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APPROXIMATION METHODS FOR SOLVING
THE STOCHASTIC NETWORK FLOW PROBLEM

WITH THE MOMENT MULTICRITERION

Marta Kostrzewska, Lesław Socha

Abstract. In this paper, the stochastic modification of the bicriterial min-
imum cost flow problem is presented. After the problem’s formulation two
approximate algorithms based on sandwich method for a convex curve ap-
proximation are presented. The obtained results are illustrated by examples.

1. Introduction

The bicriteria network cost flow problems, which describe a lot of real-
life problems have been studied recently in many operation research papers.
Although there exist exact computation methods for finding the analytic so-
lution sets of bicriteria linear and quadratic cost flow problems, see e.g. [6],
[8], Ruhe [5] and Zadeh [10] have shown that the determination of these sets
may be very perplexing because of the possibility of exponential number of ex-
treme nondominated objective vectors on the efficient frontier. The fact that
efficient frontiers of the bicriteria linear and quadratic cost flow problems are
convex curves in R2 allows to apply the sandwich methods for approximating
convex curve in this field of optimization, see e.g. [1], [2], [7], [9]. However,
some of these algorithms require a derivative information. A derivative free
method was introduced in [9] by Yang and Goh, who applied it to bicriteria
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quadratic minimum cost flow problems. The efficient frontiers of these prob-
lems are approximated by two piecewise linear functions, which construction
requires solving one dimensional minimum cost flow problems. Also, Siem
in [7] has proposed an algorithm based only on the function value information
with the interval bisection partition rule and two new iterative strategies for
the determination of a new input data point in each iteration.

In this paper we consider the network cost problem with random costs
variables. We are interested in minimizing the expected value and the second
moment of the total cost of the flow in a network, that is in solving the bicrite-
rial minimum cost flow problem with linear and quadratic objective function,
respectively. We present two methods of the approximation of the efficient
frontier for this problem. In the first algorithm, based on the algorithm pro-
posed by Siem [7], new points on the efficient frontier are computed according
to the chord rule or the maximum error rule by solving proper convex qua-
dratic network problems. In the second one, we modify the lower approxima-
tion function discussed in [9] what decreases the Hausdorff distance between
upper and lower bounds. We give the proofs of the quadratic convergence
property of Algorithm 2 and the linear convergence property of Algorithm 1.

The paper is organized as follows. In Section 2 we define the problem.
In Section 3, we consider the case when the cost variables are mutually inde-
pendent and we present two new methods of approximation the efficient fron-
tier of our problem. Section 4 includes the information how to use described
methodology from Section 3 in general case of cost variables. In Section 5,
we discuss the convergence of the presented algorithms. In Section 6, we give
some numerical examples to illustrate the discussed methods with the com-
parison of algorithms presented in [9] and [7]. Finally, Section 7 contains the
conclusions and future research direction. Proofs of Lemma 1, Lemma 2 and
Theorem 2 are given in Appendix.

2. Problem statement

Consider the directed network G = (N,A), where N and A represent the
node set and the arc set, respectively. Let |N | = n and |A| = m. For each
node i ∈ N let the integer bi be the supply or the demand of the node i.
Let lij ∈ [0,∞) and uij ∈ (lij ,∞) be the lower and upper bounds of flow
through arc from the node i to the node j denoted by (i, j) ∈ A and let
Cij : Ω → [0,∞) be a random variable representing the cost per unit of flow
on this arc. If we assume that each variable Cij has positive expected value
E[Cij ] = cij , then we state the stochastic minimum cost flow problem with
the moment multicriterion (SMCFP) in the following form
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min

[
E
[ ∑
(i,j)∈A

Cijxij

]
, E

[( ∑
(i,j)∈A

Cijxij

)2
]]T

s.t.
∑

{j:(i,j)∈A}
xij −

∑
{j:(j,i)∈A}

xji = bi ∀i ∈ N,(1)

lij ≤ xij ≤ uij ∀(i, j) ∈ A,

where x : A → R denotes the network flow, xij = x(i, j) is the amount of flow
on arc (i, j) ∈ A and X is the set of all flows satisfying the above constraints.

According to the concept of Pareto optimality we define the relations ≤
and < in R2. Let a,b ∈ R2, then

a ≤ b ⇐⇒ [a1, a2]
T ≤ [b1, b2]

T ⇐⇒ a1 ≤ b1 and a2 ≤ b2,

a < b ⇐⇒ [a1, a2]
T < [b1, b2]

T ⇐⇒ a1 < b1 and a2 < b2.

