REMARK ON INVARIANT STRAIGHT LINES OF SOME AFFINE TRANSFORMATIONS IN R n WITHOUT FIXED POINTS

Erwin Kasparek

Abstract

In this note we show that every affine transformation in the Euclidean space \mathbb{R}^{n}, which has no fixed points and fulfils the inequality $|f(x) f(y)| \leq|x y|$ for any x and y has invariant straight line.

In the book ($[1], \mathrm{p} .203$) is given, without proof, the following theorem: every isometry in the Euclidean space \mathbb{R}^{3} has an invariant straight line. The same statement does not hold in \mathbb{R}^{n}, where $n \geq 2$ and $n \neq 3$.

In this note we generalize mentioned theorem for some affine transformations in $\mathbb{R}^{n}, n \geq 2$.

By $[a b]$ we will designate the straight line passing through the points a and b, and by $|a b|$ the distance between them.

We shall consider the affine transformations in \mathbb{R}^{n} which satisfy the inequality

$$
\begin{equation*}
|f(x) f(y)| \leq|x y| \quad \text { for any } x \text { and } y . \tag{1}
\end{equation*}
$$

They will be called the affine transformations which do not extend distances.
ThEOREM 1. If f is an affine transformation in \mathbb{R}^{n} without fixed points, then there exists a point x_{0} that

$$
\begin{equation*}
\left|x_{0} f\left(x_{0}\right)\right|=\inf \left\{|x f(x)|: x \in \mathbb{R}^{n}\right\} . \tag{2}
\end{equation*}
$$

Proof. Because $f(x) \neq x$ for any x, then the point $\Theta=(0, \ldots, 0)$ does not belong to the range $g\left(\mathbb{R}^{n}\right)$ of the transformation g, where $g(x)=f(x)-x$. We conclude that the set $g\left(\mathbb{R}^{n}\right)$ is a k-dimensional hyperplane in \mathbb{R}^{n}, where $k<n$.

The distance from the point Θ to this hyperplane is equal to the number $\inf \left\{|x f(x)|: x \in \mathbb{R}^{n}\right\}$.

Thus, there exists one point $p \in g\left(\mathbb{R}^{n}\right)$ such that $|\Theta p|=\inf \left\{|x f(x)|: x \in \mathbb{R}^{n}\right\}$. It is evident that there is a point $x_{0} \in \mathbb{R}^{n}$ such that $f\left(x_{0}\right)-x_{0}=p$, whence $\left|x_{0} f\left(x_{0}\right)\right|=|\Theta p|$.

ThEOREM 2. Let f be an affine transformation in \mathbb{R}^{n} without fixed points which does not extend distances. If a and b be an arbitrary points satisfying the equality (2) then the following conditions hold:
(i) the points a, $f(a), f(f(a))$ are different,
(ii) the points a, $f(a), f(f(a))$ are collinear,
(iii) the straight lines $[a f(a)]$ and $[b f(b)]$ are parallel.

Proof.
(i) The affine transformation f has no fixed points then $f(a) \neq a$ and $f(a) \neq$ $f(f(a))$. We shall prove that $a \neq f(f(a))$. Indeed, if $a=f(f(a))$ then the midpoint of the segment $a f(a)$ would be the fixed point of the transformation f. And this contradicts the assumption.
(ii) Let us assume that the points $a, f(a), f(f(a))$ are not collinear. Then the midpoint c of the segment $a f(a)$ satisfies the equality $|c f(c)|=\frac{1}{2}|a f(f(a))|$. In the triangle $a, f(a), f(f(a))$ is true the following inequality:

$$
|c f(c)|<\frac{1}{2}(|a f(a)|+|f(a) f(f(a))|)
$$

Taking into account the inequality (1), i.e. $|f(a) f(f(a))| \leq|a f(a)|$ we obtain the inequality $|c f(c)|<|a f(a)|$, but this contradicts (2).
(iii) It follows from (ii) that the different straight lines $[a f(a)]$ and $[b f(b)]$ remain unchanged under the affine transformation f which has no fixed points, then $[a f(a)]$ and $[b f(b)]$ have no common point. They cannot be the skew lines. Let us assume the contrary. Then there exist a points $d \in[a f(a)]$ and $e \in[b(f(b)]$ such that de is the unique shortest segment between the straight lines $[a f(a)]$ and $[b f(b)]$. Since $f(d) \neq d$ and $f(e) \neq e$ thus $|f(d) f(e)|>|d e|$, but this contradicts (1).

The point p from the proof of the theorem 1 determines a hyperplane H in \mathbb{R}^{n} by the formula:

$$
H=\left\{x \in \mathbb{R}^{n}: f(x)-x=p\right\}
$$

It is easy to see that any point $x \in H$ satisfies the equality $|x f(x)|=|\Theta p|$ and conversely. The hyperplane H remains unchanged under the affine transformation f which does not extend distances and has no fixed points.

Indeed, if $a \in H$ then $|a f(a)| \leq|f(a) f(f(a))|$. On the other hand $|f(a) f(f(a))| \leq|a f(a)|$, because f does not extend distances. We conclude that $|f(a) f(f(a))|=|a f(a)|$, i.e. $f(a) \in H$.

ThEOREM 3. If f is an affine transformation in \mathbb{R}^{n} without fixed points and which does not extend distances then the restriction of the transformation f to the hyperplane H is a translation.

Proof. Let $a \in H$ be an arbitrary point. It follows from (ii) of the theorem 2 that the straight line $[a f(a)]$ is invariant under the transformation f. The restriction of the transformation f to $[a f(a)]$ is translation, because f has no fixed points.

If $\operatorname{dim} H=1$ then the proof is finished.
Let us now assume that $\operatorname{dim} H>1$, then there is $b \in H$ such that $[a f(a)] \neq$ $[b f(b)]$. It follows from (iii) of the theorem 2 that the straight lines $[a f(a)]$ and [$b f(b)$] are parallel.

Let $c \in[a f(a)]$ and $d \in[b f(b)]$ be an arbitrary points such that the straight line $[c d]$ is perpendicular to the both straight lines $[a f(a)]$ and $[b f(b)]$. The points $f(c)$ and $f(d)$ belong to $[a f(a)]$ and $[b f(b)]$ respectively, then $|c d| \leq|f(c) f(d)|$. The transformation f does not extend distances then $|f(c) f(d)| \leq|c d|$. We obtain the equality $|c d|=|f(c) f(d)|$, i.e. the straight line $[f(c) f(d)]$ is perpendicular to the both straight lines $[a f(a)]$ and $[b f(b)]$, and that what had to prove.

Corollary 1. Every affine transformation in the Euclidean space \mathbb{R}^{n} without fixed points which does not extend distances has invariant straight line.

REmARK 1. If the affine transformation f extend distances, i.e.

$$
\bigwedge_{x, y \in \mathbb{R}^{n}}|f(x) f(y)| \geq|x y|
$$

and has no fixed points then the Corollary is true as well, because the inverse transformation f^{-1} of f does not extend distances and has no fixed points.

In the case when an affine transformation f is such that for some points x and y is $|f(x) f(y)|<|x y|$ and for another points u and v is $|u v|<|f(u) f(v)|$, the problem is open.

Reference

[1] Atanasjan L. S., Bazylew W. T., Geometria, čast I, Moskwa 1986.

