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A KNESER THEOREM FOR ORDINARY DIFFERENTIAL
EQUATIONS IN BANACH SPACES

Marc Mitschele

Abstract. We show that the set of solutions of the initial-value problem

u(τ) = a, u′(t) = g(t, u(t)) + k(t, u(t)), τ ≤ t ≤ T,

in a Banach space is compact and connected, whenever g and k are bounded
and continuous functions such that g is one-sided Lipschitz and k is Lipschitz
with respect to the Kuratowski measure of noncompactness. The existence of
solutions is already known from Sabina Schmidt [10].

1. Introduction

In the following let E be a Banach space with norm ‖ · ‖, and let τ, T be
real numbers such that τ < T. We consider the initial-value problem

(1.1) u(τ) = a, u′(t) = f(t, u(t)), τ ≤ t ≤ T,

where a ∈ E, f = g + k, the functions g, k : [τ, T ]× E → E being continuous
and bounded, g one-sided Lipschitz and k an α-Lipschitz function. The last
two conditions mean the following:

[x− y, g(t, x)− g(t, y)]− ≤ L ‖x− y‖ , τ ≤ t ≤ T, x, y ∈ E,
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where generally [x, y]− = lim
h ↑ 0

1
h (‖x+ hy‖ − ‖x‖), x, y ∈ E;

α (k ([τ, T ]×B)) ≤ Kα(B), B ⊆ E, B bounded,

α denoting the Kuratowski measure of noncompactness.
It is known from Sabina Schmidt (1989, [10]) that, under these hypotheses,

the initial-value problem (1.1) has at least one solution

(1.2) u : [τ, T ] → E.

The proof of this result can also be found in Peter Volkmann’s survey [11].
The present paper shows that the set of solutions (1.2) of (1.1) is a compact

and connected subset of the Banach space C([τ, T ], E).

2. Notations and tools

We use S(x, r) to denote the closed ball in E with center x and radius
r, and A to denote the closed hull of a set A ⊆ E. As usual, the diameter
diam(A) of a set A ⊆ E means the number sup {‖x− y‖ : x, y ∈ A} , which
for A empty (unbounded) is taken to be zero (resp. infinity). The Kuratowski
measure of noncompactness α(A) of a bounded set A ⊆ E is defined as

inf

{
δ > 0 : A =

n⋃
i=1

Ai, diam(Ai) ≤ δ, i = 1, . . . , n, n ∈ N
}
.

We use the symbol N for the set of natural numbers {1, 2, . . .}. Now we list
some properties of α (cf. [1]): Let A and B be bounded subsets of E and
s ∈ R, then

A ⊆ B implies α(A) ≤ α(B),(2.1)

α(A) = α(A),(2.2)

α(A+B) ≤ α(A) + α(B), α(s·A) = |s| · α(A),(2.3)

α(A) = 0 if and only if A is relatively compact,(2.4)

α(S(x, r)) = 2r if dimE = ∞.(2.5)

Let (xn) be a sequence in E, x ∈ E and let (cn) be a bounded sequence in R
such that ‖xn − x‖ ≤ cn for all n ∈ N, then

(2.6) α({xn : n ∈ N}) ≤ 2 lim sup
n→∞

cn.



A Kneser theorem for ordinary differential equations in Banach spaces 73

The following lemma has been proved by S. Schmidt [10] for χ instead of α,
where χ denotes the Hausdorff measure of noncompactness.

Lemma (Schmidt). Let (xn) be a bounded sequence in E. Then for any
ε > 0 there exists a subsequence (yn) of (xn), such that each infinite subset B
of {yn : n ∈ N} satisfies 2α(B) ≥ α ({xn : n ∈ N})− ε.

Proof. Without loss of generality we assume α0 := α ({xn : n ∈ N}) > ε.
Then we can choose xn1

= x1 and xn2
, xn3

, . . . with n2 < n3 < . . . such that

xnk+1
/∈

k⋃
j=1

S(xnj
,
1

2
(α0 − ε))

for all k ∈ N. From this we obtain the sequence (yk) by setting yk = xnk
for

all k ∈ N. �

In the following C([τ, T ], E) denotes the Banach space of all continuous
functions u : [τ, T ] → E, where ‖u‖ = max

τ≤t≤T
‖u(t)‖ . Let F be a family of

functions in C([τ, T ], E). We set F([τ, T ]) = {u(t) : t ∈ [τ, T ], u ∈ F} and
F(t) = {u(t) : u ∈ F} for t ∈ [τ, T ].

