Finite groups with central squares
Abstract
The present paper studies the finite groups with the following property: the square of each element in the group is central.
References
1. Gorenstein, Finite groups, Harper and Row, New York-Evanston-London 1968.
2. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York 1967.
3. Rédei, Das schiefe Produkt in der Gruppentheorie, Commenta. Math. Helvetici 20 (1947), 225-267.
4. Wiegold, Multiplicators and groups with finite central factor-groups, Mathematische Zeitschrift 89 (1965), 345-347.
2. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York 1967.
3. Rédei, Das schiefe Produkt in der Gruppentheorie, Commenta. Math. Helvetici 20 (1947), 225-267.
4. Wiegold, Multiplicators and groups with finite central factor-groups, Mathematische Zeitschrift 89 (1965), 345-347.
SilberbergG. (2022). Finite groups with central squares. Annales Mathematicae Silesianae, 14, 85-92. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14130
Gheorghe Silberberg
c98sig01@student.ceu.hu
Department of Mathematics, University of Timişoara, Romania Romania
Department of Mathematics, University of Timişoara, Romania Romania
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.
- License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license. - Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. - User Rights
Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor. - Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.