SUPERSTABILITY OF THE D'ALEMBERT FUNCTIONAL EQUATION IN L_{p}^{+}SPACES

Maciej J. Przybyła

Abstract

Let $(X,+,-, 0, \Sigma, \mu)$ be an abelian complete measurable group with $\mu(X)>0$. Let $f: X \longrightarrow \mathbb{C}$ be a function. We will show that if $A(f) \in L_{p}^{+}(X \times X, \mathbb{C})$ where

$$
A(f)(x, y)=f(x+y)+f(x-y)-2 f(x) f(y), \quad x, y \in X,
$$

then $f \in L_{p}^{+}(X, \mathbb{C})$ or there exists exactly one function $g: X \longrightarrow \mathbb{C}$ with

$$
g(x+y)+g(x-y)=2 g(x) g(y), \quad x, y \in X
$$

such that f is equal to g almost everywhere with respect to the measure μ.
L_{p}^{+}denotes the space of all functions for which the upper integral of $\|f\|^{p}$ is finite.

1. Introduction

Definition 1. The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y) \tag{1}
\end{equation*}
$$

is known as the d'Alembert functional equation (see [1], [4]).
A standard symbol \mathbb{C} denotes the set of complex numbers, for a set X a symbol \mathbb{C}^{X} denotes a set of all functions $f: X \longrightarrow \mathbb{C}$.

Definition 2. Let X be an abelian semigroup. The d'Alembert difference operator $A: \mathbb{C}^{X} \longrightarrow \mathbb{C}^{X^{2}}$ is defined by

$$
\begin{equation*}
A(f)(x, y):=f(x+y)+f(x-y)-2 f(x) f(y), \quad x, y \in X \tag{2}
\end{equation*}
$$

Let $f: X \longrightarrow \mathbb{C}$, where X is an abelian semigroup. We will consider the following problem of stability. Let us suppose that $A(f)$ is bounded in a certain sense. What does it imply? In the case of the d'Alembert functional equation the phenomen of
superstability occurs which means that either f is bounded in the same sense as $A(f)$ or f satisfies the d'Alembert functional equation.

Boundness in different senses can be considered. The first result of this type for the d'Alembert functional equation was obtained by Baker in [3] (see also [7]). He has proved the following theorem.

Theorem 1 ([3], [7]). Let $\delta>0$ and G be an abelian group and $f: G \longrightarrow \mathbb{C}$ be a function satisfying the inequality

$$
\forall x, y \in G \quad|A(f)(x, y)| \leq \delta
$$

Then either f is bounded or satisfies the d'Alembert functional equation (1).
In the present paper we will consider the stability in a generalization of L^{p} spaces - we will prove that if $A(f) \in L_{p}^{+}(X \times X, \mathbb{C})$ (p-power of the modulus of $A(f)$ is bounded by an integrable function) then $f \in L_{p}^{+}(X, \mathbb{C})$ or f satisfies the d'Alembert functional equation (1) almost everywhere. In this case we call such stability "almost superstability".

We shall show under some additional assumptions that if $A(f)(x, y)=0$ almost everywhere then there exists exactly one function $g: X \longrightarrow \mathbb{C}$ satisfying the d'Alembert functional equation (1) such that f is equal to g almost everywhere.

For the Cauchy functional equation

$$
f(x+y)=f(x)+f(y)
$$

similar problem has been investigated by Józef Tabor in [8] (see also [4], [6]).
For the equation of quadratic functionals

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

superstability in L_{p}^{+}spaces was considered by Stefan Czerwik and Krzysztof Dłutek in [5] (see also [4]).

2. Preliminaries

Definition 3 ([8], see also [4] and [5]). We say that $(X,+,-, 0, \Sigma, \mu)$ is an abelian complete measurable group, if
(a) $(X,+,-, 0)$ is an abelian group,
(b) (X, Σ, μ) is σ-finite measure space, μ is not identically equal to zero and is complete,
(c) the σ-algebra Σ and the measure μ are invariant with respect to the left translations and μ is invariant under symmetry with respect to zero,
(d) $\nu=\mu \times \mu$ is the completion of the product measure $X \times X$,
(e) the translation $S: X \times X \longrightarrow X \times X$ defined by

$$
\begin{equation*}
S((x, y))=(x, x+y) \tag{3}
\end{equation*}
$$

is measurability preserving, i.e. S and S^{-1} are measurable.
Under the assumptions given above the measure μ is invariant with respect to translations and symmetry with respect to zero.