Applying these definitions to bicriteria programming, a feasible solution x ∈ X
is called the efficient solution of problem (1) if there does not exist a feasible
solution y ∈ X such that

(2)

[
E
[ ∑
(i,j)∈A

Cijyij
]
, E

[( ∑
(i,j)∈A

Cijyij
)2

]]T

<

[
E
[ ∑
(i,j)∈A

Cijxij

]
, E

[( ∑
(i,j)∈A

Cijxij

)2
]]T

.

The set of all efficient solutions and the image of this set under the objec-
tive functions are called the efficient set and the efficient frontier, respectively.

Lemma 1. Efficient frontier of problem (1) is a convex curve in R2.

We shall prove Lemma 1 in Appendix.

3. Independent cost variables

In this section we consider the case when the cost variables are mutually
independent. Two sandwich algorithms for approximation the efficient frontier
of problem (1) are presented.
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Assume that variables Cij and Ci′j′ are mutually independent for (i, j) 6=
(i′, j′) and that each Cij has the finite second moment E[C2

ij ] = dij . The fol-
lowing problem called the stochastic independent minimum cost flow problem
with the moment multicriterion (SICFP)

min
[ ∑
(i,j)∈A

cijxij ,
∑

(i,j)∈A

dijxij
2 +

∑
(i,j)6=(i′,j′)

2cijci′j′xijxi′j′

]T
s.t.

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
xji = bi ∀i ∈ N,(3)

lij ≤ xij ≤ uij ∀(i, j) ∈ A,

is equivalent to problem (1). Note that problem (3) is the bicriterial optimiza-
tion problem with linear and quadratic objective functions, respectively.

Suppose that

(4) Pk =
( ∑
(i,j)∈A

cijx
k
ij ,

∑
(i,j)∈A

dij(x
k
ij)

2
+

∑
(i,j)6=(i′,j′)

2cijci′j′x
k
ijx

k
i′j′

)

for k = 1, 2, . . . , r are given r points on the efficient frontier of problem (3)
such that x1 and xr are the lexicographical minimum for the first and the
second objective, respectively. Although in the algorithms given at the end
of this section we use only three points to start Algorithm 1 and two points
to start Algorithm 2, the described methodologies work for any number r of
initial points, which may be obtained by solving the scalarization problems of
problem (3) (SSMCFP)

min

(
λk

∑
(i,j)∈A

cijxij +
(
1− λk

)( ∑
(i,j)∈A

dijxij
2 +

∑
(i,j) 6=(i′,j′)

2cijci′j′xijxi′j′

))

s.t.
∑

{j:(i,j)∈A}
xij −

∑
{j:(j,i)∈A}

xji = bi ∀i ∈ N,(5)

lij ≤ xij ≤ uij ∀(i, j) ∈ A,

where λk = k−1
r−1 for k = 1, 2, . . . , r.

Another method is to find lexicographical minima of problem (3) and
then solve r − 2 quadratic programming problems with additional equality
constraints called the first fixed coordinate SMCFP (FFCFP)
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min
( ∑
(i,j)∈A

dijxij
2 +

∑
(i,j)6=(i′,j′)

2cijci′j′xijxi′j′

)
s.t.

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
xji = bi ∀i ∈ N,(6)

lij ≤ xij ≤ uij ∀(i, j) ∈ A,∑
(i,j)∈A

cijxij =
∑

(i,j)∈A

cijx
1
ij +

k

r − 1

( ∑
(i,j)∈A

cijx
r
ij −

∑
(i,j)∈A

cijx
1
ij

)
,

where k = 1, . . . , r − 2. This method gives r points on the efficient frontier
with the following property

(7)
∑

(i,j)∈A

cijx
k+1
ij −

∑
(i,j)∈A

cijx
k
ij =

1

r − 1

( ∑
(i,j)∈A

cijx
r
ij −

∑
(i,j)∈A

cijx
1
ij

)

for k = 1, 2, . . . , r − 1. Problems (5) and (6) can be solved using the method
proposed by Goldfarb and Idnani in [3].

If the initial set P = {P1, . . . , Pr} of points on the efficient frontier is
known and if we denote

(8) f1(x) =
∑

(i,j)∈A

cijxij

and

(9) f2(x) =
∑

(i,j)∈A

dijxij
2 +

∑
(i,j)6=(i′,j′)

2cijci′j′xijxi′j′ ,

then Pk =
(
f1

(
xk

)
, f2

(
xk

))
and f1(x

k) < f1(x
k+1) for k = 1, . . . , r−1 and we

start building the approximation bounds. The upper approximation function
of the frontier on the subinterval [f1(x

k), f1(x
k+1)] may be defined as the

straight line through the points Pk and Pk+1, that is

(10) uk(a) = f2
(
xk

)
+

f2
(
xk+1

)
− f2

(
xk

)
f1

(
xk+1

)
− f1

(
xk

)(a− f1
(
xk

))
for a ∈

[
f1(x

k), f1(x
k+1)

]
. We will discuss two different methods of building

the lower approximation function.
According to [7] the straight lines through the points Pk−1 and Pk and

the points Pk+1 and Pk+2 approximate the frontier from below so the lower
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bound lk on the interval [f1(xk), f1(x
k+1)] can be constructed in the following

form

(11) lk(a) =

{
uk−1(a) for a ∈

[
f1(x

k), ak
]
,

uk+1(a) for a ∈
[
ak, f1(x

k+1)
]
,

where k = 2, . . . , r−2 and ak is the point of intersection of two linear functions
uk−1 and uk+1.