A. Ambrosetti’s paper [2] contains a result on the relationship between the
Kuratowski measures of noncompactness in E and in C([τ, T ], E).

Theorem (Ambrosetti). Let F be a bounded and equicontinuous family
of functions in C([τ, T ], E). Then

α(F) = sup {α(F(t)) : t ∈ [τ, T ]} = α(F([τ, T ])).

The following approximation theorem goes back to J.R.L. Webb [13], again
with χ instead of α.

Theorem (Webb). Let k : [τ, T ] × E → E be a bounded, continuous and
α-Lipschitz function with constant K ≥ 0. Moreover let ε > 0 and A ⊆ E
be bounded. Then there exists a finite-dimensional subspace Y of E and
a bounded continuous function s : [τ, T ]×A→ Y such that

‖s(t, x)− k(t, x)‖ ≤ Kα(A) + ε, τ ≤ t ≤ T, x ∈ A.

In the next section we make use of the symbol [x, y]−, which was defined
in the introduction. It satisfies

(2.7) [x, y + z]− ≤ [x, y]− + ‖z‖ , x, y, z ∈ E.
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Moreover, if the function u : [τ, T ] → E has the left-hand derivative u′− :

(τ, T ] → E, then the left-hand derivative ‖u(·)‖′− : (τ, T ] → R exists and

(2.8) ‖u(t)‖′− =
[
u(t), u′−(t)

]
− , τ < t ≤ T.

For a proof see [9], for example.
R.H. Martin [8] investigated the solvabilty of initial-value problems under

one-sided Lipschitz conditions.

Theorem (Martin). Let g : [τ, T ]×E → E be a bounded, continuous and
one-sided Lipschitz function. Then the problem

u(τ) = a, u′(t) = g(t, u(t)), τ ≤ t ≤ T,

has a unique solution.

We finish this section with a result on differential inequalities. A proof
can be found in [12].

Lemma (On differential inequalities). Let ϕ,ψ : [τ, T ] → R be continuous
functions, ϕ(τ) < ψ(τ), and let

ϕ′
−(t)− ρ(t, ϕ(t)) < ψ′

−(t)− ρ(t, ψ(t)), τ < t ≤ T,

be satisfied with some real-valued function ρ. Then the inequality ϕ(t) < ψ(t)
holds for all t ∈ [τ, T ].

3. The theorem of Sabina Schmidt

In 1989 Sabina Schmidt [10] proved the following result.

Theorem (Schmidt). Let a ∈ E, and let g, k : [τ, T ]×E → E be bounded
and continuous functions, such that g is one-sided Lipschitz with constant L
and k is α-Lipschitz with constant K ≥ 0. Then the initial-value problem

(P) u(τ) = a, u′(t) = g(t, u(t)) + k(t, u(t)), τ ≤ t ≤ T,

has at least one solution

(S) u : [τ, T ] → E.
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The present paper complements this result by showing that the set of
solutions (S) of (P) is a compact and connected subset of the Banach space
C([τ, T ], E). For the proof we use the following type of approximate solutions.

Definition. Let f : [τ, T ]× E → E be a continuous function and a ∈ E.
We call a sequence (un) in C1([τ, T ], E) a sequence of approximate solutions
for the initial-value problem

u(τ) = a, u′(t) = f(t, u(t)), τ ≤ t ≤ T,

if the sequence satisfies the conditions un(τ) → a and

‖u′n(t)− f(t, un(t))‖ ≤ εn, τ ≤ t ≤ T,

where εn → 0. Here C1([τ, T ], E) denotes the space of all continuously differ-
entiable functions u : [τ, T ] → E.

Now we prove Schmidt’s theorem by using her procedure with some alter-
ations appropriate for our purpose.

Proof of Schmidt’s theorem. Without loss of generality let L > 0.
Part 1. First, we prove the solvability of (P) under the additional condi-

tion that

(3.1)
1

L

(
eL(T−τ) − 1

)
≤ 1

8(K + 1)
.