Definition 4 ([8], see also [4] and [5]). Let (X, μ) be a measure space. A symbol $L(X, \mathbb{R})$ denotes the space of all integrable functions $\varphi: X \longrightarrow \mathbb{R}$.

Moreover, if $f: X \longrightarrow \mathbb{R}$ is nonnegative we define the upper integral of f with respect to μ by

$$
\int_{X}^{+} f d \mu:=\inf \left\{\int_{X} \varphi d \mu \mid \varphi \in L(X, \mathbb{R}), f(x) \leq \varphi(x), x \in X\right\}
$$

or

$$
\int_{X}^{+} f d \mu=+\infty
$$

if the corresponding set is empty.
Let $p>0$. Then we define the space

$$
L_{p}^{+}(X, \mathbb{C}):=\left\{f:\left.X \longrightarrow \mathbb{C}\left|\int_{X}^{+}\right| f\right|^{p} d \mu<+\infty\right\}
$$

Lemma 1 ([8], see also [4]). Let (X, Σ, μ) be a measure space and let $p>0$. If $f, g \in L_{p}^{+}(X, \mathbb{C})$, then $f+g \in L_{p}^{+}(X, \mathbb{C})$.

Definition 5. For any function $f: X \longrightarrow Y$ and $x_{0} \in X$ we define

$$
f_{x_{0}}(x):=f\left(x+x_{0}\right), \quad x \in X
$$

Lemma 2 ([8], see also [4]). Let $(X,+,-, 0, \Sigma, \mu)$ be an abelian measurable group. Let $f \in L_{p}^{+}(X, \mathbb{C})$ and $p>0$. Then

$$
\forall x_{0} \in X \quad f_{x_{0}} \in L_{p}^{+}(X, \mathbb{C})
$$

Lemma 3 ([8], see also [4]). Let (X, Σ, μ) be a measure space and let $p>0$ and $f \in L_{p}^{+}(X \times X, \mathbb{C})$. Then there exists a subset $A \subset X$ such that $\mu(A)=0$ and

$$
f(\cdot, y) \in L_{p}^{+}(X, \mathbb{C}) \quad \text { for } y \in X \backslash A
$$

REMARK 1.1. Obviously, there exists a subset $B \subset X$ such that $\mu(B)=0$ and

$$
f(x, \cdot) \in L_{p}^{+}(X, \mathbb{C}) \quad \text { for } x \in X \backslash B
$$

Lemma 4 ([5]). Let $(X,+,-, 0, \Sigma, \mu)$ be an abelian complete measurable group and let $A \subset X, \mu(A)=0$. If

$$
D=\{(x, y) \in X \times X \mid x \in A \vee y \in A \vee x+y \in A \vee x-y \in A\}
$$

then $\nu(D)=0$.

3. Superstability of the d'Alembert functional equation

ThEOREM 2. Let $(X,+,-, 0, \Sigma, \mu)$ be an abelian complete measurable group and let $f: X \longrightarrow \mathbb{C}$ be a function such that $A(f) \in L_{p}^{+}(X \times X, \mathbb{C})$, for some $p>0$. Then $f \in L_{p}^{+}(X, \mathbb{C})$ or

$$
\begin{equation*}
\forall x, y \in X \quad f(x+y)+f(x-y) \stackrel{\nu}{=} 2 f(x) f(y) \tag{4}
\end{equation*}
$$

Proof. Let us assume that $f \notin L_{p}^{+}(X, \mathbb{C})$, then from the definition it follows that

$$
\int_{X}^{+}|f(x)|^{p} d \mu(x)=+\infty
$$

On account of Lemma 2 there exists a subset $A \subset X$ such that $\mu(A)=0$ and

$$
\forall y \in X \backslash A \quad A(f)(\cdot, y) \in L_{p}^{+}(X, \mathbb{C})
$$

