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The Second Debrecen-Katowice Winter Seminar on Functional Equ
ations and Inequalities was held in Hajduszoboszló, Hungary from January 
30 to February 2, 2002, at Hotel Delibab. 20 participants came from the 
University of Debrecen (Hungary) and the Silesian University of Katowice 
(Poland) at 10 from each of both cities. 

Professor Zsolt Pales opened the Seminar and welcomed the participants 
to Hajduszoboszló. 

He used this occasion to introduce the Hungarian participants. Follo
wing this initiative, Professor Roman Ger introduced the Polish participants. 
The scientific talks presented at the Seminar focused on the following topics: 
equations in a single and several variables, iteration theory, equations on al
gebraic structures, conditional equations, differential functional equations, 
Hyers-UIam stability, functional inequalities and mean values. Interesting 
discussions were generated by the talks. 

There were three very profitable Problem Sessions. 
The social program included thermal bath, a well-received organ concert 

performed by Mihaly Bessenyei in the reformed church of Hajduszoboszló, 
and a festive dinner. 

The closing address was given by Professor Roman Ger. His invitation 
to the Third Katowice-Debrecen Winter Seminar on Functional Equations 
and Inequalities in February 2003 in Poland was gratefully accepted. 

Summaries of the talks in alphabetic order of the authors follow in sec
tion 1, problems and remarks in approximate chronological order in section 
2, and the list of participants in the final section. 
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84 

1. Abstracts of talks 

R O M A N B A D O R A : On a generalization of Wilson's functional equation to N 
summands 

Let (G, +) be a locally compact abelian group and let K — {ką = 
ida, ki,..., k^-i} be a finite group of automorphisms of G. Applying the 
method of the Fourier transformation on the space of almost periodic func
tions on G (exploited with much success by L. Szekelyhidi) we find the set 
of bounded, continuous solutions / , g : G —> C of the following version of 
Wilson's functional equation 

N-l 
g(x + kny) = Ng(x)f(y), x, y£G, 

n=0 

where g is an almost periodic function on G. 

L E C H B A R T L O M I E J C Z Y K : Irregular scaling functions with orthogonal trans
lations 

(Joint work with Janusz Morawiec) 

Following [1] we consider the problem of the existence of irregular com
pactly supported solutions <p : R —» R of the functional equation 

m - l 

<p(x) — ^2 (p(mx — ik) 
i=0 

satisfying 
^^ip(x + i) = 1 a.e. 
tez 

and 
(p(x)(p(x + i) = 0 a.e. 

for every i £ Z \ {0}. 

R E F E R E N C E 

[1] J. Cnops, A scaling equation with only non-measurable orthogonal solutions, Proc. Amer. 
Math. Soc. 128 (2000), 1975-1979. 
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M l H A L Y BESSENYEI: On further Hadamard-type inequalities 
(Joint work with Zsolt Pales) 

Let wi,u>2 : [a,b] -> R be given functions. We say, that a function 
/ : [a, b] —• R is (wi,u;2)-convex, if 

/(*) /(») /(*) 
wx(x) wi(y) u>i(z) 
u2(x) w2(t/) w 2(ż) 

>0, 

whenever a < a; < y < z ^ 6. If ui(x) := 1 and w2(x) := x, this notion is 
consistent with the notion of convexity. We investigate the question whether 
there are Hadamard-type inequalities when our function / : [a, b] —• R is 
supposed to be (wi, w2)-convex. 

For example, if i*>i(x) := coshx and u>2(x) := sinhx, we get the inequ
ality 

2sinh / ( £ ± * ) ^ f(x)dx < tanh ( ^ ) (/(a) + /(6)). 

