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STRING STABILITY OF SINGULARLY 
PERTURBED STOCHASTIC SYSTEMS 

L I L I A N A R Y B A R S K A - R U S I N E K 

Abstract. The sufficient conditions of string stability of singularly perturbed, nonli­
near stochastic systems are established. The excitations are assumed to be parametric 
white noise. In this case the objective is to analyze composite systems in their lower 
order subsystems and in terms of their interconnecting structure and the perturbation 
parameter e. An example is given to illustrate the results. 

1. Introduction 

The problem of string stability of interconnected deterministic systems 
was studied earlier for vehicle-following applications , for instance, in [1], [3] 
and recently in [8]. In particular, there have been several unprecise defini­
tions for string stability, for instance, [1]. Recently, the precise definition of 
string stability was given by Swaroop and Hedrick [8]. The string stability 
analysis of nonlinear composite stochastic systems has not been completed 
yet. The sufficient conditions of exponential string stability for a few classes 
of nonlinear interconnected stochastic systems was given by Socha [7]. 

The stability analysis of large-scale stochastic singularly perturbed sys­
tems has been considered in [5] and [6]. 

The aim of this paper is to solve a problem of exponential string stability 
of singularly perturbed, nonlinear stochastic systems. To derive the sufficient 
conditions of exponential mean-square string stability of these systems the 
idea of the exponential stability of singularly, perturbed stochastic systems 
presented in [6] is combined with the concept of string stability of singularly 
perturbed interconnected deterministic systems (see [8]). 
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2. Definitions and some auxiliary facts 

We consider the nonlinear autonomous interconnected stochastic system 
described by Ito equation: 

M 
(1) dx{ = F(xi,xi-\...,xi-r+1)dt+ J]Gm(a; i)da;m, xi(0) = xiO

t 

m = l 

where i G N, t 6 [0, +oo),xt is the state of each subsystems, xl € Rk and we 
take x , - J = 0 for all i ^ j. 

We assume that F : Rk x . . . x R f c -> Rk,Gm : Rk -+ Rk,m = 1,..., M 
r times 

are nonlinear deterministic vector functions F = [ F i , . . . , Ft], = [<?mi,..., 

Gmk] and w m , m = 1,..., M , are independent standard Wiener processes. 
We denote by Cfa the operator associated with (1) 

^ ) ( o = ^ + E ^ * , . * < " 1 . " - . » , - r + l ) ^ 
(2) 

1 fc fc M . 02(-) 

j = l (=1 m = l J ' 

where aGmil (*') = G m j (x ' ) • Gm/(a;'). 
We use the following notations: 

I • I is Euclidean norm; for all p < +oo ||/(0)||p, denotes sup £"[1/̂ (0)1 ]̂ 

and H/'HSo = ||/*(.)HSo d e n o t e s S U P ^ [ l / ' W I I -

To derive stability criteria we recall the following definitions (see [7]). 

DEFINITION 1. The equilibrium x% = 0, i € N of system (1) is p-mean 
string stable if given any £ > 0, there exists a S > 0 such that: 

(3) IW0)||? o<5=^sup||x i(.)||S o< £. 
«€N 

DEFINITION 2. The origin i ' = 0,i C N of system (1) is exponen­
tially string p-stable if it is p-mean string stable and if there exist positive 
constants c,-and a,-, such that 

(4) F[|x''(0|p] < Ci\x0\*exp{-<*i(t - to)} 
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for all i G N . In particular case for p = 1 and p — 2 it is called exponential 
mean and mean-square string stability. 

In the sequel we will use the following lemmas. 

L E M M A 1 [1]. Consider any symmetric matrix S(e) = [«tj(<)]» *> 3=1> 3, 
in which the function S{j : (0, +oo) —>• R satisfy 

s2 (e) 
lim = A 0 , lim s 2 2(«) = +oo, lim = 0 

then lim Ami,, (£(0) = ^o, where A ^ (S) is the minimal eigenvalue of ma­
trix S. 

L E M M A 2 [7]. Let V{ = V^x^t)) > 0 /or all i G N, t > 0, a;'' G and 

oo 

i=i 
oo 

u>Aere /3 0 > 0 and > 0 for all j = 1 ,2 , . . . and A, > £ Vj{t) = 0 /or 

all j ^ 0. 