By means of a theorem of Lasota and Yorke [7] we obtain approximate solu-
tions un for the problem (P) with the following properties:

un(τ) = a+ an, an ∈ E, an → 0,

u′n(t) = g(t, un(t)) + k(t, un(t)) + rn(t), τ ≤ t ≤ T, n ∈ N,(3.2)

rn ∈ C([τ, T ], E), ‖rn‖ ≤ 1
n , n ∈ N,(3.3)

see Deimling [5], for example.
The family of functions F = {un : n ∈ N} is bounded and equicontinuous

in C([τ, T ], E). We will show that α(F) = 0. Assuming the contrary we can
choose ε = 1

8α(F) > 0. The set A = F([τ, T ]) = {un(t) : t ∈ [τ, T ], n ∈ N} is
bounded. Hence by Webb’s theorem there exists a finite-dimensional subspace
Y of E and a bounded and continuous function s : [τ, T ]×A→ Y, such that

(3.4) ‖s(t, x)− k(t, x)‖ ≤ Kα(A) + ε = Kα(F) + ε
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for all t ∈ [τ, T ] and x ∈ A. For the last equality see Ambrosetti’s theorem.
Using Schmidt’s lemma we obtain a subsequence (un) of (un) such that

(3.5) 2α(B) ≥ α(F)− ε

for each infinite subset B ⊆ {un : n ∈ N} .
Now we define functions zn : [τ, T ] → Y via

zn(t) =

t∫
τ

s(ζ, un(ζ)) dζ, τ ≤ t ≤ T, n ∈ N.

The family {zn : n ∈ N} is a bounded and equicontinuous family of functions
in C([τ, T ], Y ). Since Y is finite-dimensional, Ambrosetti’s theorem implies

(3.6) α({zn : n ∈ N}) = α({zn(t) : t ∈ [τ, T ], n ∈ N}) = 0.

Hence a subsequence of (zn) converges in C([τ, T ], Y ) to a continuous function
z : [τ, T ] → Y. Without loss of generality we assume (zn) to do this.

Now we consider the initial-value problem

v(τ) = a, v′(t) = g(t, v(t) + z(t)), τ ≤ t ≤ T.

The right side of this problem is bounded, continuous and one-sided Lipschitz
on [τ, T ]× E. Hence the solution v : [τ, T ] → E of this problem exists due to
Martin’s theorem.

For n ∈ N and τ ≤ t ≤ T we define

vn(t) = un(t)− zn(t)− v(t)

and wn(t) = g(t, v(t) + zn(t)) − g(t, v(t) + z(t)) + rn(t), where (rn) denotes
the subsequence of (rn) corresponding to (un). Then (3.2) and (3.3) hold for
un, rn instead of un, rn. Therefore we obtain for all τ ≤ t ≤ T that

v′n(t) = [g(t, un(t))− g(t, v(t) + zn(t))] + [k(t, un(t))− s(t, un(t))] + wn(t).

Moreover (2.7), (2.8) and (3.4) admit the following estimations:

‖vn(t)‖′− = [vn(t), v
′
n(t)]−(3.7)

≤ [vn(t), g(t, un(t))− g(t, v(t) + zn(t))]−

+ ‖k(t, un(t))− s(t, un(t))‖+ ‖wn(t)‖

≤ L‖vn(t)‖+ ‖wn(t)‖+Kα(F) + ε
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for all t ∈ (τ, T ]. Setting µn = max
τ≤t≤T

‖wn(t)‖ we can verify µn → 0, and the

last estimation of (3.7) leads to

(3.8) ‖vn(t)‖′− ≤ L‖vn(t)‖+ µn +Kα(F) + ε.

Now let η > 0 and let (an) denote the subsequence of (an), which corresponds
to (un). The solution of the initial-value problem

ψη(τ) = ‖an‖+ η,

ψ′
η(t) = Lψη(t) + µn +Kα(F) + ε+ ‖an‖+ η, τ ≤ t ≤ T,

(3.9)

is given by

ψη(t) =
(
‖an‖+ η

)
eL(t−τ) +

1

L

(
eL(t−τ) − 1

)(
µn +Kα(F) + ε+ ‖an‖+ η

)
.