Moreover, we define the lower approximation bound on the most left and
the most right interval as follows

(12) l1(a) = u2(a) for a ∈
[
f1(x

1), f1(x
2)
]

and

(13) lr(a) =

{
ur−1(a) for a ∈

[
f1(x

r−1), ar−1

]
,

f2 (x
r) for a ∈ [ar−1, f1(x

r)],

where ar−1 is the point of intersection of function ur−1 and the constant
function f2 (x

r).
On the other hand, the simple modification of the definition presented

in [9] yields to the following form of lower approximation bound lk∗ on the
interval [f1(xk), f1(x

k+1)]
(14)

lk∗(a) =


uk−1(a) for a ∈ [f1(x

k), bk],

f2(y
k) +

f2(x
k+1)− f2(x

k)

f1(xk+1)− f1(xk)

(
a− f1(y

k)
)

for a ∈ [bk, ck],

uk+1(a) for a ∈ [ck, f1(x
k+1)],

where k = 2, . . . , r − 2, constants bk and ck are the points of intersection of
corresponding linear functions and yk is the solution of the following convex
quadratic network problem (the chord rule problem)

min
(
f2(x)−

f2(x
k)− f2(x

k+1)

f1(xk)− f1(xk+1)
f1(x)

)
s.t.

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
xji = bi ∀i ∈ N,(15)

lij ≤ xij ≤ uij ∀(i, j) ∈ A.
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Moreover, we define the lower approximation bound on the most left and the
most right interval as follows

(16) l1∗(a) =

 f2(y
1) +

f2(x
2)− f2(x

1)

f1(x2)− f1(x1)

(
a− f1(y

1)
)

for a ∈ [f1(x
1), c1],

u2(a) for a ∈ [c1, f1(x
2)],

and

(17) lr∗(a) =

{
ur−1(a) for a ∈ [f1(x

r−1, br−1)],

f2 (x
r) for a ∈ [br−1, f1(x

r)].

Let δ = max {δ1, . . . , δr−1}, where δk denotes the distance between the
upper and lower approximation functions on interval [f1(xk), f1(x

k+1)]. We
consider two measures the Maximum error measure (δMk ) and the Hausdorff
distance measure (δHk ) defined as follows

(18) δMk = max
a∈[f1(xk),f1(xk+1)]

{uk(a)− lk(a)}

and

(19) δHk = max
{
sup
v∈L

inf
w∈U

‖v − w‖, sup
w∈U

inf
v∈L

‖v − w‖
}
,

where

U =
{
(a, uk(a)) : a ∈ [f1(x

k), f1(x
k+1)]

}
and

L =
{
(a, lk(a)) : a ∈ [f1(x

k), f1(x
k+1)]

}
.

We will also use for the comparison study in examples in Section 6 the
Uncertainty area measure discussed in [7]

(20) δUk =

∫ f1(x
k+1)

f1(xk)

(
uk (a)− lk (a)

)
da.

If δ does not satisfy a desired accuracy, we choose k ∈ {1, . . . , r} for which
δ = δk and determine new point P ∗ = (f1(x

∗), f2(x
∗)) on the efficient frontier
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of problem (3) such that f1(x
∗) ∈ [f1(x

k), f1(x
k+1)], then we update the set

P of given points on efficient frontier due to following equality

(21) Pi :=


Pi for i < k,

P ∗ for i = k,

Pi−1 for i > k.

If the lower bound was built according to the first method we compute the
new point using the chord rule or the maximum error rule, that is by solving
the quadratic problem (15) or the following problem (the maximum error rule
problem)

min f2(x)

s.t.
∑

{j:(i,j)∈A}
xij −

∑
{j:(j,i)∈A}

xji = bi ∀i ∈ N,(22)

lij ≤ xij ≤ uij ∀(i, j) ∈ A,

f1(x) = ak,

where ak is the point of intersection of linear functions uk−1 and uk+1.
These partition rules return a new point P ∗ = (f1(x

∗), f2(x
∗)) on the

efficient frontier of problem (3) such that f1(x∗) ∈ [f1(x
k), f1(x

k+1)], although
the maximum error rule can be used only under some assumptions concerning
the first interval from the left side which are discussed in the next section.
In [7] the new point is chosen according to the interval bisection rule, that
is the interval with the greatest error is partitioned into two equal parts. In
Section 6 we present two numerical examples which show that using the chord
rule or the maximum error rule gives better results than the method used by
Siem [7].

