k=0

(−1)m−k
(
m

k

)
‖T−ku‖2A

which implies that T−1 is an A-m-isometry. �
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In [1, Proposition 1.23], J. Agler and M. Stankus have proved that, for
an even integer m, every invertible m-isometry is also an (m − 1)-isometry.
The following result shows that this property is also satisfied by the class of
A-m-isometries.

Proposition 2.1. If T is an invertible A-m-isometry and m is even, then
T is an A-(m− 1)-isometry.

Proof. Since T is invertible and m is even, for u ∈ H

〈−∆Tu, u〉 = lim
n−→−∞

− 1

n(m−1)
〈ST (n)u, u〉

= lim
n−→−∞

− 1

n(m−1)
‖Tnu‖2A ≥ 0.

This implies that −∆T ≥ 0. According to Theorem 1.1, the operator ∆T is
positive, that is ∆T ≥ 0. Hence, ∆T = 0. This implies that

m−1∑

j=0

(−1)m−1−j
(
m− 1

j

)
T ∗jAT j = 0

which means that T is an A-(m− 1)-isometry. �

Corollary 2.1. Let T ∈ L(H) be an A-2-isometry. If T is invertible,
then
1.

(4) T ∗pAT p = A for all p ≥ 0.

2. If T is such that ||T || = 1, then BT is hyponormal.

Proof. 1. By hypothesis, T is an invertible A-2-isometry. According to
Proposition 2.1, T is an A-isometry. Hence,

T ∗AT = A.

An induction argument yields to T ∗pAT p = A for all p ≥ 0, which finishes
the proof.

2. The relation (4) for p = 1, 2 implies that T is an A-quasi-isometry and [14,
Corollary 3.6] allows to conclude.

�
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Remark 2.1. Combining Corollary 2.1 and [13, Lemma 3.3], we deduce
that if T is an A-2-isometry, then
1. T ∗pAT p = pT ∗AT − (p− 1)A, for all p ≥ 0.
2. T ∗pAT p = A, for all p ≥ 0, if T is invertible.
Moreover, the equality 2. when A = I and p = 1 yields that every invertible
2-isometry is a unitary operator.

We have also the next result.

Proposition 2.2. Let T ∈ L(H) be a surjective A-isometry. Then the
following statements hold:
1. R(A) = R(T ∗A).
2. If T is injective and T (R(A)) ⊂ R(A), then T is A-normal (i.e. T ]T =
TT ]).

Proof. 1. Since T is an A-isometry, T ∗AT = A. Thus, R(T ∗A) ⊂ R(A).
Using Douglas Theorem ([13], Theorem 1.1 ), we obtain R(A) ⊂ R(T ∗A).
So part one is proved.

2. We have proved that R(T ∗A) ⊂ R(A). Then T admits an A-adjoint op-
erator T ], moreover, T ]T = A†T ∗AT = A†A = P

R(A)
, where A† is the

Moore-Penrose inverse of A. On the other hand, since T is invertible,
TT ] = TA†T ∗A = TA†AT−1 = TP

R(A)
T−1. If moreover R(A) is in-

variant for T , so TT ] = P
R(A)

TT−1 = P
R(A)

= T ]T which yields the
assertion. �

Faghih and Hedayatian ([8, Theorem 1]) proved that, for every vector u,
the orbit Orb(T, u) of anm-isometry T is norm increasing or norm decreasing,
except possibly for a finite number of terms. Moreover, T. Bermúdez et al ([6,
Proposition 2.2]) showed that the orbit is always eventually norm increasing.
In the following we obtain that, under additional assumption, this property
holds true for A-m-isometric operators.

Define the operators (Tj)0≤j≤m−1, inductively, by

T0 = T and Tj = Tj−1|N(βm−j(Tj−1)), j = 1, 2, . . . ,m− 1.

Consider the following assumption

(Hi) : For all j = 1, 2, . . . ,m− (i+ 1), N(βm−j(Tj−1)) is invariant for A

where 1 ≤ i ≤ m− 1.
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Lemma 2.2. Let T ∈ LA(H) be an A-m-isometry with m > 1, u ∈ H and
k be the largest integer with 1 ≤ j ≤ m − 1 such that 〈βj(T )u, u〉 6= 0. If T
satisfies (Hk), then 〈βk(T )u, u〉 > 0.