Let $u, v, x \in X$, then we obtain

$$
\begin{aligned}
2 f(x)[A(f)(u, v)]= & 2 f(x)[f(u+v)+f(u-v)-2 f(u) f(v)] \\
= & 2 f(x) f(u+v)+2 f(x) f(u-v)-4 f(x) f(u) f(v) \\
= & {[f((x+u)+v)+f(x+u-v)-2 f(x+u) f(v)] } \\
& -[f(x+(u+v))+f(x-u-v)-2 f(x) f(u+v)] \\
& -[f(x+(u-v))+f(x-u+v)-2 f(x) f(u-v)] \\
& +[f((x-u)+v)+f(x-u-v))-2 f(x-u) f(v)] \\
& +2 f(v)[f(x+u)+f(x-u)-2 f(x) f(u)] \\
= & A(f)(x+u, v)-A(f)(x, u+v)-A(f)(x, u-v) \\
& +A(f)(x-u, v)+2 f(v) A(f)(x, u) \\
= & (A(f)(x, v))_{u}-A(f)(x, u+v)-A(f)(x, u-v) \\
& +(A(f)(x, v))_{-u}+2 f(v) A(f)(x, u) .
\end{aligned}
$$

Consequently, for $u, v, x \in X$ we have

$$
\begin{aligned}
2 f(x)[A(f)(u, v)]= & (A(f)(x, v))_{u}-A(f)(x, u+v)-A(f)(x, u-v) \\
& +(A(f)(x, v))_{-u}+2 f(v) A(f)(x, u) .
\end{aligned}
$$

Take $u, v \in X \backslash A$ such that $u+v \in X \backslash A$ and $u-v \in X \backslash A$. In view of the previous lemmas we see that the right side of the last equality as a function of x belongs to $L_{p}^{+}(X, \mathbb{C})$, which means that

$$
\int_{X}^{+}|2 f(x)[A(f)(u, v)]|^{p} d \mu(x)<+\infty
$$

and in view of the assumption that $f \notin L_{p}^{+}(X, \mathbb{C})$, hence it follows

$$
A(f)(u, v)=0 \quad \text { for } u, v \in X \backslash A, u+v \in X \backslash A, u-v \in X \backslash A
$$

One can rewrite this condition in the form

$$
A(f)(u, v)=0 \quad \text { for }(u, v) \in X \times X \backslash D
$$

where D is as in Lemma 2. Since by this lemma, $\nu(D)=0$ and the proof is complete.

Theorem 3. Let $(X,+,-, 0, \Sigma, \mu)$ be an abelian complete measurable group with $\mu(X)>0$ and let $f: X \longrightarrow \mathbb{C}$ be a function such that

$$
A(f)(x, y) \stackrel{\nu}{=} 0
$$

Then there exists exactly one function $g: X \longrightarrow \mathbb{C}$ with

$$
g(x+y)+g(x-y)=2 g(x) g(y)
$$

such that

$$
f(x) \stackrel{\mu}{=} g(x) \quad \text { for } x \in X
$$

Remark 3.1. A similar result with different assumptions for almost trigonometric functions was proved by I. Adamaszek in her paper [2], but we provide a different proof fixed to L_{p}^{+}spaces.

The proof is very similar to the proof of Theorem 1 from the paper of S. Czerwik and K. Dłutek ([5]) and changes only in a few places, thus we will use their method of the proof here.

Proof of Theorem 3. If $f=0$ almost everywhere then $g=0$ and the theorem holds. Thus let us assume that there exists a subset $A \subset X, \mu(A)>0$ such that $f(x) \neq 0$ for $x \in A$. By assumption, there exists a set $V \subset X \times X$ such that $\nu(V)=0$ and

$$
\forall(x, y) \in X \times X \backslash V \quad f(x+y)+f(x-y)=2 f(x) f(y)
$$

Thus by Fubini's theorem there exist sets $U_{1}, U_{2} \subset X$ such that $\mu\left(U_{1}\right)=$ $\mu\left(U_{2}\right)=0$ and
(a) for every $x \in X \backslash U_{1}$ there exists $K_{x} \subset X$ such that $\mu\left(K_{x}\right)=0$ and for all $y \in X \backslash K_{x}$ we have $A(f)(x, y)=0$;
(b) for every $y \in X \backslash U_{2}$ there exists $L_{y} \subset X$ such that $\mu\left(L_{y}\right)=0$ and for all $x \in X \backslash L_{y}$ we have $A(f)(x, y)=0$.