If we construct the lower approximation function due to definition (14),
then the new point P ∗ on the efficient frontier is evaluated according to the
chord rule, because quadratic problem (15) has been already solved.

After the set P of given points on the efficient frontier is updated, we
determine new upper and lower bounds and repeat the procedure until we
obtain an error δ smaller than the prescribed accuracy.

Algorithm 1 (The Simple Triangle Algorithm):
Step 1. Given an accuracy parameter ε > 0 and an initial set of points on
the efficient frontier P = {P1, P2, P3}. Calculate lower and upper bounds l, u
and error δ. Check if δ > ε, then go to Step 2, otherwise stop.

Step 2. Choose interval
[
f1

(
xk

)
, f1

(
xk+1

)]
for which the maximum error is

achieved. Solve the quadratic problem (15) or (22) to obtain new point P ∗.
Update set P , lower and upper bounds l, u and error δ. Go to Step 3.
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Step 3. Check if δ > ε, then go to Step 2, otherwise stop.

Algorithm 2 (The Trapezium Algorithm):
Step 1. Given an accuracy parameter ε > 0 and an initial set of points on the
efficient frontier P = {P1, P2}. Solve problem (15) and calculate lower and
upper bounds l∗, u and error δ. Check if δ > ε, then go to Step 2, otherwise
stop.

Step 2. Choose interval
[
f1

(
xk

)
, f1

(
xk+1

)]
for which the maximum error

is achieved. New point P ∗ =
(
f1(y

k), f2(y
k)
)
. Update set P , solve problems

(15) and calculate lower and upper bounds l∗, u and error δ. Go to Step 3

Step 3. Check if δ > ε, then go to Step 2, otherwise stop.

The geometric illustration of the Simple Triangle Algorithm and the Tra-
pezium Algorithm is given in Fig. 1 and Fig. 2, respectively (the efficient
frontier is the bold line). In Section 5 we study the convergence of these
algorithms.

4. General case of the cost variables

In the general case, when the cost variables are not mutually independent,
we have to compute values dij,i′j′ = E[CijCi′j′ ] for (i, j), (i′, j′) ∈ A. If we
know the covariance matrix of the cost variables, then dij,i′j′ = cijci′j′ +
cov[Cij , Ci′j′ ] for (i, j), (i′, j′) ∈ A and problem (1) again can be rewritten
into following form

min
[ ∑
(i,j)∈A

cijxij ,
∑

(i,j)∈A

dij,ijxij
2 +

∑
(i,j) 6=(i′,j′)

2dij,i′j′xijxi′j′

]T
s.t.

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
xji = bi ∀i ∈ N,(23)

lij ≤ xij ≤ uij ∀(i, j) ∈ A.

In the case when the covariance matrix is given, the solution of problem
(23) can be obtained by the application of the methodology and both algo-
rithms described in the previous section.
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f2(x3)

f2(x
2)

f2(x1)

f1(x1) f1(x2) f1(x3)

u

l

u

l

f2(x
3)

f2(x2)

f2(x
1)

f1(x1) f1(x2) f1(x3)f1(x∗)

f2(x∗)

Figure 1. Lower and upper bounds built due to the Simple Triangle Algorithm
with the chord rule
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f2(x3)

f2(x
2)

f2(x1)

f1(x1) f1(x2) f1(x3)

u
l

δH2

f2(x
3)

f2(x2)

f2(x
1)

f1(x1) f1(x2) f1(x3)f1(x∗)

f2(x
∗)

u
l

Figure 2. Lower and upper bounds built due to the Trapezium Algorithm
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5. Convergence

In this section we present the convergence analysis of Algorithm 1 and
Algorithm 2 based on proofs given in Rote [4] and Yang and Goh [9]. First,
let us formulate the following remark, which shows the relation between two
distance measures used in our algorithms.

Remark 1. For both given methods of construction of the lower and upper
approximation bounds of the efficient frontier of problem (3), we have

(24) δMk ≤ δHk

(
1 +

f2
(
xk

)
− f2

(
xk+1

)
f1 (xk+1)− f1 (xk)

)
.

See Fig. 3.