T/ien given any ( > 0 Mere existe a <$ > 0 sucft Mat 
i m o ) i i & o < ^ s u p i i ń . ) i i L < « -

3. System description 

Let us consider the autonomous, interconnected singularly perturbed 
stochastic system described by Ito equations: 

(5) dx' = / ( x i , 2

, ' , x i - 1 , . . . , x i - r + 1 ) d t + (/1(a:'^'')da;1, x^O) = x i 0 , 

(6) edzf = g{xi,zi)dt + ̂ q2{xi,zi)du;2, zi(0) = zio, 

where i G N, t G R+ is the time, x 1 G fln, ar i - j = 0 for all i ^ j>* G flm and 
€ > 0 is the singular perturbation parameter. 
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We assume that / : RnxRmxRn x ... X Rn -¥ Rn,qt : RnxRm -¥ Rn 

( i—1) times 

and g,q2 : Rn X Rm —>• Rm are nonlinear continuous functions such that 

/(0, . M 0) = g1(0,0) = 0, y(0,0) = c2(0,0) = 0 

and w 1 , u2 are independent standard Wiener processes. 
For convenience, we assume that the initial conditions x'° £ Rn, 

zio e ftm^ j c N are deterministic. 
We introduce the following assumptions. 
A S S U M P T I O N 1. The equation g(x',z*) = 0 has a unique solution z* = 

/*(x*), where h is continuously twice differentiable, h(0) = 0 and a positive 
constant M exists such that for all x'. 6 Rn and j = 1,..., n, k = 1,..., m, 
12^1 < A # . 

This assumption defines the complete reduced-order system by setting 
z' = h(xl) in (5) as follows 

(7) dxi = / ( x \ h{x'), x{~\ ..., x ' - r + 1 ) d t + qi{x\ hix^du1. 

We introduce a new variable 

(8) y' = - /*(*') 

called the boundary-layer state. 
In the new coordinates the full-order interconnected system is 

(9) dx< = F{x\y\X1"1,...,xi-r+1)dt + Q u ( x ' , y * ' ) ^ 1 , x'(0) = xi0, 

(10) €dy«" = G(**, y\ x ' - 1 , . . . , x ' - r + 1 ) d t + Q 2i(x«, y'Jdu,1 +Qn{x\ y{)dw\ 

y'(0) = z*(x*°) - /t(x*°), where j - t h and Z-th components of F , G , Q u i Q 2 i 
and Q22, for j = 1,..., n, / = 1,..., m, have the form 

Fj(x% y', x ' - 1 , . . . , z*-*1) = /,•(*«", y< + /*(x«), x ' " 1 , . . . , x ^ 1 ) , 

Qiu(* , ' ,y') = 9n(*,".y< + M*'')). 

= *i(x', y«' + h(x*)) - € J/1' + *(*'). * ' " ł . • • •.. * ' ~ r + 1 ) 
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Qaai(*', »*) = y' + "(**'))• 
System (9), (10) is treated as an interconnection of isolated subsystems de­
scribed by 

(11) dx* = F{x\ y\ 0,..0)dt + Q u ( x \ y'jrfw1, 

(12) edy* = G(x\y\0,,..,0)dt + Q21(x\yi)du1 + Q22(x\yi)du2, 

Intuitively, the origin of the perturbed interconnected stochastic system will 
be mean string stable if the origin of every perturbed subsystem (11), (12) 
is stable and the origin of the "reduced" interconnected system (7) is mean 
string stable. 

This observation leads us to the following assumptions. 

A S S U M P T I O N 2. There exists a positive definite function V* = V(x') , 
i G N continuously twice differentiate with respect to x' and there exist 
positive constants 71, y2, a i , a2, «3 , a\j, j = 1,..., r, such that the following 
inequalities are satisfied: 

7 l | x f ^ V{z<) < 7al*T, «'|2 

3=2 

dV*\ _ , ... I d2V* 
dx) dx)dx\ 

< « 3 , 3,k = i e N . 

These conditions imply the. mean string stability of reduced-order systems 
(see [7]). 

A S S U M P T I O N 3. There exist a positive definite function Wi = W(x\ y'), 
t € N continuously twice differentiate with respect to x ł , y' and there 
exist positive constants łfr,. t' = 1,...,4, Si,s2 and a continuous function 
S3 : (0, +00) —> R+ such that the following inequalities are satisfied: 

n i | y i 2 ^ ^ , y ' K % | y i 2 , 
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dWl 

dy) < m\y% 
dWi 

dx) ^in\y% i = i , . . . , n , ie 

£ ( i i , i 2 ) ^ ( * \ 2/') < *i\*'\2 + S2\zi\\yi\ - «s(Olyf, 

where lim 53(e) = +00. 
€-+0 

4. Main result 

Now we give the sufficient conditions of string stability of the full-order 
system. 

