Published: 2004-09-30

Superstability of the d'Alembert functional equation in L_p^+ spaces

Maciej J. Przybyła

Abstract

Let (X,+,-,0,Σ,μ) be an abelian complete measurable group with μ(X)>0. Let f: X→ℂ be a function. We will show that if A(f)∈Lp+(X×X,ℂ) where
A{f)(x,y) = f{x+y) + f(x-y) - 2f(x)f(y),   x,yX,
then fLp+(X,ℂ) or there exists exactly one function g: X→ℂ with
g{x+y) + g(x-y) - 2g(x)g(y),   x,yX
such that f is equal to g almost everywhere with respect to the measure μ.
Lp+ denotes the space of all functions for which the upper integral of ∥fp is finite.

Download files

Citation rules

Przybyła, M. J. (2004). Superstability of the d’Alembert functional equation in L_p^+ spaces. Annales Mathematicae Silesianae, 18, 39–47. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14090

Domyślna okładka

Vol. 18 (2004)
Published: 2004-09-30


ISSN: 0860-2107
eISSN: 2391-4238
Ikona DOI 10.1515/amsil

Publisher
University of Silesia Press

This website uses cookies for proper operation, in order to use the portal fully you must accept cookies.