Proof. For k = m − 1 the statement is true from Theorem 1.1-(1.). If
k 6= m − 1, for j ∈ {1, . . . ,m − (k + 1)}, Theorem 1.1-(2.) implies that
N(βm−j(Tj−1)) is invariant for Tj−1, since by hypothesis it is also invariant
for A, so Tj is an A-(m− j)-isometry which, in turn, implies that βm−j−1(Tj)
is a positive operator. This coupled with the fact that

〈βm−j(Tj−1)u, u〉 = 〈βm−j(T )u, u〉 = 0

shows that u ∈ N(βm−j(Tj−1)). In particular, Tm−k−1 is an A-(k + 1)-
isometry, and so βk(Tm−k−1) is a positive operator. Moreover, since the
vector u ∈ N(βk+1(Tm−k−2)) and we assumed that 〈βk(T )u, u〉 6= 0, we get

〈βk(T )u, u〉 = 〈βk(Tm−k−1)u, u〉 > 0. �

Now, we are in position to prove the following theorem.

Theorem 2.2. Let T ∈ LA(H) be an A-m-isometry and u ∈ H. Then
except possibly for a finite number of terms, Orb(T,u) satisfies

‖Tn+1u‖2A − ‖Tnu‖2A ≥ 0, n ≥ 0

provided that T satisfies (Hk), where k is the largest integer with 1 ≤ j ≤ m−1
such that 〈βj(T )u, u〉 6= 0.

Proof. If m = 1, then the result is obvious. Assume that m > 1 and
let u ∈ H such that 〈βj(T )u, u〉 = 0 for j = 1, 2, ...,m − 1. Then T is an
A-isometry and we have

‖Tn+1u‖2A − ‖Tnu‖2A = 0, n = 0, 1, 2, . . .

Otherwise, for every positive integer n, using (2), we observe that

‖Tn+1u‖2A − ‖Tnu‖2A = 〈(ST (n+ 1)− ST (n))u, u〉

=

k∑

i=0

[(n+ 1)(i) − n(i)]〈βi(T )u, u〉.
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Consequently, from Lemma 2.2, we get

lim
n−→+∞

‖Tn+1u‖2A − ‖Tnu‖2A
(n+ 1)(k) − n(k)

= 〈βk(T )u, u〉 > 0.

Hence, there exists a positive integer n0 so that the sequence
(
‖Tnu‖2A

)
n≥n0

is strictly increasing. �

Theorem 2.3. Let T ∈ LA(H) be an A-m-isometry. If for a strictly
increasing sequence (ni)i≥1 of positive integers, there exists a constant C such
that for all u ∈ H,

‖Tniu‖A ≤ C, i = 1, 2, . . . ,

then T is an A-isometry.

Proof. Let u ∈ H. If m = 1, then the result is obvious. Let m > 1.
According to (2), we have

(5)
m−1∑

k=0

n
(k)
i 〈βk(T )u, u〉 = ‖Tniu‖2A ≤ C2, i = 1, 2, . . .

On the other hand, if 〈βj(T )u, u〉 6= 0 for some j with 1 ≤ j ≤ m− 1, then

lim
i−→+∞

m−1∑

k=0

n
(k)
i 〈βk(T )u, u〉 =∞.

According to (5), this yields a contradiction. Hence, 〈βj(T )u, u〉 = 0 for every
j with 1 ≤ j ≤ m− 1. This implies that T is an A-isometry. �

Proposition 2.3. Let T ∈ LA(H) be an A-m-isometry. The following
properties hold true.
1. Suppose that a subsequence of

(
‖Tn‖A

)
n≥1

is bounded. Then T is an A-
isometry. In particular, every A-power bounded A-m-isometry is an A-
isometry.

2. If T is not an A-isometry, then,
(a) ‖Tn‖A > 1, for all n ≥ 1.
(b) ‖T−n‖A > 1, for all n ≥ 1, if T is invertible.

Proof. 1. It is a consequence of Theorem 2.3.
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2. (a) Suppose that there exists k ∈ N such that ‖T k‖A ≤ 1. Hence

‖Tnk‖A = ‖T k ◦ T k ◦ . . . ◦ T k︸ ︷︷ ︸
n times

‖A

≤ ‖T k‖A . . . ‖T k‖A ≤ 1, for all n ∈ N.

This implies according to 1., that T is an A-isometry which is a con-
tradiction.

(b) Referring to Lemma 2.1 and using the same arguments used for the
case of T , the assertion holds. �

Denote by BA the closed set on H given by BA = {x ∈ H : ‖x‖A ≤ 1}. In
the next result, we show that if T is an A-m-isometry, then ‖Tn‖2A has the
same behavior as nm−1.