Similarly, choosing wi(x) := cosx and u>2(x) := sin x on [a, b] c] — f, f [, we 
have that 

2 s i n (Mr)7 ( h t ) < jf / ( x ) d a : <tan ( n r ) ( / ( a ) + • 
Z O L T A N B O R O S : Decomposition of real functions with monotonie lower and 
upper strong Q-derivatives 

For a real function / we define the lower and upper strong Q-derivatives 
at the point x and in the direction h by the lower and upper limits of the ratio 
(/(y + rh) — f(y)) /r as r tends to zero through the positive rationals and y 
tends to x. These limits are denoted by D^f{x) and D^/(x) , respectively. 
We say that / has increasing lower and upper strong Q-derivatives if 

-oo < < < D%f(x2) ^ E j / ( * a ) < +oo 

holds for every h > 0 and x i < x 2 . We prove that every function with 
increasing lower and upper strong Q-derivatives can be represented as the 
sum of an additive mapping and a convex function. 
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Z O L T A N D A R Ó C Z Y : Functional equations involving means and their Gauss-
-composition 

Let / C K be a non-void open interval and let Mi : I* —> I be strict 
means on / (i = 1,2,3) with 

M 3 = M i <8> M 2 , 

where <g> denotes the Gauss-composition of means. This talk deals with the 
connection of the functional equations 

(1) / (Mx(x, y)) + f (M2(x, y)) = /(*) + /(y) (*, y € /) 

and 

(2) 2 / (M 3 (x, y)) = /(*) + /(y) (x, y € / ) , 

where / : / —t R is an unknown function. 
The main result is the following: / / M» (i = 1,2,3) are quasi-arithmetic 

means on I, then (1) and (2) are equivalent. 

R O M A N G E R : An interplay between Jensen and Pexider functional equations 
(Joint work with Zygfryd Kominek) 

Let (5, +) and (G, +) be two commutative semigroups. Assuming that 
the latter one is cancellative we deal with functions / : S —^ G satisfying 
the Jensen functional equation written in the form 

2/(* + y) = /(2s) + /(2y). 

It turns out that functions f,g,h: S —• G satisfying the functional equation 
of Pexider 

f(x + y) = g(x) + h(y) 

must necessarily be Jensen. The validity of the converse implication is also 
studied with emphasis placed on a very special Pexider equation 

¥>(x + y) +'S = (f(x) + <p(y), 

where S is a fixed element of G. 
Plainly, the main goal is to express the solutions of both: Jensen and 

Pexider equations in terms of semigroup homomorphisms. 
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A T T I L A G l L A N Y l : Hyers-Ulam stability of the Cauchy functional equation 
on power-symmetric groupoids 

(Joint work with Zsolt Pales) 
In this talk stability theorems are proved for the Cauchy functional 

equation for functions defined on and mapping into power-symmetric gro
upoids. The results presented are strictly connected to those in [3] and they 
also generalize stability theorems obtained in [1], [4], [5], [6], as well as Hyers' 
classical result [2]. 

R E F E R E N C E S 

[1] G.-L. Forti, An existence and stability theorem for a class of functional equations, Sto-
chastica 4 (1980), 23-30. 

[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sri. USA 
27 (1941), 222-224. 

[3] Zs. Pales, Hyers-Ulam stability of the Cauchy functional equation on square-symmetric 
groupoids, Publ. Math. Debrecen 58 (2001), 651-666. 

[4] Zs. Pales, P. Volkmann, R. D. Luce, Hyers-Ulam stability of functional equations with a 
square-symmetric operation, Proc. Natl. Acad. Sci. USA 95 (1998), 12772-12775. 

[5] J. Ratz, On approximately additive mappings, General Inequalities 2 (ed. W. Walter), 
Birkhauser, Basel, 1980, 233-251. 

[6] P. Volkmann, On the stability of the Cauchy equation, Proceedings of the International 
Conference Numbers, Functions, Equations '98 (ed. Zs. Pales), Leaflets in Mathematics, 
1998, 150-151. 

