1. Agler J., Stankus M., m-Isometric Transformations of Hilbert Spaces I, Integral Equations Operator Theory 21 (1995), no. 4, 383–429.
2. Agler J., Stankus M., m-isometric transformations of Hilbert space II, Integral Equations Operator Theory 23 (1995), no. 1, 1–48.
3. Agler J., Stankus M., m-isometric transformations of Hilbert space III, Integral Equations Operator Theory 24 (1996), no. 4, 379–421.
4. Ansari S.I., Bourdon P.S., Some properties of cyclic operators, Acta Sci. Math. (Szeged) 63 (1997), 195–207.
5. Bayart F., Matheron E., Hyponornal operators, weighted shifts and weak forms of supercyclicity, Proc. Edinb. Math. Soc. (2) 49 (2006), 1–15.
6. Bermúdez T., Marrero I., Martinón A., On the orbit of an m-Isometry, Integral Equations Operator Theory 64 (2009), 487–494.
7. Bourdon P.S., Orbits of hyponormal operators, Michigan Math. J. 44 (1997), no. 2, 345–353.
8. Faghih Ahmadi M., Hedayatian K., Hypercyclicity and supercyclicity of m-isometric operators, Rocky Mountain J. Math. 42 (2012), no. 1, 15–23.
9. Feldman N.S., N-supercyclic operators, Studia Math. 151 (2002), 149–159.
10. Hilden H.M., Wallen L.J., Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1973/74), 557–565.
11. Ben-Israel A., Greville T.N., Generalized Inverses: Theory and Applications, Academic Press, New York, 1973.
12. Peris A., Multi-hypercyclic operators are hypercyclic, Math. Z. 236 (2001), no. 4, 779– 786.
13. Sid Ahmed O.A.M., Saddi A., A-m-Isometric operators in semi-Hilbertian spaces, Linear Algebra Appl. 436 (2012), 3930–3942.
14. Suciu L., Quasi-isometries in semi-Hilbertian spaces, Linear Algebra Appl. 430 (2009), 2474–2487.
Google Scholar