Proposition 2.4. Let T ∈ LA(H) be an A-m-isometry. The following
properties are satisfied:

1. ‖T
nu‖2A

nm−1 converges uniformly on BA to 〈∆Tu, u〉.
2. ‖T

n‖2A
nm−1 converges to sup

u∈BA

〈∆Tu, u〉.

Proof. 1. Note first that if T ∈ LA(H), then ‖Tu‖A ≤ ‖T‖A‖u‖A for all
u ∈ H. By (2) we have

‖Tnu‖2A
nm−1

− 〈∆Tu, u〉 =
(n(m−1)

nm−1
− 1
)
〈∆Tu, u〉+

m−2∑

k=0

n(k)

nm−1
〈βk(T )u, u〉 → 0

as n→∞. Moreover, given ε > 0 and u ∈ BA,
∣∣∣‖T

nu‖2A
nm−1

− 〈∆Tu, u〉
∣∣∣ ≤

(n(m−1)

nm−1
− 1
)
|〈βm−1(T )u, u〉|

+

m−2∑

k=0

n(k)

nm−1
|〈βk(T )u, u〉|

≤
(n(m−1)

nm−1
− 1
) m−1∑

k=0

1

k!(m− k − 1)!
‖T ku‖2A

+
m−2∑

k=0

n(k)

nm−1

k∑

j=0

1

j!(k − j)! ‖T
ju‖2A
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≤
(n(m−1)

nm−1
− 1
) m−1∑

k=0

1

k!(m− k − 1)!
C

+

m−2∑

k=0

n(k)

nm−1

k∑

j=0

1

j!(k − j)! C < ε

for all sufficiently large n, where C = max
0≤k≤m−1

‖T k‖2A. Hence the conver-

gence is uniform on BA.
2. Since the convergence of ‖T

nu‖2A
nm−1 to 〈∆Tu, u〉 is uniform on BA, we obtain

lim
n−→∞

‖Tn‖2A
nm−1

= lim
n−→∞

sup
u∈BA

‖Tnu‖2A
nm−1

= sup
u∈BA

lim
n−→∞

‖Tnu‖2A
nm−1

= sup
u∈BA

〈∆Tu, u〉. �

3. Supercyclicity and N-supercyclicity of A-m-isometries

The concept of supercyclicity was introduced by Hilden and Wallen in
[10]. In this section, we will prove that the results established in [6, 8] for m-
isometric operators remain true for A-m-isometries. It is not difficult to show
that an operator T ∈ L(H) is supercyclic if and only if for each pair of non-
empty open subsets U and V of H, there is a nonzero scalar λ and a positive
integer k such that λT k(U)∩V 6= ∅. In particular, this characterization leads
to the following property.

Proposition 3.1. If T ∈ L(H) is an invertible supercyclic operator, then
T−1 is also supercyclic.

Proof. Let T ∈ L(H) be an invertible operator and U and V two non-
empty open subsets of H . If T is supercyclic then there is λ 6= 0 and an integer
k ≥ 1 such that U ∩ λT k(V ) 6= ∅. Since T is invertible then T−k(U) ∩ λV =
T−k(U ∩ λT k(V )) 6= ∅. This implies that 1

λT
−k(U) ∩ V 6= ∅ and T−1 is

supercyclic. �

We start with the following result.

Theorem 3.1. A power bounded A-isometry cannot be supercyclic.
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Proof. Let T ∈ L(H) be a power bounded A-isometry. Suppose T is
supercylic. Let x ∈ H be a supercyclic vector for T . Let y ∈ H. There exists
a sequence (λi)i ⊂ C and a strictly increasing sequence (ni) ⊂ N such that

(6) lim
i→+∞

λiT
nix = y.

Hence lim
i→+∞

λi
√
ATnix =

√
Ay and lim

i→+∞
|λi|||Tnix||A = ||y||A. Since T is

an A-isometry,

(7) lim
i→+∞

|λi|||x||A = ||y||A.

Note that x cannot be in N(A), otherwise A = 0. If A is not injective then
by choosing y ∈ N(A)\{0}, it is easy to note from (7) that the sequence (λi)i
converges to zero. From (6) it follows that ||Tnix|| −→ +∞ which yields a
contradiction. If A is injective, set y 6= 0, from (7) the limit lim

i→∞
|λi| exists

and is nonzero, it follows (||Tnix||)i converges and Tnix9 0. This contradicts
[4, Theorem 2.2]. Hence the proof is achieved. �

Remark 3.1. 1. If A is invertible then an A-isometry is automatically
power bounded. In which case Proposition 2.3 states that if T is an A-
power bounded A-m-isometry, then T is not supercyclic.