Since vn(τ) = an, the inequality ‖vn(τ)‖ < ψη(τ) holds. Using (3.8) and (3.9)
we can apply the lemma on differential inequalities to the functions ‖vn(·)‖
and ψη. Hence we obtain ‖vn(t)‖ ≤ ψη(t) for all t ∈ [τ, T ]. Since we have
chosen η > 0 arbitrarily, the last inequality and η → 0 leads to the following
estimation for all t ∈ [τ, T ] :

‖vn(t)‖ ≤ ‖an‖eL(t−τ) +
1

L

(
eL(t−τ) − 1

)(
µn +Kα(F) + ε+ ‖an‖

)
.

Therefore the further estimations are valid due to (3.1):

‖vn‖ ≤ ‖an‖ eL(T−τ) +
1

L

(
eL(T−τ) − 1

)(
µn +Kα(F) + ε+ ‖an‖

)
≤ 1

8(K + 1)
µn +

1

8
α(F) +

1

8
ε+ ‖an‖

(
eL(T−τ) +

1

8(K + 1)

)
=: cn.

Since vn = (un − zn)− v and lim
n→∞

cn = 1
8α(F) + 1

8ε, we obtain from (2.6)

α
(
{un − zn : n ∈ N}

)
≤ 1

4

(
α(F) + ε

)
.

According to (2.3), (3.5) and (3.6) we can estimate
1

2

(
α(F)− ε

)
≤ α

(
{un : n ∈ N}

)
≤ α

(
{un − zn : n ∈ N}

)
+ α

(
{zn : n ∈ N}

)
≤ 1

4

(
α(F) + ε

)
.

This means α(F) ≤ 3ε, which contradicts ε = 1
8α(F), so α(F) = 0.
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Due to (2.4) there exists a subsequence (ũn) of (un), which converges
uniformly to an element u ∈ C([τ, T ], E). Considering the integral equations,
which correspond to (3.2) with ũn instead of un, we obtain u as solution of
the initial-value problem (P).

Part 2. To complete the proof we choose δ > 0 such that 1
L

(
eLδ − 1

)
≤

1
8(K+1) , compare (3.1). Moreover let τ = t0 < t1 < . . . < tm−1 < tm = T be a
subdivision of the interval [τ, T ], such that ti − ti−1 ≤ δ for all i = 1, . . . ,m.
In the following we use the approximate solutions (un) from part 1, which do
not depend on the choice of δ.

We consider the sequence of the restricted approximate solutions (un|[t0,t1]).
Due to part 1, a subsequence (u

(1)
n |[t0,t1]) of (un|[t0,t1]) converges uniformly on

[t0, t1] to a solution u(1) : [t0, t1] → E of the initial-value problem

(P[t0,t1]) u(t0) = a0, u′(t) = g(t, u(t)) + k(t, u(t)), t0 ≤ t ≤ t1,

where a0 = a. In the next step we restrict the unrestricted subsequence (u
(1)
n )

to the interval [t1, t2]. Hence we obtain a sequence of approximate solutions
(u

(1)
n |[t1,t2]) for the initial-value problem

(P[t1,t2]) u(t1) = a1, u′(t) = g(t, u(t)) + k(t, u(t)), t1 ≤ t ≤ t2,

where a1 = u(1)(t1). Note that the sequence (u(1)n |[t1,t2]) satisfies the conditions

(3.2) and (3.3) with t1 and t2 instead of τ and T, and some subsequence (r
(1)
n ).

Applying part 1 again leads to a subsequence (u(2)n |[t1,t2]) of (un|[t1,t2]) that
converges uniformly on [t1, t2] to a solution ũ(2) : [t1, t2] → E of (P[t1,t2]).

Additionally we conclude that the restrictions u(2)n |[t0,t2] : [t0, t2] → E con-
verge uniformly on [t0, t2] to a solution u(2) : [t0, t2] → E of

(P[t0,t2]) u(t0) = a0, u′(t) = g(t, u(t)) + k(t, u(t)), t0 ≤ t ≤ t2.

Note that

u(2)(t) =

{
u(1)(t), t0 ≤ t ≤ t1,

ũ(2)(t), t1 ≤ t ≤ t2.