A T T I L A H A Z Y : Reduction of differential functional equations to differential 
equations 

Consider the equation 

(1) Zn(x,y)fln)(g(x,y)) + ... + /„(*,v)/fo(«,y)) = F(x,y), (x,y) e Q, 

where fi C R 2 is an open, connected set and lo, h, • •., ln, g and F are given 
real valued, analytic functions on Q (such that y(J2) is an open set), further
more / is an unknown real function on </(ft). We prove that there exists a 
differential functional equation 

(2) hm(x,y)f{m)(g{x,y)) +... + h0(x,y)f(g(x,y)) = H(x,y), (x,y) 6 J2, 

(where m ^ n) whose (n+l)-times differentiable solutions coincide with that 
of (1) such that ho, hi, ...,hm,H satisfy the following system of equations 

(3) dxg-(hm-dyhi-hi-dyhm) = dyg-{hm-dxhi-hi-dxhm), » = l , . . . , m - l 

• and 

(4) dxg • (hm • dyH - H • dyhm) = dyg • (hm • dxIi - H • dxhm). 
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These properties of h.Q,hi,.. .,hm and H imply that, locally, these functions 
are of the form 

hi(x, y) = hm(x, y)Ki(g(x, y)), i = 0, . . . , m - 1, 

and 
H(x,y) = hm(x,y)K(g{x,y)). 

Hence after simplification and the substitution t = g(x, y), (2) reduces to an 
ordinary differential equation with respect to / , whose order is usually much 
smaller than the order of (1). 

Z O L T A N K A I S E R : The asymptotic stability of the Cauchy equation in p-adic 
fields 

It is proved that if a ^ 1 is a real number and / is a mapping from 
a non-archimedean normed space {X, || | |i) over the p-adic field Q p to a 
non-archimedean Banach space (V, || H2) over Q p satisfying 

| | /(« + y) - / («) - /(y) | | 2 ^ K max { ||s||?, Hyli? } 

for some fixed K and all x, y £ X, then there exists an additive mapping 
g : X —> Y for which 

\\f{*)-9(*)hśCK\\x\\i 

for all x 6 X, where the coefficient C may depend on a. 

R A F A Ł K A P I C A : Sequences of iterates of random-valued vector functions 
and continuous solutions of a linear functional equation of infinite order 

Given a probability space (Q,A, P), a separable Banach space X , and 
measurable functions L : fi —¥ (0,00), M : Q —• X , we obtain some theorems 
on the existence and on the uniqueness of continuous solutions <p : X -t R 
of the equation 

(p(x)= I <p(L(u)x + M{u))P{du;). 
Jn 

Z Y G F R Y D K O M I N E K : On the continuity of t- Wright-convex functions 

Let t G (0,1) be a fixed number. A function / : (a, b) —> R is called 
t-Wright-convex iff it satisfies the following inequality 

f{tx + (1 - t)y) + /((1 - ty) < /(*) + f(y), *> y € («, 
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We prove that every t-Wright-convex function which is continuous at a point 
is continuous everywhere. 

K A R O L Y L A J K O : One more functional equation in the theory of conditionally 
specified distributions 

Let {X, Y) be an absolutely continuous bivariate random variable with 
support in the positive quadrant. Let us denote the joint, marginal, and 
conditional densities by fx,y , fx , fy » fx\y , fy\x , respectively. 

One can write fx,y in two ways and obtain the relationship 

(1) fx,r(z, y) = fx\y(x, y)fv(y) = fy\x{x, y)fx(z) (x, y € R+). 

Narumi (1923) inquired, for example, about all joint densities whose 
conditional densities satisfy 

fx\y(x,y) = 9i ( / 2* a i y , )> 
(2) \ v y + biy + c i / 

fy\x{x, y) = g2 ( . ? ?*X, ) (s,yeR+), Wx2 + b2x + c2J 

where a\, a2 6 R , &i, b2 , c i , c2 € R+. 
We have, from (1) and (2), the functional equation 

(3) 

9 1 ( *-™ ) My) = g2 fx(x) {x,y € R + ) 
Vvy 2 + hy + ciJ \Vx2+b2x + c2/ 

for functions fx,fy- K+ —• R and gi, g2 : R —• R+. 
The general measurable solutions of (3) are determined here. 