2. Recently, it has been proven that finitely supercyclic operators are super-
cyclic (see [12]). In a way, by studying the supercyclicity we are giving a
characterization of operators belonging to such a family.

3. It is known that the set of all supercyclic vectors of a supercyclic operator
is dense. On the other hand, it is noted in the proof of Theorem 3.1 that a
supercyclic vector (if it exists) of an A-isometry cannot be in N(A). Hence
if interior(N(A)) 6= φ then an A-isometry is never supercyclic.

The following example gives a non power-bounded A-isometry which is
not supercyclic.

Example 3.1. Let H be a separable Hilbert space with an orthonormal
basis {en, n ≥ 1}. Let T ∈ L(H) be the unilateral weighted shift defined

by Ten = wnen+1 where wn =
√

n+1
n , n ≥ 1. Let A ∈ L(H) the positive

operator given by Aen = 1
nen, n ≥ 1. It is not difficult to verify that T

is a 2-isometry and not supercyclic. Moreover, T is a non power-bounded
A-isometry.

This example and Theorem 3.1 lead naturally to the following question.
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Question 1. Is it true that an A-isometry cannot be supercyclic?

The theorem below shows that certain classes of A-m-isometries are not
supercyclic.

Theorem 3.2. Let T ∈ LA(H). If the following properties hold
1. T is an A-m-isometry,
2. for any x ∈ H there exists n0 ≥ 0 such that the sequence

(
||Tnx||

)
n≥n0

is
increasing,

then T is not supercyclic.

Proof. We argue by contradiction. Assume that T is a supercyclic A-m-
isometry with y ∈ H a supercyclic vector. Then, for each x ∈ H, we have

lim
j−→+∞

µjT
mjy = x

where (mj)j is a sequence of positive integers and (µj)j is a sequence of scalars.
Using the condition 2. one gets

lim
j−→+∞

|µj | ‖Tmjy‖ ≤ lim
j−→+∞

|µj | ‖Tmj+1y‖.

This inequality gives

(8) ‖x‖ ≤ ‖Tx‖

which implies that T is injective with closed range. Since T is supercyclic, T
is invertible and T−1 is power bounded. Lemma 2.1 and Proposition 3.1 im-
ply that the operator T−1 is a power bounded, supercyclic A-m-isometry.
Replacing x by Bx in (8) one obtains ‖x‖A ≤ ‖TBx‖, thus ||T−n||A ≤
||TB||||I||A||T−n||, n = 1, 2, , , . Proposition 2.3 shows that T−1 is a su-
percyclic A-isometry, Theorem 3.1 yields a contradiction. Hence the result
follows. �

In [7] Bourdon proves that a hyponormal operator cannot be supercyclic,
then in [9] Feldman shows that a normal operator cannot be N -supercyclic.
In [5] Bayart and Matheron give a generalization by proving that hyponormal
operators are never N -supercyclic. In particular, if T is an invertible A-2-
isometry with ||T || = 1, then Corollary 2.1 implies that the operator BT
cannot be N -supercyclic. Here we discuss the N -supercyclicity of certain
classes of A-m-isometries.
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Theorem 3.3. If A is invertible, T is an A-m-isometry which is not an
A-(m− 1)-isometry with m even, then T is not N-supercyclic.

Proof. We reason with contradiction. Assume that T is an N -supercyclic
A-m-isometry with m even. Then [13, Proposition 4.1] implies that T is an
invertible A-m-isometry with m even. According to Proposition 2.1, T is an
A-(m− 1)-isometry, which is impossible and the proof is finished. �

To simplify, denote X = (H, ||.||), Y = (H, ||.||A) and for T ∈ LA(H) and
m ≥ 1, put

(9) ∆]
T :=

1

(m− 1)!

m−1∑

j=0

(−1)m−1−j
(
m− 1

j

)
T ]jT j .

It is known that Y is a Hilbert space if and only if A is invertible (see [14]).
In what case according to Remark 1.1, an operator is A-m-isometry in X if
and only if it is an m-isometry in Y . The next result generalizes [6, Theorem
3.4].

Theorem 3.4. Let T ∈ LA(H) be an A-m-isometry. If A is invertible and
∆T is injective, then T is not N-supercyclic.