α
f2(x3)

f2(x
2)

f2(x1)

f1(x1) f1(x2) f1(x3)

δM2

δH2

tan(α) =
f2(x

2)−f2(x
3)

f1(x3)−f1(x2)

Figure 3. Illustration of error measures considered in Remark 1

Suppose that the efficient frontier of problem (3) is given as a convex
function f : [a, b] → R and the one-sided derivatives f+(a) and f−(b) have
been evaluated. The next theorem based on Remark 3 and Theorem 1 from [9],
Theorem 2 from [4] and Lemma 2 shows the quadratic convergence property
of Algorithm 2.
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Theorem 1. Let L = b − a and let ∆ = f−(b) − f+(a). The number M
of quadratic optimization problems (15) which have to be solved in order to
obtain the Hausdorff distance between upper and lower bound in Algorithm 2
smaller than or equal to ε satisfies the following inequality

(25) M ≤ max

{
2

⌈√
L∆

ε

⌉
− 1, 3

}
.

As Yang and Goh [9] noticed the right directional derivative f+(a) may be
close to −∞, that is why using the fact that the Hausdorff distance is invariant
under rotation it is better to consider the efficient frontier rotated by π

4 with
the modified directional derivatives f̄+(ā) and f̄−(b̄) and with L̄ = b̄ − ā as
the projective distance of the segment between points (f1(x

1), f2(x
1)) and

(f1(x
3), f2(x

3)) onto the line g(x) = −x.
Also for Algorithm 1 we may find the upper bound for the number N

of optimization problems (15) or (22) which have to be solved. First, let us
formulate the following lemma.

Lemma 2. Consider the function f : [a, b] → R and a constant c ∈ (a, b)

such that f(a) ≥ f(c) ≥ f(c). Let ∆1 = f(b)−f(c)
b−c − f(b)−f(a)

c−a , L1 = c − a,
∆2 = −f(c)−f(a)

c−a , L2 = b−c, ∆ = −f(b)−f(a)
c−a and L = b−a, then the following

inequality is satisfied

(26) ∆1L1 +∆2L2 ≤ ∆L.

An illustrative curve is shown in Fig. 4. We shall prove Lemma 2 in
Appendix.

Note that ∆1 and ∆2 are the differences of the slopes of lower approxima-
tion functions computed according to Algorithm 1 for interval [a, c] and [c, b],
respectively, and L1 and L2 are the lengths of these intervals.

The next theorem based on Lemma 5 and Theorem 2 from [4] together
with Lemma 2 shows the linear convergence property of Algorithm 1.

Theorem 2. Let (a, f(a)), (c, f(c)) and (b, f(b)) are three initial points
that are necessary to start Algorithm 1 and suppose that (c, f(c)) was chosen
to satisfy the following inequality

(27) c ≤ a+ ε
b− a

f(a)− f(b)
.

Let L = b − a and let ∆ = −f+(a), then the number N of quadratic op-
timization problems ((15) or (22)) to solve in order to make the Hausdorff
distance between upper and lower bound in Algorithm 1 with the chord rule
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f (b)

f (c)

f (a)

a c b

Figure 4. Illustration of functions considered in Lemma 2

or the maximum error rule smaller than or equal to ε satisfies the following
inequality

(28) N ≤ max

{⌈
L∆

ε

⌉
− 4, 0

}
.

We shall prove Theorem 2 in Appendix. Moreover, from Remark 1 it
follows that δM ≤ δH (1 + γ), where

γ = max

{
f(c)− f(a)

a− c
,
f(b)− f(c)

c− b

}
.

That is why the number of additional steps of Algorithm 1 with the chord rule
or the maximum error rule in order to make the maximum error between upper
and lower bound smaller than or equal to ε satisfies the following inequality

(29) N ≤ max

{⌈
L∆

ε
(1 + γ)

⌉
− 4, 0

}
.

It is clear that, if f+(a) is close to −∞, then we can rotate f by π
4 as Yang

and Goh [9] suggested and consider the modified directional derivative f̄+(ā)
with L̄ = b̄− ā.
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6. Examples

In this section we give two numerical examples, which illustrate algorithms
presented in Section 3. We compare the results of Algorithm 1 with the results
of the method described in [7] and the results of Algorithm 2 with the results
of Yang and Goh’s algorithm, see [9].

1
b1 = −8

2

b2 = 0

[0, 6]

3

b3 = 0

[0, 6]

[0, 5] 4
b4 = 8

[0, 6]

[0, 6]

i j
[lij , uij ]

Figure 5. Network described in Example 1

Example 1. Consider the network given in Fig. 5. Let E[C12] = 3,
E[C13] = 6, E[C23] = 1, E[C24] = 4, E[C34] = 2 and E[C2

12] = 75, E[C2
13] =

36.11, E[C2
23] = 20, E[C2

24] = 16.31, E[C2
34] = 4.5. We are interested in

solving the following problem

(30) min


3x12 + 6x13 + x23 + 4x24 + 2x34,

75x2
12 + 36.11x2

13 + 20x2
23 + 16.31x2

24 + 4.5x2
34

+2(18x12x13 + 3x12x23 + 12x12x24 + 6x12x34 + 6x13x23

+24x13x24 + 12x13x34 + 4x23x24 + 2x23x34 + 8x24x34)


s.t.