Let $U:=U_{1} \cup U_{2}$. Then, obviously, $\mu(U)=0$. For any $x \in X$, we define

$$
U_{x}:=U \cup(x-U) \cup(-x+U)
$$

Clearly, $\mu\left(U_{x}\right)=0$, whence $X \backslash U_{x} \neq \emptyset$. Consequently, for every $x \in X$ there exists $w_{x} \in X \backslash U_{x}$, i.e.

$$
w_{x} \notin U, \quad x+w_{x} \notin U, \quad x-w_{x} \notin U,
$$

and $f\left(w_{x}\right) \neq 0$ (it is possible by assumption that $\mu(A)>0$, where A is defined at the beginning of the proof). Let us define the function $g: X \longrightarrow \mathbb{C}$ by the formula

$$
\begin{equation*}
g(x):=\frac{f\left(x+w_{x}\right)+f\left(x-w_{x}\right)}{2 f\left(w_{x}\right)} \tag{5}
\end{equation*}
$$

First we shall show that g does not depend on the choice of $w_{x} \in X \backslash U_{x}$. Take any $x \in X$, then $x+w_{x} \notin U$, and $x-w_{x} \notin U$. Thus by (a) we get

$$
\begin{equation*}
2 f\left(x+w_{x}\right) f(y)=f\left(x+y+w_{x}\right)+f\left(x-y+w_{x}\right) \tag{6}
\end{equation*}
$$

for $y \in X \backslash K_{x+w_{x}}$, and

$$
\begin{equation*}
2 f\left(x-w_{x}\right) f(y)=f\left(x+y-w_{x}\right)+f\left(x-y-w_{x}\right) \tag{7}
\end{equation*}
$$

for $y \in X \backslash K_{x-w_{x}}$.
Analogously, in view of (b) (substituting $y=w_{x}$ and taking x as $x+y$ or $x-y$), we obtain

$$
\begin{equation*}
2 f(x+y) f\left(w_{x}\right)=f\left(x+y+w_{x}\right)+f\left(x+y-w_{x}\right) \tag{8}
\end{equation*}
$$

for $x+y \in X \backslash L_{w_{x}}$, i.e. $y \in X \backslash\left(L_{w_{x}}-x\right)$, and

$$
\begin{equation*}
2 f(x-y) f\left(w_{x}\right)=f\left(x-y+w_{x}\right)+f\left(x-y-w_{x}\right) \tag{9}
\end{equation*}
$$

for $x-y \in X \backslash L_{w_{x}}$, i.e. $y \in X \backslash\left(-L_{w_{x}}+x\right)$.
Let us denote

$$
A_{w_{x}}:=K_{x+w_{x}} \cup K_{x-w_{x}} \cup\left(L_{w_{x}}-x\right) \cup\left(-L_{w_{x}}+x\right)
$$

Then we have $\mu\left(A_{w_{x}}\right)=0$. Adding the equations (6) and (7) and then the equations (8) and (9) side by side we obtain

$$
\begin{aligned}
2 f(y)\left[f\left(x+w_{x}\right)+f\left(x-w_{x}\right)\right]= & f\left(x+y+w_{x}\right)+f\left(x-y+w_{x}\right) \\
& +f\left(x+y-w_{x}\right)+f\left(x-y-w_{x}\right) \\
2 f\left(w_{x}\right)[f(x+y)+f(x-y)]= & f\left(x+y+w_{x}\right)+f\left(x+y-w_{x}\right) \\
& +f\left(x-y+w_{x}\right)+f\left(x-y-w_{x}\right)
\end{aligned}
$$