Proof. Note first that the Adjoint of an operator T ∈ LA(H) in Y is T ]

(i.e. the A-adjoint in X). Moreover A∆]
T = ∆T , thus ∆T is injective if and

only if is so ∆]
T . If T is an A-m-isometry in X, then T is an m-isometry in Y .

Since ∆]
T is injective, [6, Theorem 3.4] implies that T is not N -supercyclic in

Y then T is not N-supercyclic in X. �

Corollary 3.5. Assume that A is invertible. Then
1. An A-isometry is never N-supercyclic.
2. An A-2-isometry is never N-supercyclic.

Proof. 1. It follows from Theorem 3.4, since in what case ∆T = A.
2. If T is an A-isometry, (1.) gives the result. If T is not an A-isometry, then

it suffices to apply Theorem 3.3. �

Next we give an example of an A-3-isometry which is neither A-2-isometry
nor supercyclic.

Example 3.2. Let H be a separable Hilbert space with an orthonormal
basis {en, n ≥ 1}. Let T, A ∈ L(H) where T is the unilateral weighted shift

defined by Ten =
√

n+3
n en+1 and A is the invertible positive operator given
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by Aen = 1
n+1en, n ≥ 1. It is not difficult to prove that T is an A-3-isometry

which is neither an A-2-isometry nor a 3-isometry. On the other hand T is a
D-isometry (Den = 1

n(n+1)(n+2)en, n ≥ 1) then it is not N -supercyclic.

This leads naturally to the following question.

Question 2. Is it true that an A-3-isometry cannot be N -supercyclic?

4. Weak hypercyclicity of A-m-isometries

Several necessary conditions exist for an operator to be weakly hypercyclic.
For example, if ||T || ≤ 1 or sup

n
||Tn|| < +∞ , then every orbit is norm

bounded, and hence can never be norm dense or weakly dense. Hence, if T
is weakly hypercyclic, then either ||T || > 1 or sup

n
||Tn|| = +∞ . Another

necessary condition for an operator T to be weakly hypercyclic is that its
adjoint T ∗ has no eigenvalues. The purpose of this section is to see what
about the weak hypercyclicity of A-m-isometries. An immediate consequence
of Corollary 3.5, is that if A is invertible then neither A-isometries nor A-2-
isometries are hypercyclic. In the next theorem, we show that they are not
even weakly hypercyclic.

Theorem 4.1. Let T ∈ L(H). If T is an A-isometry or an A-2-isometry,
then T cannot be weakly hypercyclic.

Proof. 1. We argue by contradiction. Suppose that T is a weakly hy-
percyclic A-isometry. There exists x ∈ H \N(A), such that for any y ∈ H
there exists an increasing sequence (ni) ⊂ N such that

〈Tnix,Ay〉 → 〈y,Ay〉, i→ +∞

Since T is an A-isometry, then by Cauchy–Schwarz inequality, one gets
||x||A ≥ ||y||A for all y ∈ H. This is impossible.

2. Suppose that T is an A-2-isometry. Then

(10) T ∗(T ∗AT −A)T = T ∗2AT 2 − T ∗AT = T ∗AT −A

If 4T = 0 then T is an A-isometry and if 4T 6= 0 then from (10) and
Theorem 1.1, T will be a 4T -isometry. Hence in both cases T cannot be
weakly hypercyclic.

�
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We are now ready to state the main result of this section in which we
generalize [8, Theorem 4].

Theorem 4.2. Let T ∈ L(H) be an A-m-isometry. Then T is not weakly
hypercyclic.

Proof. We have already seen in Theorem 4.1 that the result holds for
m = 1, 2. Let m > 2 and assume, to the contrary, that T is a weakly
hypercyclic A-m-isometry with a weakly hypercyclic vector u. Then (2) holds
for n = 1, 2, , , . If βm−1(T )u 6= 0, then the positivity of βm−1(T ) shows
that 〈βm−1(T )u, u〉 > 0. This, in turn, implies the convergence of the series
∞∑

n=1

‖Tnu‖−2
A so is of the series

∞∑

n=1

‖Tnu‖−2. Thus, in view of [8, Proposition

1]) we get a contradiction. Hence, βm−1(T )u = 0. Since for every n, Tnu
is also a weakly hypercyclic vector for T , we see that βm−1(T )Tnu = 0, n =
0, 1, 2, . . . This along with the fact that N(βm−1(T )) is weakly closed, implies
that βm−1(T ) = 0. Hence, T is an A-(m− 1)-isometry. Continuing the above
process, we finally conclude that T is an A-2-isometry, which is impossible. �
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