L A S Z L Ó LOSONCZI: Comparison and subhomogeneity of integral means 

If / : / —• R is continuous and strictly monotonie on / then for 
every x,y 6 I,x < y, there is a unique point s €]x,y[ such that f(s) = 
Ix f(u) du/(y ~ x)- Hence 

This number s is called the integral f-mean of x and y and denoted by 
If(x,y). 
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Clearly, (requiring / / t o have the mean property or requiring it to be 
continuous) we have for equal arguments Ij(x,x) = x (x £ /). 

7/ was defined and studied by Elezovic and Pecarić, Differential and 
integral f-means and applications to digamma function, Math. Ineq. Appl. 3 
(2000), 189-196 (we slightly changed their definition). They gave sufficient 
conditions for the comparison of integral means and applied these to obtain 
some other inequalities. 

Our aim is to give necessary and sufficient conditions for the comparison 
of differential and integral means and discuss the subhomogeneity and ho
mogeneity of these means. We also study the general comparison (involving 
three integral means). 

G Y U L A M A K S A : A remark on two variable means 
(Joint work with Zoltan Daróczy) 

In this talk we present the following regularity theorem. 

T H E O R E M . Let J c R be an open interval of positive length, ip : J 
R be a strictly monotonie and continuous function, and f : J -»]0, +oo[. 
Suppose that 

[ ) / ( * )+ / (» ) 2 ; 

holds for all x, y £ J. Then <p and f are infinitely many times differentiate, 
furthermore <p'(x) ^ 0 if x £ J . 

The equality problem of the weighted arithmetic means with weight 
functions, when one of the weight functions is constant, leads to equation 
(1) in the two variable case. 

J A N U S Z M A T K O W S K I : Means and some functional equations 

Under some regularity assumptions we establish all Lagrangean mean-type 
mappings for which the arithmetic mean is invariant. 

The same problem for means of the form 

is also considered. 
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ZsOLT P A L E S : A regularity theorem for composite functional equations 

We deal with regularity properties of functions / and g satisfying a 
functional inequality of the following type 

\f{a(x, y)) - f(a(x, z))\ ^ \g(b{x, y)) - g{b(x, z))\, (x, y), (x, z) £ D, 

where the real valued functions a and b defined on an open set D C R 2 

enjoy certain sufficiently strong regularity properties. One of the main results 
states that if g is pointwise Lipschitz on a dense subset of b(D) (for instance 
if g is differentiable on a dense subset) then / is locally Lipschitz on a(D). 
Another result states that if / admits a strict inverse pointwise Lipschitz 
condition on a dense subset of a(D) (for instance, if / is differentiable on 
a dense subset with nonzero derivative), then g is locally invertible with a 
locally Lipschitz inverse. 

The results so obtained have applications in the regularity theory of 
composite functional equations, see, for instance, [1], [2]. 

REFERENCES 

[1] J. Aczel, Gy. Maksa, and Zs. Pales, Solution to a functional equation arising from different 
ways of measuring utility, J. Math. Anal. Appl. 233 (1999), 740-748. 

[2] Z. Daróczy and Zs. Pales, Gauss-composition of means and the solution of the Matko-
wski-Suto problem, Publ. Math. Debrecen, 61 (2002), 157-218. 