Comparing sides we get

$$
2 f(y)\left[f\left(x+w_{x}\right)+f\left(x-w_{x}\right)\right]=2 f\left(w_{x}\right)[f(x+y)+f(x-y)]
$$

and taking into account that $f\left(w_{x}\right) \neq 0$ finally we come to the equality

$$
\begin{equation*}
2 f(y) g(x)=f(x+y)+f(x-y) \tag{10}
\end{equation*}
$$

valid for $y \in X \backslash A_{w_{x}}$. We can find $y \in X \backslash A_{w_{x}}$ such that $f(y) \neq 0$ and then

$$
\begin{equation*}
g(x)=\frac{f(x+y)+f(x-y)}{2 f(y)} \tag{11}
\end{equation*}
$$

Consider any two element $w_{x}^{1}, w_{x}^{2} \in X \backslash U_{x}$ such that $f\left(w_{x}^{1}\right) \neq 0$ and $f\left(w_{x}^{2}\right) \neq 0$.
We can find $y \in X \backslash\left(A_{w_{x}^{1}} \cup A_{w_{x}^{2}}\right)$ such that $f(y) \neq 0$. Consequently by (11) we obtain

$$
g_{n}(x)=\frac{f(x+y)+f(x-y)}{2 f(y)}, \quad n=1,2
$$

where $g_{n}, n=1,2$, are defined by (5) for $w_{x}=w_{x}^{n}, n=1,2$. Therefore,

$$
g_{1}(x)=g_{2}(x)=g(x)
$$

which means that g does not depend on the choice of $w_{x} \in X \backslash U_{x}$.
Now we will show that $f=g$ almost everywhere. Indeed, if $x \in X \backslash U$, we can find $w_{x} \in X \backslash\left(U_{x} \cup K_{x}\right)$ such that $f\left(w_{x}\right) \neq 0$ and hence on account of (a), we infer that

$$
2 f(x) f\left(w_{x}\right)=f\left(x+w_{x}\right)+f\left(x-w_{x}\right)
$$

Consequently,

$$
f(x)=\frac{f\left(x+w_{x}\right)+f\left(x-w_{x}\right)}{2 f\left(w_{x}\right)}
$$

i.e. $f(x)=g(x)$ for $X \backslash U$.

We will verify that g satisfies the d'Alembert functional equation (1). Let us notice that $\mu\left(U_{x}\right)=0$ for every $x \in X$. Let $x, y \in X$ be arbitrarily fixed. Thus for $b \in X \backslash U_{y}$ such that $f(b) \neq 0$, on account de Morgan's law, we have

$$
\begin{aligned}
Z:= & {\left[X \backslash U_{x}\right] \cap\left[\left(X \backslash\left(U_{x+y} \cup U_{x-y}\right)\right)-b\right] \cap\left[\left(X \backslash\left(U_{x+y} \cup U_{x-y}\right)\right)+b\right] } \\
& \cap\left[X \backslash L_{b}\right] \cap\left[\left(X \backslash\left(L_{y+b} \cup L_{y-b}\right)\right)-x\right] \cap\left[X \backslash\left(x-\left(L_{y-b} \cup L_{y+b}\right)\right)\right]
\end{aligned}
$$

$$
\neq \emptyset
$$

Hence, for $b \in X \backslash U_{y}$, there exists $a \in Z, f(a) \neq 0$, which by definition of Z and standard properties of algebra of sets, is equivalent to

$$
\begin{array}{rlrl}
a & \in X \backslash U_{x}, & a+b & \in X \backslash\left(U_{x+y} \cup U_{x-y}\right), \\
a-b & \in X \backslash\left(U_{x+y} \cup U_{x-y}\right), & x+a \in X \backslash\left(L_{y+b} \cup L_{y-b}\right), \\
x-a & \in X \backslash\left(L_{y-b} \cup L_{y+b}\right), & a \in X \backslash L_{b}, \\
b & \in X \backslash U, & y+b \in X \backslash U, \\
y-b & \in X \backslash U . & &
\end{array}
$$