2 ≤ x12 ≤ 6, 2 ≤ x13 ≤ 6, 0 ≤ x23 ≤ 3, 2 ≤ x24 ≤ 6, 2 ≤ x34 ≤ 6,

and

x12 + x13 = 8, x12 = x23 + x24, x13 + x23 = x34, x24 + x34 = 8.

The vectors x1 = (6, 2, 3, 3, 5) and x3 = (2, 6, 0, 2, 6) are the lexicographical
minima due to the first and the second objective of problem (30) and P1 =(
f1(x

1), f2(x
1)
)
= (55, 5587.73) and P3 =

(
f1(x

3), f2(x
3)
)
= (62, 4131.2) are

corresponding to these vectors points on the efficient frontier.
Let P2 = (57.5, 4615.349) be the third point necessary to start Algorithm 1.

Table 1 includes the results of next evaluations of Algorithm 1, when new
points are computed according to the chord rule in common with the Hausdorff
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Table 1. The results of Algorithm 1 for Example 1

Step (f1(x∗), f2(x∗)) δM δH δU

1 703.379 3.255 879.157

2 (59.755, 4259.93) 578.371 1.487 722.909

3 (56, 4977.23) 369.241 1.428 184.621

4 (60.883, 4167.19) 369.241 0.679 184.621

5 (61.447, 4142.07) 369.241 0.605 184.621

6 (55.5, 5265.5) 100.419 0.567 100.851

7 (58.633, 4408.49) 74.872 0.31 56.145

8 (56.755, 4782.56) 33.96 0.309 15.807

9 (61.729, 4134.82) 33.96 0.295 15.807

10 (60.325, 4206.04) 33.96 0.183 14.655

11 (59.2, 4326.47) 33.96 0.136 12.759

12 (61.171, 4152.61) 33.96 0.13 12.759

13 (61.87, 4132.53) 33.96 0.123 12.759

14 (58.072, 4503.84) 33.96 0.089 8.618

15 (56.383, 4875.42) 33.96 0.087 8.49

Table 2. The results of Algorithm 1 for Example 1

Step (f1(x∗), f2(x∗)) δM δH δU

1 703.379 3.255 879.157

2 (55.075, 5537.231) 347.13 3.226 781.042

3 (58.774, 4386.79) 288.905 1.802 350.297

4 (56.061, 4960.71) 142.771 1.802 230.322

5 (60.198, 4216.79) 74.042 1.085 53.293

6 (56.275, 4903.38) 68.093 1.085 46.443

7 (55.8462, 5096.9) 51.538 1.085 46.443

8 (60.9148, 4165.4) 37.874 0.608 26.969

9 (59.4037, 4300.42) 30.655 0.607 19.52

10 (58.051, 4507.64) 21.697 0.607 13.289

11 (56.951, 4736.04) 19.162 0.607 10.4

12 (59.813, 4253.86) 10.564 0.326 5.148

13 (58.423, 4442.48) 9.156 0.326 3.818

14 (60.571, 4187.21) 7.775 0.326 3.283

15 (56.667, 4804.02) 7.678 0.326 2.63

measure. In Table 2 we present the results of Algorithm 1, when new points are
computed according to the maximum error rule in common with the Maximum
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Table 3. The results of Siem’s algorithm for Example 1

Step (f1(x∗), f2(x∗)) δM δH δU

1 703.379 3.255 879.157

2 (56.25, 4909.95) 383.169 2.446 592.06

3 (55.625, 5224.74) 263.138 2.446 592.06

4 (59.75, 4260.49) 98.683 1.43 111.018

5 (58.625, 4409.73) 73.284 1.275 82.445

6 (60.875, 4167.65) 55.232 0.683 34.52

7 (56.875, 4753.95) 48.212 0.683 15.86

8 (55.313, 5416.65) 48.121 0.683 15.86

9 (55.938, 5046.09) 36.516 0.683 15.86

10 (55.469, 5319.04) 28.195 0.683 15.86

11 (60.313, 4207.02) 24.671 0.604 13.877

12 (58.063, 4505.49) 24.556 0.604 11.895

13 (56.094, 4951.68) 21.146 0.604 11.895

14 (59.188, 4328.06) 19.578 0.603 11.013

15 (61.438, 4142.38) 8.479 0.313 3.774

error measure. To avoid the problem with the leftmost interval we have taken
P4 = (55.075, 5537.231) as a forth point. Table 3 includes the results of
the method described in [7], which uses the interval bisection method of the
computing new points with the Maximum error measure. After each step
of algorithms we present the new selected point and the maximum values of
three error measures: the Maximum error, the Hausdorff distance and the
Uncertainty area.