IWONA PAWLIKOWSKA: A method used in characterizing polynomial func
tions 

Let X, Y be two linear spaces over a field K c R and let A' be a convex 
balanced set with 0 € algintK. Fix N, M £ N U {0} and o, 6 e Q, i / 0. 
We denote by / = {(«,/?) £ Q x Q : |a| + \/3\ ^ 1} and /+ = {(<*,/?) £ 
1:0^0}. Assume that Io,..., IM are finite subsets of I+. We prove the 
following lemma: if functions <pi : K —y SAł(X;Y), i £ {0, . . . , iV} and 
^jia,/}) '• K —»• SAj(X; Y), (a, (3) £ Ij, j e {0, . . . , M} satisfy the equation 

N M 

Yl tPi{x){(ax + by)') = ^2 ^i,{c>Max + ^ ) ( ( a a ; + W) 
i=0 t=0 (a,/3)e/i 

for every x, y € A', then there exists a p £ N such that <pN is a local 
polynomial function of order at most equal to 

M / M \ 

^ard Mj/fc - 1 
t=0 \k=i ) 
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on ^K. This outcome in case of N = 0 is an extension of a theorem of 
Z. Daróczy and Gy. Maksa from [1]. 

We also generalize some results of W. H. Wilson [4], L. Szekelyhidi [3] 
and M . Sablik [2]. We use this lemma to solve functional equations charac
terizing polynomial functions. 

R E F E R E N C E S 

[1] Z. Daróczy and Gy. Maksa, Functional equations on convex sets, Acta Math. Hungarica 
68 (3) (1995), 187-195. 

[2] M. Sablik, Taylor's theorem and functional equations, Aequationes Math. 60 (2000), 
258-267. 

[3] L. Szekelyhidi, Convolution type functional equations on topological Abelian groups, World 
Scientific, Singapore-New Jersey-London-Hong Kong, 1991. 

[4] W. H. Wilson, On a Certain General Class of Functional Equations, Amer. J. Math. 40 
(1918), 263-282. 

T O M A S Z P O W I E R Z A : On the smallest set-valued iterative roots of bijections 

We deal with the notion of the set-valued iterative root. We sketch the 
construction of a certain class of such roots. Necessary conditions of the 
existence of the smallest set-valued iterative root of a given bijection are 
also given. 

M A C I E J S A B L I K : A functional equation stemming from a variant of Flett's 
Mean Value Theorem 

(Joint work with Thomas Riedel) 

Thomas Riedel presented at the 8th ICFEI in Zlockie, Poland, Septem
ber 2001, the following variant of Flett's Mean Value Theorem: 

T H E O R E M . Let f be differentiate on [a,b], then there is a point c in 
(a, 6) such that 

_ > _ ( m - / W - / W J i f/.w- M-m\. rm-/'(-), 
c - a \ c-a / c - o \ w c-b ) b-a 

A question arises as natural as the analogous one asked in the case 
of Lagrange M V T : which are the functions satisfying equality in Riedel's 
theorem with c = for all a, 6 € R ? This leads, after a pexiderization 
procedure, to the following functional equation 

(1) - 8 / ( ^ ± * ) + 4/(a) + 4 f(b) = (g(b) - g(a)) (6 - a). 

Our task in the present talk is to solve (1) completely with no regularity 
assumption on / or g. 
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T O M A S Z SZOSTOK: A generalization of the sine function and a characteri
zation of inner product spaces 

The function 
s ( x v ) - i n f H ' + ^ l l 

is considered. This function was originally used to provide unconditional 
equations in place of orthogonal equations in the sense of Birkhoff-James. 
Further properties of the function s are determined. Since in an Euclidean 
space the value s(x, y) is equal to the absolute value of the sinus of the 
angle between vectors x and y, s may be viewed as a generalization of sinus. 
Moreover, we deal with another generalization of the sine function which, in 
particular, leads to a new characterization of inner product spaces. 

2. Problems and Remarks 

1. Remark (a generalization of a quasi-arithmetic mean). Let / C R be an 
interval. If / , g : J —» R are continuous, both increasing or both decreasing, 
and / + g is strictly monotonie, then the function M / > a : I2 —>• R given by 

M/,g(x,y) := (/ + g)-1 (f(x) + g(y)), x,yel, 

is a mean; if, moreover, / and g are strictly monotonie, then M/tg is a strict 
mean. 

