
FINITE GROUPS WITH C E N T R A L SQUARES 

G H E O R G H E SILBERBERG 

Abstract. The present paper studies the finite groups with the following property: 
the square of each element in the group is central. 

1. Introduction 

DEFINITION 1.1. A group G is called C'S-group ("central squares") if 
x2 € Z(G) for every x £ G. 

It is obvious that all the abelian groups are CS-gropus, therefore we 
restrict ourselves to the study of the non-abelian CS-groups. 
Is is also obvious that all the subgroups of a CS-group are CS-groups. 

The converse is not true in general. However, it may hold in some par­
ticular cases, one of them being described by the following statement. 

PROPOSITION 1.1. LetG be a finite non-abelian 2-group whose proper 
subgroups are abelian. Then G is a CS-group. 

P R O O F . If x,y are non-trivial elements of G, then (x2,y) is a proper 
subgroup of G, which implies that [x2,y] — 1. 

The complete description of the groups appearing in Proposition 1.1 
was given by Redei in [3] (see also [2], Aufgabe 22, p. 309): 

PROPOSITION 1.2. The only finite non-abelian 2-groups without proper 
non-abelian subgroups are 

a) D8 - (x, y\x2 = y2 = [x, y]2 - [x, y, x] = [x, y, y] = 1); 
b) Q8 = {x,y\x'l = l,x2 = y2 = [x,y}); 
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c) G'm,„ = (x,y\x2m = y2" = l,[x,y] = x2™ '),m > 2, n > 1, 
(m,n)^(2,l): 

d) Gm,n,i = J/lar2"" = y2" = [x,y]2 = [ar,y,a;] = [x,y,y] = 1), 
m > n > 1, (m, n) ^ (1,1). 

Actually, in Redei's classification the dihedral group D.s appears twice: 
as the group G-2,i and also as the group Gi, i , i . In order to avoid such repe­
titions, we opted for a slightly modified classification. 

In the following sections we will examine the structure of the finite 
CS-groups. We will see that every group of this type is closely related, in 
some sense, to the Redei groups. 

Al the groups in discussion will be finite. The notation is standard and 
follows that of [l] and [2]. 

2. Preliminary results 

First we establish some necessary and/or sufficient conditions for a 
non-abelian group G to be a CS-group. 

PROPOSITION 2.1. A non-abelian group G is a CS-group iff the quotient 
G/Z(G) has exponent 2. 

P R O O F . The condition ".i'2 € Z(G) for every x C G" is equivalent to 
"'each non-trivial element in G/Z(G) has order 2". 

C o R O L L L A R Y 2.1. Every non-abelian CS-group is nilpotent of class 2. 

P R O O F . Having exponent 2, the quotient group GfZ(G) is abelian. 

PROPOSITION 2.2. A nonabelian group G is a CS-group iff G' C Z{G) 
and exp (G') — 2. 

P R O O F . Suppose that G is a CS-group. By Corollary 2.1 we get 
G' C Z{G). If x,y e G, then [x2,y] = 1. But [x,y]2 = [x2,y] (see [2], 
Lemma 3.1.3) hence G' has exponent 2. 

Conversely, suppose that G' C Z(G) and exp (G1) — 2. If x, y £ G, then 
[x2,y] = [x,y]2 = 1. 

The next result clarifies the structure of a non-abelian CS-group. 

T H E O R E M 2.1. A non-abelian group G is a CS-group iff its order is 
even and it can be expressed as a direct product G = P X Q, where P is an 
abelian group of odd order and Q is a non-abelian CS-2-group. 
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P R O O F . If G is a CS-group, then G is nilpotent of class 2 and exp (G1) = 
2. For every prime p dividing the order of G, let Sp be the Sylow p-subgroup 
of G. Then we have 

G= Yl Sp and G'= J] S'p, 
pG7r(G) p£n(G) 

where n(G) denotes the set of the prime divisors of It follows that 
exp (S'p) € {1,2} for every p G x(G). Hence, Sp is abelian for every odd 
p € n(G) and the order of G is even. 
If we put 

p = Yl SP a n d Q = S2, 
P€TT(G),P#2 

then G — P x Q. Moreover, Q is a non-abelian CS-group. 
Conversely, let G — P x Q where P is an abelian group of odd order 

and Q is a non-abelian CS-group. Then 

P = Z(P), exp(Q/Z(Q)) = 2 and exp {G/Z(G)) = exp (Q/Z{Q)) = 2. 

The conclusion folows. 
Consequently, our problem is reduced to the study of the non-abelian 

CS-2-groups. 

3. Non-abelian CS—2—groups 

We have a very simple necessary and sufficient condition for a non-abelian 
2-group to be a CS-group. 

PROPOSITION 3.1. LetG be a non-abelian 2-group. The G is a CS-group 
iff &(G) C Z(G), where $(G) denotes the Frattini subgroup ofG. 

P R O O F . Obvious. 
Let G be a non-abelian group of order 2 n. One says that G is d-generated 

if d is the smallest possible cardinal of a generating set in G. Then = 
2n~d. If we denote by 22 the order of Z(G), a necessary condition for G 
being a CS-group is 

n — d < z < n — 2. 

Hence, the bigger is d, the more "degrees of freedom" has the order of Z(G). 
The extreme case d = n — 1 puts no restrictions on Z(G). 

PROPOSITION 3.2. Every {n — l)-generated non-abelian group of order 
2" (n > 3) is a CS-group. 
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P R O O F . Let G be a (n — l)-generated non-abelian group of order 2™. 
Then |$(G)| = 2. Becouse $(G) <G, it follows that #(G) C Z(G) and so G 
is a CS-group. 

