1. J. Aczél, Gy. Maksa, Zs. Páles, Solution to a functional equation arising from different ways of measuring utility, J. Math. Anal. Appl. 233 (1999), 740-748.
2. J. Cnops, A scaling equation with only non-measurable orthogonal solutions, Proc. Amer. Math. Soc. 128 (2000), 1975-1979.
3. Z. Daróczy, Gy. Maksa, Functional equations on convex sets, Acta Math. Hungarica 68 (3) (1995), 187-195.
4. Z. Daróczy, Zs. Páles, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen, 61 (2002), 157-218.
5. G.-L. Forti, An existence and stability theorem for a class of functional equations, Stochastica 4 (1980), 23-30.
6. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
7. Zs. Páles, Hyers-Ulam stability of the Cauchy functional equation on square-symmetric groupoids, Publ. Math. Debrecen 58 (2001), 651-666.
8. Zs. Páles, P. Volkmann, R.D. Luce, Hyers-Ulam stability of functional equations with a square-symmetric operation, Proc. Natl. Acad. Sci. USA 95 (1998), 12772-12775.
9. J. Rätz, On approximately additive mappings, General Inequalities 2 (ed. W. Walter), Birkhäuser, Basel, 1980, 233-251.
10. M. Sablik, Taylor's theorem and functional equations, Aequationes Math. 60 (2000), 258-267.
11. L. Székelyhidi, Convolution type functional equations on topological Abelian groups, World Scientific, Singapore-New Jersey-London-Hong Kong, 1991.
12. P. Volkmann, On the stability of the Cauchy equation, Proceedings of the International Conference Numbers, Functions, Equations '98 (ed. Zs. Páles), Leaflets in Mathematics, 1998, 150-151.
13. W.H. Wilson, On a Certain General Class of Functional Equations, Amer. J. Math. 40 (1918), 263-282.
Google Scholar