Note that 
1) if g = / then Mfi9 is a quasi-arithmetic mean; 
2) if <p : / —• R is continuous, strictly monotonie, and p € (0,1) is fixed, 

then, setting / :=p<fi, g := (1 — p)<p gives 

M/,g(xi y) := f ' 1 {P<P(X) + (i - ?My))» x,yei 

(thus Mf<g is a generalization of the weighted quasi-arithmetic means). 
Without any regularity assumptions one can 

a) characterize the functions f,g,F,G : / -> R such that MF,G — M/,G; 
b) determine all / and g for which M / ) 3 is homogeneous; 
c) determine all / and g for which M / i 3 is translative. 

J . M A T K O W S K I 

2. Remark of Problem. As it was discussed in the talk of Z. Daróczy, the 
functional equations 

(l) / (p» + ( l - p ) y ) + / ( ( i - p ) * + py) = /(*) + /(y) (* ,y€J ) 
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and 

(2) ,(Lti).M±M ( . „ 6 / ) 

may and also may not be equivalent to each other, depending on the value 
of the parameter p €]0,1[ (where / is an open real interval and the unknown 
function / maps / to R) . The reason is that the general solutions of (2) are 
of the form 

f(x) = Ao + Ax(x) (*€/), 

where Ao is an arbitrary constant and Ai : R —»• R is an arbitrary additive 
function, while, by a result of K. Lajkó, the general solutions of (1) are of 
the form 

f(x) = A0 + A1(x) + A2{x,x) ( x € / ) , 

where, in addition, A2 : R x R —• R is a symmetric biadditive function such 
that 

(3) A2(px,(l-p)x) = 0 ( x e R ) . 

Therefore, (1) and (2) are equivalent functional equations if and only if there 
is no non-identically-zero symmetric biadditive function A2 that satisfies (3). 
For instance, if p is rational, then (3) yields that A2(x, x) = 0 for all x, hence 
A2 is identically zero. 

Gy. Maksa tried to find A2 in the form 

A2[x,y) - a(x)y + a(y)x, 

where a : R —r R is an additive function with the homogeneity property 

(4) a(px) = qa(x) (x € R). 

Clearly, then 

A2(px, (1 -p)x) = a(px)(l -p)y + a((l -p)x)px = [q(l -p) + (1 - q)p]a(x)x. 

If A2 (and therefore a) is non identically zero, then (3) holds if and only if 

(5) P + q = 2pq. 

By a basic result of Z. Daróczy, nontrivial additive functions satisfying (4) 
exist if an only if either p and q are transcendental, or p is algebraic and q 
is one of the algebraic conjugates of p. 
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Z. Daróczy observed that if p is transcendental and q = p/(2p — 1), then 
q is also transcendental, therefore there is a nontrivial additive function a 
satisfying (4). On the other hand, (5) holds, thus A2 is a nontrivial symmetric 
biadditive function that satisfies (3). Hence, the functional equations (1) and 
(2) are not equivalent for transcendental p. 

Gy. Maksa observed that if p is a second-order algebraic number whose 
generating polynomial is of the form 

(6) p2 - 2rp + r = 0, 

where r is a rational number, then the algebraic conjugate q of p trivially 
satisfies (5). Therefore, for such algebraic numbers, (1) and (2) are again not 
equivalent to each other. 

My observation was that if p is a second-order algebraic number, then 
a nontrivial A2 satisfying (3) (but not necessarily of the form A(x,y) = 
a(x)y + a(y)x) can exist if and only if the generating polynomial of p is 
exactly of the form (6). Furthermore, I was also able to prove that, for all 
third-order algebraic numbers p, (3) holds if and only if A2 is identically 
zero. 

Therefore, I pose the following problem: Prove or disprove that, for 
all third or higher-order algebraic numbers p, (3) holds if and only if A2 

is identically zero (and hence, then (1) and (2) are equivalent functional 
equations). 

Zs. P A L E S 

3. Problem. Let / C R+ be a non-void open interval and let 

Mx{x,y) := , M2{x,y) := yj^~-y (*, y € / ) . 