T H E O R E M . Suppose that Assumptions 1-3 hold and additionally the fol­
lowing conditions are satisfied: 

A S S U M P T I O N 4. Functions f, qi are globally Lipschitz in their argu­
ments, i.e. 

\f{x\ z', z ' " 1 , . . . , x ' - r + 1 ) - f(y\ z, y*-\ y ^ * 1 ) ! 

ś W - z\ + J2kf

j\xi^+1 - yi-^l, 

- qi{y\z)\ ^ kll\x* - y'"| + - z\. 

Then there exists a positive constant e* such that for each t € (0, e*) 
the full-order interconnected system (9), (10) is exponentially mean-square 
string stable. 

P R O O F . First we remark that from Assumptions 1 and 4 it follows for 
j, k = 1,..., n, i e N 

( 1 3 ) M*', v* + M ^ k i f c O ^ y + Hx1)) - 9 l i ( x \ /»(^))?ifc(^, M*'))l 

^ * 2 V l ( 2 * ? V l + 2k^M\xl\ + k?\y*\) 

for all x{, yi € Rn. 
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We calculate £*(V(x*)) for the full-order interconnected system (9), 
(10) 

= q 9 , 1 0 ) ( ń = ^ 9 ) ( ^ ) 

j=i j 

j = i fc=i J K 

= E ^ r / i ( a s ' ' f c ( « , ) . * , - 1 . - . * , - r f l ) 
j = i j 

1 n n /)2T/« 

j = i / t= i •> K 

+ E ^ r t / i ( * * ' + *(«'). • • • - * i _ r + 1 ) 
i = i J 

- / ^ x S M x ' ) , * ' - 1 , . . - . , ^ 1 ) ] 
1 n n / ) 2 V « 

+ 5 E E (*'. +*(*•)) - ° w («'.*(*•))]. 
j = l fc=l J fc 

where aqijk = • qik. 
From Assumptions 2, 4 and (13) we find 

+ la3n\k?)>\yi\> + ^ o l i | x « ^ + 1 | a . 

Defining s'12 and s 2 2 by 

s'12 := na 2 /9i + n 2 ^ 1 ^ ? 1 + * 2

l M ) , 

s 2 2 : = ^ « 3 « 2 ( ^ 2

1 ) 2 , 

we obtain 

r 

j = 2 

4 - Annates... 
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We calculate C*W(x\ y*) for the full-order system (9), (10) 

fc=i y * 
i " . , i ™™d*w< . 

+ 5 ? £ § ^KT 9 " 1 " ( x ' y } + 5 ? £ £ a i W 9 - ( * ' y } 

+ E ». +1E E <*'• y') 
fc=i ^ *=i i=i axk°xi 
1 " ™ # 2 j y i . . 

+ 7EEax]a y I^" < 3 2 1 ' f c ( x ' ' J / , ) 

i = i fc=i ' k 

= ( ^ ) 

dW 
dx\ 

From Assumptions 1, 3 and 4 we find 

1 
E i S " y', ^ _ r + 1) " Gk(x\ y', 0,.., 0)) 

*=i a x fc 

J=2 

+ nih|y«| j^ib/|* ,- i + ł|. 
i = 2 

Using the inequality xy ^ x ^ , the above equation results in 

^ 9 , i o ) ( ^ ' ) ^ * i l * i 2 + - («.(«) - / ? E > / ) | y i 3 

(15) 

i = 2 

where 0 := "»"My+™>«. 
Let us consider a function described by: 

V = L(xS y«) = | [ V (*'") + fcrrV, y*')], 
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where 

ax 7i - 72 E 1 
(16) * = min }. 

From Assumptions 2 and 3 we have 

( 1 7 ) 7 i l * f + W l 2 ^ Li ^ Tak ' r + ^ l y f ^ 
2 2 

We calculate £ ( y i 0 ) L * = ^ ( 9 , 1 0 ) ^ + *£(9,io) 
Taking into account (14), (15), we obtain 

(18) £ (* 9,io)(^) 

Ś -

+ ^ A I J + T ^ / | , ' - W | ' . 

i - 2 

Finally, we have 

i = 2 ^ 

where A ^ n is the minimal eigenvalue of matrix N = [ny], i , j = 1,2 and 

a i A; 

s'12 + ks2 

n n = T " 2 S l ' 

n 1 2 = n 2 i = - -

* M € ) - / 3 E * / ) - * J 2 
- J=2 

n 2 2 = 2 

Clearly from Lemma 1 and (16), we have 

(19) l i m A ? u n ( c ) = ^ - | a 1 > 0. 