From the tables one can conclude that Algorithm 1 with the chord rule
and the Hausdorff distance gives the smallest values of the Hausdorff measure
(δH) in each step. Moreover, Algorithm 1 with the maximum error rule and
the Maximum error gives smaller values of the Maximum error measure (δM )
in each step than the algorithm described in Siem [7] which uses the interval
bisection rule as the method of the selection of new points.

Example 2. We consider the network with 12 nodes and 17 arcs. The
expected values of cost variables lie in the interval [0, 2] and the second mo-
ments in the interval [1, 3]. Table 4 includes the comparison of Algorithm 2
with the method presented in [9]. After each step we present the values of the
Hausdorff distance and the Maximum error and a new evaluated point.

As we can notice Algorithm 2 performs better in comparison with Yang
and Goh’s algorithm giving in each step smaller value of the Hausdorff distance
between upper and lower approximation bounds.
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Table 4. The results of next evaluations of Algorithm 2 and Yang and Goh’s method
for Example 2

Algorithm 1 YG algorithm

Step (f1(x∗), f2(x∗)) δH δM (f1(x∗), f2(x∗)) δH δM

1 1.507 458.259 1.507 458.259

2 (63.410, 5259.94) 0.598 117.196 (63.410, 5259.94) 28.567 117.196

3 (64.194, 5176.09) 0.282 117.196 (62.824, 5551.23) 27.968 36.287

4 (64.733, 5153.34) 0.168 117.196 (62.534, 5782.65) 0.598 36.287

5 (62.824, 5551.23) 0.141 29.355 (64.194, 5176.09) 10.113 28.735

6 (65.013, 5147.54) 0.134 29.355 (63.112, 5379.36) 6.998 14.123

7 (63.584, 5227.26) 0.071 29.355 (62.968, 5458.16) 5.596 14.123

8 (65.1528, 5146.1) 0.058 29.355 (63.584, 5227.26) 6.766 7.28

9 (64.4381, 5163.53) 0.0578 29.355 (63.261, 5312.5) 1.748 7.28

10 (63.112, 5379.36) 0.032 29.355 (62.896, 5503.22) 0.797 7.28

7. Conclusions

Two sandwich algorithms for approximation of the efficient frontier in the
stochastic minimum cost flow problem with the moment multicriterion have
been described.

The Simple Triangle Algorithm uses the lower bound proposed by Siem
in [7] with two different partition rules. The presented example shows that
this modification causes faster decrease of the Maximum error measure and
the Hausdorff distance measure and, as a result, reduces the number of steps
of algorithm in comparison to the Siem’s method.

The Trapezium Algorithm performs better than all of the mentioned deriv-
ative free algorithms (Siem’s method, Yang and Goh’s method) giving in each
step the smallest value of the Hausdorff distance between lower and upper
bound. A quadratic and linear convergence property have been obtained for
Algorithm 2 and Algorithm 1, respectively.

For further research we are interested in constructing an exact algorithm
for solving the stochastic minimum cost flow problem with the moment mul-
ticriterion. Since the method for finding an analytic exact efficient solution
set for bicriteria quadratic problems proposed by Yang and Goh [8] requires
the second moment cost matrix to be positive definite, an open problem is
to find an exact algorithm for the case when the second moment cost matrix
is semi positive definite.
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Appendix

We present the proofs of Lemma 1, Lemma 2 and Theorem 2.

Proof of Lemma 1. Let Pk =
(∑

(i,j)∈A cijx
k
ij , E

[(∑
(i,j)∈A Cijx

k
ij

)2])
for k = 1, 2 be two given points on the efficient frontier of problem (1) and let
λ ∈ [0, 1]. If

∑
(i,j)∈A cijx

1
ij =

∑
(i,j)∈A cijx

2
ij then for all b such that

E

[( ∑
(i,j)∈A

Cijx
1
ij

)2
]
≥ b ≥ E

[( ∑
(i,j)∈A

Cijx
2
ij

)2
]

the point
(∑

(i,j)∈A cijx
1
ij , b

)
lies also on the efficient frontier of problem (1).

Suppose now that
∑

(i,j)∈A cijx
1
ij 6=

∑
(i,j)∈A cijx

2
ij . Note that for

C =

{
x ∈ X :

∑
(i,j)∈A

cijxij = λ
∑

(i,j)∈A

cijx
1
ij + (1− λ)

∑
(i,j)∈A

cijx
2
ij

}
,

B1 =

{
y ∈ X :

∑
(i,j)∈A

cijyij =
∑

(i,j)∈A

cijx
1
ij

}
,

and B2 =

{
z ∈ X :

∑
(i,j)∈A

cijzij =
∑

(i,j)∈A

cijx
2
ij

}
,

we have λB1 + (1− λ)B2 ⊆ C, what yields

min
x∈C

E

[( ∑
(i,j)∈A

Cijxij

)2
]

≤ min
y∈B1,z∈B2

E

[(
λ

∑
(i,j)∈A

Cijyij + (1− λ)
∑

(i,j)∈A

Cijzij
)2

]
.