Taking into account that the definition of $g(x)$ does not depend on choosing $w_{x} \in$ $X \backslash U_{x}$, by (10) we get

$$
\begin{aligned}
2 f(a) g(x) & =f(x+a)+f(x-a), \\
2 f(b) g(y) & =f(y+b)+f(y-b), \\
2 f(a+b) g(x+y) & =f(x+y+a+b)+f(x+y-a-b), \\
2 f(a-b) g(x+y) & =f(x+y+a-b)+f(x+y-a+b), \\
2 f(a-b) g(x-y) & =f(x-y+a-b)+f(x-y-a+b), \\
2 f(a+b) g(x-y) & =f(x-y+a+b)+f(x-y-a-b) .
\end{aligned}
$$

From the above equalities, we obtain

$$
\begin{aligned}
4 f(a) f(b) g(x) g(y)= & {[f(x+a)+f(x-a)][f(y+b)+f(y-b)] } \\
= & f(x+a) f(y+b)+f(x+a) f(y-b) \\
& +f(x-a) f(y+b)+f(x-a) f(y-b) \\
= & \frac{1}{2}[f(x+y+a+b)+f(x-y+a-b)] \\
& +\frac{1}{2}[f(x+y+a-b)+f(x-y+a+b)] \\
& +\frac{1}{2}[f(x+y-a+b)+f(x-y-a-b)] \\
& +\frac{1}{2}[f(x+y-a-b)+f(x-y-a+b)] \\
= & {[f(a+b)+f(a-b)][g(x+y)+g(x-y)] }
\end{aligned}
$$

thus finally we get $2 g(x) g(y)=g(x+y)+g(x-y)$.
To prove the uniqueness part, assume that we have two functions $g_{n}: X \longrightarrow \mathbb{C}$, $n=1,2$ satisfying the d'Alembert functional equation (1) and μ-equivalent to f. Then $g_{1}(x)=g_{2}(x)$ for all $x \in X \backslash B$ where $\mu(B)=0$. For an arbitrarily fixed $x \in X$ we can find $y \in X \backslash[B \cup(B-x) \cup(x-B)]$ such that $y \notin B, x+y \notin B$, $x-y \notin B$ and $f(y) \neq 0$, whence

$$
g_{1}(x)=\frac{g_{1}(x+y)+g_{1}(x-y)}{2 g_{1}(y)}=\frac{g_{2}(x+y)+g_{2}(x-y)}{2 g_{2}(y)}=g_{2}(x) .
$$

This concludes the proof.
Corollary 1. Let X be an abelian complete measurable group, $\mu(X)>0$ and let $f: X \longrightarrow \mathbb{C}$ be a function such that $f \notin L_{p}^{+}(X, \mathbb{C})$. The following conditions are equivalent:
(i) $\quad A(f) \in L_{p}^{+}(X \times X, \mathbb{C})$ for some $p>0$;
(ii) there exists a function $g: X \longrightarrow \mathbb{C}$ satisfying the d'Alembert functional equation (1) such that $g(x)=f(x)$ almost everywhere.

Proof. The proof follows from the previous theorems.
Remark 3.2. The implication (ii) \Rightarrow (i) is true for any $f: X \longrightarrow \mathbb{C}$ which is obvious.

References

[1] J. Aczél, J. Dhombres, Functional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge 1989.
[2] I. Adamaszek, Almost trigonometric functions, Glasnik Mat. 19 (39) (1984), 83-104.
[3] J.A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.
[4] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, New Jersey-London-Singapore-Hong Kong 2002.
[5] S. Czerwik, K. Dłutek, Superstability of the equation of quadratic functionals in L^{p} spaces, Aequationes Math. 63 (2002), 210-219.
[6] S. Czerwik, K. Dłutek, Pexider difference operator in L^{p} spaces (to appear).
[7] P. Gǎvruta, On the stability of some functional equations. In: Th.M. Rassias and J. Tabor (eds), Stability of Mappings of Hyers-Ulam Type, Hadronic Press, Palm Harbor, Florida 1994, 93-98.
[8] J. Tabor, Stability of the Cauchy type equation in L_{p}-norms, Results Math. 32 (1997), 145158.

Institute of Mathematics
Silesian University of Technology
ul. Kaszubska 23
44-100 Gliwice
Poland
e-mail: maciej-przybyla@bielsko.home.pl