4 * 
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From (16), (17) we obtain 

(20) Ł | , i | . < t , , i l r t < 2 f l f Ł t J » I i . 

Taking into account (20), inequality (18) results in 

72 j=2 7 1 

We define a continuous function //(«) as follows 

»(0 = l -Amin (e) - ± 5>u + kfikf). 
72 7 i ~ ^ 

From (16), (19) we obtain 

l i m H { e ) = ^ iz i f l _ l f a i i _ ijfc/j W 

72 7 i £ 2
/ \ j 2 7 i ^ J y 

There exists e* such that for all € € (0>€*)j #( f) > 0- From Lemma 2 we 
obtain that the interconnection of singularly perturbed stochastic system is 
mean-square string stable. Using similar arguments as in [7] one can show 
that £[|.L'(£)|] -4 0 exponentially. 

E X A M P L E . We consider the following two-dimensional system: 

r - l 

(21) dxi = (-aix* + a 2 z' + J^c,-a:i"i)<ft + (a3x{ + a 4z i)dw 1, 
3=1 

(22) edz{ = {bxx{ - biz^dt + y/l{bzxi + 64z')<L;2, 

where at-,6j (t' = 1,2,3,4) are constant parameters and € is a perturbation 
parameter. We assume 6164 = -6263- Repeating consideration given in Sec­
tion 3, we obtain: 

t>2 0 2 
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and (21), (22) after transformation have the form: 

r - 1 

(23) dx* = (-Aix{ + a2yi + ^CjX*'~-')dt + {Azxi + a 4y i)dw 1, 
3=1 

r - 1 

(24) edy1 ^^{B^-Bi^V^d^-^dtA-^BiX^Biy^d^+y/lb^dJ1, 
3=1 

where 
^ i = a i - r - ' A3 = a3 + —, 

t>2 °2 

bi^ b\a2 _ „ M _ b2 ha2 

5 3 = - £ ( « . + £), B< = - ^ i , d, = i = 1,.., r - 1. o2 b2 o2 o2 

The complete reduced-order system is: 

r - 1 

dx* = ( - A i x ' + ^2 Cjx'-^dt + Azx'du1. 
3=1 

The isolated subsystems are described by: 

dx< = {-Axx{ + a2y{)dt + {Azxi + my^du1, 

cdy* = e(Bix{ - B2y{)dt + e(B3x{ + B^du1 + y/eb^du2. 

We propose the Lyapunov functions V(x*), W(x\ y') in the form: 

l^(x') = (x*)2, W(xi,yi) = {yi)2. 

Then 

£(23,24) < " (2Ai - A2 - X>)(x<) 2 + J > ( * ' - ' ) a 

3=1 3=1 

and 

^ 2 3 , 2 4 ) ^ ' , y') ^ J B 3 2 ( ^ ) 2 + 2 ( B 1 - r B 3 B 4 ) k i | y i - ( 2 5 2 ( f ) - 5 | - )̂ ( |yi) 5 
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Then, the Assumptions 2 and 3 are satisfied if: 

(25) A l _ i A 2 > ^ c . a n d h > | . 
i = i 

Then from the theorem it follows that the full-order interconnected system 
(23), (24) is exponentially mean-square string stable for sufficiently small e 
if the conditions (25) are satisfied. 

5 . Conclusion and final remarks 

In this paper the problem of string stability of singularly perturbed, 
nonlinear stochastic systems has been studied. The sufficient conditions of 
exponential string stability for a class of interconnected stochastic systems 
and their robustness to small singular perturbation were presented. It is also 
possible to derive similarly stability criteria for the following system 

dxi = f(x\ z\ x 1 - 1 , x i " r + 1 ) * + qi(x\ z\ x{-\ a: , '- r + 1)dw 1, 

0̂ (0) - xi0, tdz{ = gix*, zl)dt + yftq2{x\ z^du2, z\0) = zi0. 

The further extensions can. be done for the string systems as well with 
Gaussian excitations as with wideband noises (described by Stratonovich 
equations). 
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