Mi and M2 are strict means on J. It is known (Carlson, 1971) that 

/ 2 2 

M1®M2(x,y) = y 2 l o g £ i f x + y-

We consider the functional equations 

w / 1 \i-V-x I + / ( J ^ y . I = / ( * )+ / (» ) (*• ye 7) 

and 

(2) 2 / U / ^ i - T - l =/(*) + /(y) ( * / v ; * , y e / ) . 
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The implication (1) (2)'is open. 
R E M A R K . If / : / —> R is a continuous solution of (1), then there exists 

a real number c such that /(x) = c for all x € / . My conjecture is the 
following: (1) has only constant solutions, therefore (1) (2), i.e., (1) 

4. Remark (in connection with the talk of Zoltan Daróczy). Assume that 
g : (0, oo) —T R satisfies the equation 

(1) g{x{x + y))+g(y{x + y)) = g(2x*) + g{2y2), x,yG(0,oo). 
As we know, any continuous solution of (1) is constant. Zsolt Pales remar
ked that with the aid of A. Jarai's method one can show that any Lebes-
gue measurable solution of (1) is continuous and hence constant. But even 
non-measurable real functions on (0, oo) admit the existence of finite limits 
at 0 and oo. Therefore, the following statement provides an additional in
formation on the behaviour of solutions of (1). 

T H E O R E M . Let g : (0, oo) —t R be a solution to (1) such that either 
(i) d := lim t-+<x> g[t) exists and d G R 

or 
(ii) the limits c := lim t->o g(t) ond d := lim t-*<x> g(t) do exist and c G R . 
Then g is constant. 

P R O O F . Assuming (i) fix arbitrarily an x G (0, oo) and pass to the limit 
as y —r oo in (1) getting 

Due to the finiteness of d and the unrestricted choice of x we infer that g is 
constant, as claimed. 

Assuming (ii) observe first that equation (1) may equivalently be written 
in the form 

(2). 

Z. D A R Ó C Z Y 

d + d = g(2x2) + d. 
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valid for all s,t £ (0, oo) and all n G N . 
Fix arbitrarily an s G (0, oo) and a G (0,1). Setting here t = as we get 

where 
n- l 

Vn(a):= n ( l + a 2*), n G N . 
Plainly, this product converges to a number from [l,oo), whence, passing to 
the limit as n —r oo in (3), we obtain 

g(s) + g(as) = d+c, 

showing that d has to be finite, i.e. that (i) is satisfied. Thus the proof has 
been completed. 

R. G E R 

5. Remark (to Matkowski's 1. Remark). In his remark, J . Matkowski in
troduced the following class of two variable means 

Mj,a(x + y) := (/ + g)-1 (/(*) + g(y)) (x, y G / ) , 

where / is a real interval and / , g are strictly increasing real valued continu
ous functions on / . Matkowski also announced the solution of the equality 
and homogeneity problem. In the following result, assuming differentiability 
conditions, we give necessary and sufficient conditions for the comparison 
problem of such means. 

T H E O R E M . Let f,g,F,G:I-tRbe twice continuously differentiable 
functions with everywhere positive derivatives. Then the comparison inequ
ality 

(1) Mftg(x,y)śMFiG(x,y) 

holds for all x,y G / if and only if 

w V s' 

and this function is nondecreasing on I. 

7 - Annates... 
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P R O O F . Necessity. Let u be an arbitrarily fixed point in / . Consider the 
function <£ defined by 

*(x,y) = M F ) G ( x , y ) - Mf,g(x,y) (x,y G I). 

By (1), we have that $ is nonnegative and also u) = 0. In other words, 
<i> has a minimum at the point (u,u). Therefore, 

(3) = 0, d?«t>(u, u) > 0. 