By iteration we obtain a subsequence (u
(m)
n ) of (un), that converges uniformly

on [t0, tm] = [τ, T ] to a solution u(m) of

�(P) u(τ) = a, u′(t) = g(t, u(t)) + k(t, u(t)), τ ≤ t ≤ T.
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4. Compactness of the set of solutions

In the setting of Schmidt’s theorem we can prove the following theorem.

Theorem 1. Let a ∈ E, and let g, k : [τ, T ] × E → E be bounded and
continuous functions such that g is one-sided Lipschitz with constant L and k
is α-Lipschitz with constant K ≥ 0. Moreover let the initial-value problem

(P) u(τ) = a, u′(t) = g(t, u(t)) + k(t, u(t)), τ ≤ t ≤ T,

be given. Then the set of solutions

S = {u | u : [τ, T ] → E, u is a solution of (P) }

is a compact subset of the Banach space C([τ, T ], E).

Proof. Let (un) be a sequence in S. Since the un solve (P), they are
obviously approximate solutions for problem (P) with exact initial value. As
in part 2 of the proof of Schmidt’s theorem we obtain a subsequence of (un),
which converges in C([τ, T ], E) to a solution u of (P). Hence S is compact. �

In general the set of solutions of an initial-value problem in a Banach
space is not compact as the following example shows. It was motivated by an
example in a paper of Chaljub-Simon, Lemmert, Schmidt and Volkmann [4].

Let l∞ denote the Banach space of all bounded and real sequences u =
(un), where ‖u‖ = sup

n∈N
|un|.

Example. Let the function ϕ : R → R be given by

ϕ(ξ) =


0, ξ ≤ 0,√
ξ, 0 ≤ ξ ≤ 4,

2, 4 ≤ ξ.

We define the bounded and continuous function f : [0, 1]× l∞ → l∞ by

f(t, u) = (ϕ(u1), ϕ(u2), . . .) , 0 ≤ t ≤ 1, u = (un) ∈ l∞.

Then it is easy to see that the set of solutions S of the initial-value problem

(P) u(0) = (0, 0, . . .), u′(t) = f(t, u(t)), 0 ≤ t ≤ 1,
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is the set of all functions u : [0, 1] → l∞ with u(t) = (un(t)), where for each
n ∈ N we have

un(t) =

 0, t ∈ [0, an],
1

4
(t− an)

2, t ∈ [an, 1],

with some (arbitrary) an ∈ [0, 1]. For 0 ≤ t ≤ 1 we consider the set S(t) =
{u(t) : u ∈ S} . It is easy to verify that the set S(t) is a ball in l∞ with radius
1
8 t

2 and hence for 0 < t ≤ 1 it is not compact. Therefore we conclude that S
is not compact.

Another example for a noncompact solution set can be found in Binding’s
paper [3].

5. Connectedness of the set of solutions

We prove a theorem of Hellmuth Kneser (1923, [6]) in the setting of
Schmidt’s theorem.

Let f : [τ, T ] × E → E be a continuous function. Then f is called lo-
cally Lipschitz, if for each (t, x) ∈ [τ, T ] × E there exist L = L(t, x) ≥ 0, a
neighbourhood It of t and a neighbourhood Ux of x, such that

‖f(s, x1)− f(s, x2)‖ ≤ L ‖x1 − x2‖ , s ∈ It ∩ [τ, T ], x1, x2 ∈ Ux.

Lemma 1. Let the function f : [τ, T ] × E → E be bounded and locally
Lipschitz, and let the continuous function h : [τ, T ]× [0, 1] → E satisfy

‖h(t, λ)− h(t, µ)‖ ≤ C |λ− µ| , τ ≤ t ≤ T, λ, µ ∈ [0, 1],

with some constant C ≥ 0. Moreover, for each λ ∈ [0, 1] let uλ denote the
solution of the initial-value problem

(Pλ) u(τ) = a, u′(t) = f(t, u(t)) + h(t, λ), τ ≤ t ≤ T.

Then the mapping Λ: [0, 1] → C([τ, T ], E), λ 7→ uλ, is continuous.