Due to the convexity of function f(a) = a2 and properties of the expected
value we have

E

[(
λ

∑
(i,j)∈A

Cijyij + (1− λ)
∑

(i,j)∈A

Cijzij
)2

]

≤ E

[
λ
( ∑
(i,j)∈A

Cijyij
)2

+ (1− λ)
( ∑
(i,j)∈A

Cijzij
)2

]
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for y ∈ B1, z ∈ B2. Finally, we have

min
x∈C

E

[( ∑
(i,j)∈A

Cijxij

)2
]

≤ min
y∈B1,z∈B2

E

[
λ
( ∑
(i,j)∈A

Cijyij
)2

+ (1− λ)
( ∑
(i,j)∈A

Cijzij
)2

]

= λ min
y∈B1

E

[( ∑
(i,j)∈A

Cijyij
)2

]
+ (1− λ) min

z∈B2

E

[( ∑
(i,j)∈A

Cijzij
)2

]
,

which shows the convexity of the efficient frontier of problem (1). �

Proof of Lemma 2. If we denote c = λa + (1 − λ)b, where λ ∈ [0, 1],
then we have

∆1 =
f(b)− f(c)

λ(b− a)
− f(b)− f(a)

(1− λ)(b− a)
, L1 = (1− λ)(b− a),

∆2 = − f(c)− f(a)

(1− λ)(b− a)
, L2 = λ(b− a),

∆ = − f(b)− f(a)

(1− λ)(b− a)
, and L = b− a.

It is easy to show that inequality (26) is equivalent to(
2λ2 − 2λ+ 1

)
(f(c)− f(b)) ≥ 0.

Using the fact that f(c) ≥ f(b) we prove the lemma. �

Proof of Theorem 2. Suppose that we have found point (c, f(c)) with
property (27). Of course it is possible to find such a point by solving quadratic
programming problem with additional constraint similar to problem (6). From
condition (27) it follows that δM1 ≤ ε and δH1 ≤ ε.

Now, if we consider the interval [c, b], then we have c−b ≤ L and f(c)−(b)
b−c ≤

∆. Similar to [4] we prove the theorem by induction on number N = N
(
L∆
ε

)
.

The induction basis, N
(
L∆
ε

)
= 0, is equivalent to Lemma 1 from [1], which

also holds for lower approximation function built according to definition (11).
Suppose that N ≥ 1. If after one step of Algorithm 1 the error δ ≤ ε, then

we had only one additional evaluation and the assertion is true.
In the other case, let d ∈ [c, b] be the new computed point and let L1 = d−c

and L2 = b − d let ∆1 and ∆2 denote the slope differences of the linear
functions building the lower bounds in the interval [c, d] and [d, b], respectively.
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We can assume without lost of generality that the error δ exceeds ε in the right
subinterval. Lemma 5 and Lemma 1 from [4] used for the lower approximation
bounds built according to definition (12) give the following inequalities

(31)
L1∆1

ε
> 1

and

(32)
L2∆2

ε
> 4.

Lemma 2 and inequality (31) gives

(33)
L2∆2

ε
<

L∆

ε
.

Similarly, Lemma 2 and inequality (32) gives

(34)
L1∆1

ε
<

L∆

ε
.

From (33) and (34) we have

N

(
L1∆1

ε

)
< N

(
L∆

ε

)
and N

(
L2∆2

ε

)
< N

(
L∆

ε

)
.

Now the induction hypothesis can be applied for N
(
L1∆1

ε

)
and N

(
L2∆2

ε

)
.

If N
(
L1∆1

ε

)
= 0, then the theorem’s statement follows directly.

Otherwise, from Lemma 2 we have

max
∆1L1+∆2L2≤∆L,

L1+L2=L, L1∆1>ε, L2∆2>4ε

(
1 +N

(
L1∆1

ε

)
+N

(
L2∆2

ε

))

= max
∆1L1+∆2L2≤∆L,

L1+L2=L, L1∆1>ε, L2∆2>4ε

(
1 +

⌈
L1∆1

ε

⌉
+

⌈
L2∆2

ε

⌉
− 7

)

≤
⌈
L∆

ε

⌉
− 6 ≤

⌈
L∆

ε

⌉
= N

(
L∆

ε

)
,

which completes the proof. �
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