The first equality yields that 

**(") f'(u) 
F'(u) + G'{u) f'(v) + g'(u) ' 

which simplifies to (2). The second relation of (3) results that 

F"{u){F'(u) + G'(u))2 - F'2(u)(F"(u) + G"(u)) 
( F ' ( « ) + G ' ( « ) ) 3 

/"(«)(/'(») + g'(u))2 - f'\u)V"{u) + g"{u)) 
(/'(«) + 9'(u))3 

By (2), we have that 

i - OSl. a - f"F'G' + f'F'G" - f'F"G> 

9 - pi ' 9 - fl2 

Replacing g' and g" by the above expressions and simplifying the last ine
quality, we get 

F"(u)f'(u) - F'(u)f"(u) Ź 0 

for all u, which yields that F'/ / ' is nondecreasing. Thus, the necessity of the 
conditions is proved. 

Sufficiency. Applying Cauchy's Mean Value Theorem, the monotonicity of 
the functions F'f f and G'/g' yields that 

/(*) " /(«) ^ " F W ) (*•u e 7) 

and f 

9{y)-9(u)ź^(G(y)-G(u)) (»,«€/). 
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Let x,y £ I be arbitrary and denote by u the value of Mpta(x,y)- Then we 
have that 

F(u) + G(u) = F(x) + G(y). 

Putting these values into the above inequalities and summing them up, we 
can see that the right hand side is zero due to the choice of u and the identity 
(2). Thus 

f(x) + g{y)^f{u)+g(u), 

i.e., Mfi9(x,y) ^ u — M/r)o(a;, y). The proof is complete. 
The second-order regularity conditions are not needed to express the 

necessary and sufficient conditions of the Theorem, they are only used in the 
proof of the necessity. It seems to be natural to ask if they can be eliminated 
at all. As it turned out after the Seminar, the statement of the Theorem 
can be proved without second-order differentiability assumptions as well. 
Moreover, necessary and sufficient conditions not involving even first-order 
differentiability assumptions can also be obtained and proved. 

Zs. P A L E S 

6. Problem. Let / : R + —t R be a strictly increasing function, c be a 
positive constant, and assume that, for each fixed y > 0, 

x •->• f(x + y) - cf{x) 

is monotonie. 
In the case c = 1 this leads to the Jensen-convexity or Jensen concavity 

of / . Due to the Bernstein-Doetsch theorem, it follows that / is convex 
or concave. Therefore, / is locally Lipschitz, moreover, it is differentiable 
everywhere form the left and from the right, and the two-sided derivative 
exists everywhere but at countably many points. 

The problem is if these differentiability properties can be derived also in 
the case c ̂  1. By the results presented in my talk, it follows that / and its 
inverse are locally Lipschitz functions. / . 

Zs. P A L E S 

7. Problem (concerning Matkowski's talk). Find all triples of Lagrangean 
means (Mi, M 2 , M 3 ) such that M3 = M i <g) Af 2 . Note that the problem 
considered by J . Matkowski (cf. the abstract of his talk in this report) is the 
particular case when M3 is the arithmetic mean. 

Z. D A R Ó C Z Y 

7* 
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8. Problem. A function / : (0, oo) —• (0, oo) is called convex with respect 
to the logarithmic mean 

{ x ~• 'U 
i ; , if x,y € (0,oo), x ^ y , 
In x - In y 
x , if x = y, x G (0, oo) 

if / fulfils the inequality 

(l) / ( . * ~ f ) < . f

f[X\~{{yl s, « , y e ( o , o o ) , x + y. 
\\nx-\nyj In/(x) - In/(y) 

It is known that 
(i) every continuous / fulfilling (1) is quasi-convex; 

(ii) every decreasing / fulfilling (1) is convex in the usual sense; 
(iii) every measurable in the Lebesgue sense / fulfilling (1) is continuous. 

The problems are: 
(A) Does there exist an increasing function / fulfilling (1) which is not 

convex? 
(B) Does there exist a non-measurable function / fulfilling (1)? 

Z . K O M I N E K 

(compiled by Z O L T A N BOROS) 

file:////nx-/nyj
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