Recall that the well-known theorem of Picard-Lindelöf guarantees the ex-
istence and uniqueness of the solution uλ of (Pλ).
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As usual we denote the graph of a function u : [τ, T ] → E by

graph(u) = {(t, u(t)) : τ ≤ t ≤ T} ⊆ [τ, T ]× E.

We consider [τ, T ]× E as a metric space, where the metric ρ is given by

ρ((t1, x1), (t2, x2)) = |t1 − t2|+ ‖x1 − x2‖ , (t1, x1), (t2, x2) ∈ [τ, T ]× E.

The distance dist(A,B) between two nonempty sets A and B of a metric space
means the number inf {ρ(a, b) : a ∈ A, b ∈ B}.

Proof of Lemma 1. We fix λ ∈ [0, 1] and the solution uλ of (Pλ). The
graph of uλ is a compact subset of [τ, T ]×E and f is locally Lipschitz. Hence,
there exist δ > 0, L > 0 and a neighbourhood U in [τ, T ] × E of graph(uλ)
such that

U =
{
(t, x) ∈ [τ, T ]× E : dist

(
{(t, x)} , graph(uλ)

)
< 2δ

}
and such that the function f satisfies

(5.1) ‖f(t, x)− f(t, y)‖ ≤ L ‖x− y‖ , (t, x), (t, y) ∈ U.

We show that the mapping Λ is continuous at λ. For this let ε > 0 and such
that ε < δ. Note that λ is still fixed.

Let µ ∈ [0, 1] be such that |λ− µ| < 1
(1+C)[eL(T−τ)−1]

Lε and let uµ denote

the solution of (Pµ). Then graph(uµ) ⊆ U : Assuming the contrary, there
exists

t = min
{
t ∈ [τ, T ] : dist({(t, uµ(t))}, graph(uλ)) = 2δ

}
,

and t > τ due to uλ(τ) = uµ(τ) = a and the continuity of both functions.
Hence (t, uµ(t)) ∈ U for all t ∈ [τ, t).

From (2.7) and (2.8) we obtain for t ∈ (τ, t) the following estimations:

‖uλ(t)− uµ(t)‖′− ≤ ‖u′λ(t)− u′µ(t)‖

= ‖f(t, uλ(t)) + h(t, λ)− f(t, uµ(t))− h(t, µ)‖

≤ L ‖uλ(t)− uµ(t)‖+ C|λ− µ|.

The last inequality holds due to (5.1) and since (t, uλ(t)) ∈ U and (t, uµ(t)) ∈
U for all t ∈ [τ, t).
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Now let η > 0. Using ‖uλ(τ)− uµ(τ)‖ = 0 and the lemma on differential
inequalities, it is easy to see that

‖uλ(t)− uµ(t)‖ ≤ ηeL(t−τ) +
1

L

(
eL(t−τ) − 1

)(
C|λ− µ|+ η

)
for all t ∈ [τ, t). Moreover, for η → 0 we obtain the estimation

‖uλ(t)− uµ(t)‖ ≤ |λ− µ|C
L

(
eL(t−τ) − 1

)
, τ ≤ t < t.

Due to our choice of µ and since uλ and uµ are continuous, the last inequality
leads to the following contradiction:

2δ ≤ ‖uλ(t)− uµ(t)‖

≤ |λ− µ|C
L

(
eL(t−τ) − 1

)
≤ C

1 + C

eL(t−τ) − 1

eL(T−τ) − 1
ε ≤ ε < δ.

Therefore we have (t, uµ(t)) ∈ U for all t ∈ [τ, T ] and we obtain by the same
arguments

‖uλ(t)− uµ(t)‖ ≤ |λ− µ|C
L

(
eL(t−τ) − 1

)
, τ ≤ t ≤ T.

Moreover, we deduce ‖uλ − uµ‖ ≤ ε, which means that the mapping Λ is
continuous at λ. �

Finally we prove that in Schmidt’s theorem the solution set S of the initial-
value problem (P) is a connected subset of the Banach space C([τ, T ], E).

Theorem 2. Let a ∈ E, and let g, k : [τ, T ] × E → E be bounded and
continuous functions, such that g is one-sided Lipschitz with constant L and
k is α-Lipschitz with constant K ≥ 0. Moreover let the initial-value problem

(P) u(τ) = a, u′(t) = g(t, u(t)) + k(t, u(t)), τ ≤ t ≤ T,

be given. Then the set

S = {u | u : [τ, T ] → E, u is a solution of (P) }

is a connected subset of the Banach space C([τ, T ], E).
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Proof. The set S is nonempty due to the theorem of Schmidt and com-
pact due to Theorem 1. Suppose S is not connected. Then there exist non-
empty, disjoint and compact sets S1,S2 ⊆ C([τ, T ], E) such that S = S1 ∪S2.
Hence, β = dist(S1,S2) = min {‖s1 − s2‖ : s1 ∈ S1, s2 ∈ S2} > 0.

The functional Φ: C([τ, T ], E) → R defined by Φ(u) = dist(u,S1) −
dist(u,S2) is continuous. Moreover Φ(u) ≤ −β on S1 and Φ(u) ≥ β on S2.

Now we prove the existence of some u ∈ S such that Φ(u) = 0, which leads
to a contradiction. For this we construct a sequence of approximate solutions
(un) for the initial-value problem (P) with Φ(un) = 0 for all n ∈ N. Then, as
in part 2 of the proof of Schmidt’s theorem, a subsequence of (un) converges
uniformly to a solution u of (P), and hence Φ(u) = 0.

Let ε > 0. We define the function f : [τ, T ]× E → E by

f(t, x) = g(t, x) + k(t, x), τ ≤ t ≤ T ; x ∈ E.

Due to a theorem of Lasota and Yorke [7] there exists a locally Lipschitz
function lε : [τ, T ]× E → E satisfying ‖lε(t, x)− f(t, x)‖ ≤ ε on [τ, T ]× E.

Now let s1 ∈ S1, s2 ∈ S2. For i = 1, 2 we consider the functions

f (i)ε (t, x) = lε(t, x) + f(t, si(t))− lε(t, si(t)), τ ≤ t ≤ T, x ∈ E,

and for λ ∈ [0, 1] the functions

fλ,ε(t, x) = f (1)ε (t, x) + λ ·
[
f (2)ε (t, x)− f (1)ε (t, x)

]
, τ ≤ t ≤ T, x ∈ E.

For each λ ∈ [0, 1] the function fλ,ε is locally Lipschitz and

(5.2) ‖fλ,ε(t, x)− f(t, x)‖ ≤ 2ε, τ ≤ t ≤ T, x ∈ E.

Due to the theorem of Picard-Lindelöf there exist unique solutions uλ,ε of the
initial-value problems

(Pλ,ε) u(τ) = a, u′(t) = fλ,ε(t, u(t)), τ ≤ t ≤ T.

Using Lemma 1 we conclude that the mapping

Λ: [0, 1] → C([τ, T ], E), λ 7→ uλ,ε,

is continuous, and therefore the mapping

Ψ: [0, 1] → R, Ψ(λ) := Φ(uλ,ε) = (Φ ◦ Λ)(λ),
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is continuous as well. Since f0,ε(t, s1(t)) = f
(1)
ε (t, s1(t)) = s′1(t), we obtain

u0,ε = s1 and in the same way u1,ε = s2. That means Ψ(0) ≤ −β and Ψ(1) ≥
β, and there exists λ(ε) ∈ (0, 1) such that uλ(ε),ε satisfies Φ(uλ(ε),ε) = 0.

Now let (εn) be a sequence of positive numbers, and εn → 0. As before,
to each εn we obtain the solution un = uλ(εn),εn of the initial-value problem
(Pλ(εn),εn). We set rn(t) = fλ(εn),εn(t, un(t)) − f(t, un(t)) for all t ∈ [τ, T ].
Then from inequality (5.2) it follows that ‖rn‖ ≤ 2εn. Moreover, un is a solu-
tion of the initial-value problem

un(τ) = a, u′n(t) = f(t, un(t)) + rn(t), τ ≤ t ≤ T,

and satisfies Φ(un) = 0. Hence the sequence (un) is a sequence of approximate
solutions for problem (P) with Φ(un) = 0 for all n ∈ N. �

Examples for disconnected solution sets in less restrictive situations can
be found in [3].
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