The other extreme case, d = 2, restricts considerably the order and the 
structure of Z(G). Therefore we can easily describe all the CS-2-groups with 
this property. 

PROPOSITION 3.3. Let G be a 2-generated non-abelian 2-group. Then 
G is a CS-group iff every proper subgroup of G is abelian. 

P R O O F . If G is a 2-generated CS-2-group, then |G : $(G)| = 4 and, by 
Proposition 3.1, Z{G) = $(G). 

Let H be a proper subgroup of G. There exists a maximal subgroup M 
if G such that H C M. From M D $(G) = Z(G) and | M : Z(G) | = 2 we 
get | M : Z(M)| < 2, hence M is abelian and so is H. 

Conversely, if x is an element of G and M is a maximal subgroup of 
G containing a;, then M is abelian and therefore 4>(G) C M C CG{X). It 
results 

C P| C g ( * ) = Z(G). 
x6G 

COROLLARY 3.1. The only non-abelian 2-generated CS-2-groups are 
the Redei groups described in Proposition 1.2. 

COROLLARY 3.2. A non-abelian 2-group G is a CS-group iff every 
2-generated subgroup of G is abelian or is a Redei group. 

P R O O F . The statement follows from the remark that G is a CS-2-group 
iff every 2-generated subgroup of G is a CS-group. 

The characterization of the non-abelian CS-2-groups offered by Co­
rollary 3.2 is diffecult to use. However, it seems obvious that the structure 
of a non-abelian CS-2-group must be "close" to the structure of a Redei 
group. This statement will be made clearer in the next section, where we 
will investigate the 3-generated CS-2-groups. 

4. Non-abelian 3-generated CS-2-groups 

Suppose G is a non-abelian 2-group. 

DEFINITION 4.1. A pair of elements (x, y) in G is called minimal non-
-commutative pair if[x,y] ^ 1 and 

\x\ + \y\= min + 
z,t£G,[z,t}^l 
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DEFINITION 4.2. An element x in G is called rational if every conjugate 
of x in G is a power of x. 

DEFINITION 4.3. The group G is called 
• rational if it contains a minimal non-commutative pair of rational ele­

ments; 
• non-rational if each minimal non-commutative pair in G contains only 

non-rational elements; 
• semi-rational in all other cases. 

When the center of G has index 4, one can provide an alternative defi­
nition of the rational elements. 

PROPOSITION 4.1. Let G be a non-abelian 2-group such that 
\G:Z(G)\ = A. Then 
a) \G'\ =2 andG' C Z{G). 
b) A non-central element x 6 G is rational if and only if (x) D G'. 
c) Every non-central element of order 2 in G is non-rational. 

P R O O F . The first part follows from a well-known result of Wiegold 
(see [4]). 

Statement b) is straightforward if we observe that xG = x • G', where 
xG denotes the conjugacy class of x in G. 

c) Let x be a non-central rational element of order 2 in G. Then (x) D G' 
becomes an equality, which leads to the contradiction x € Z{G). 

Let us classify all the Redei 2-groups according to their "degree of 
rationality". 

PROPOSITION 4.2. a) D8 is non-rational. 
b) Qg is the only rational Redei group. 
c) Gm,n is semi-rational for every m > 2, n > 1, (m, n) ^ (2,1). 
d) Gm,n,i is non-rational for every m > n > 1, (m, n) ^ (1,1). 

P R O O F , a) Every minimal non-commutative pair in Ds contains only 
elements of order 2, which are non-rational. 

b) Each non-central element in Qs is rational, hence itself is rational. 
Conversely, suppose that G is a rational Redei 2-group and let (x, y) be a 
minimal non-commutative pair in G, both x and y being rational. Denote 
by 2 m the order of x and by 2" the order of y. Then by Proposition 4.1, 
we have that x'2™ = y2" = [x,y] is the only element of order 2 in G. 
Therefore G is either cyclic, or equternionic, the only possibility in our case 
being G = QS. 

c) Let m > 2, n > 1, (m, n) ^ (2,1), 

rym r,n O m — 1 

G = {x,y\x~ =y- =l,[x,y] = x' ). 
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Then (x,y) is a minimal non-commutative pair, x is rational and y is 
non-rational. By b), it follows that G is a semi-rational group, 

d) Let m > n > 1, (m, n) ^ (1,1), 

G = (x, y\x2™ = y2" = [a:, y]2 = [x, y, x] - [x, y, y] = 1). 

One can check easily that [x, y] cannot be a square in G. Therefore all the 
non-central elements of G are non-rational. 

We can now tackle the case of the non-abelian 3-generated CS-2-groups. 
Let G be such a group. Then \G : &(G)\ = 8 and, by Proposition 3.1, 
${G) C Z(G). There are two possibilities: 

. |Z(G):*(G) | = 2: 
• Z(G) = $(G). 

We will study exhaustively only the first case, which implies \G : Z(G) \ = 4. 

T H E O R E M 4.1. Let G be a non-abelian 3-generated CS-2-group such 
that Z{G) / $ ( G ) . 

a) If G is rational, then G = H x A' , where H is a rational Redei 
2-group and K is a non-trivial cyclic 2-group. 

b) If G is semi-rational, then G = H x A", where H is a semi-rational 
Redei 2-group and K is a non-trivial cyclic 2-group. 

c) If G is non-rational, then G is isomorhic either to H x A", or to 
HYK, where H is a non-rational Redei 2-group and K is a non-trivial 
cyclic 2-group. In the last case, the order of K is at least Ą and H YK 
denotes the central product of H and K where H' is identified with the unique 
subgroup of order 2 in K. 

P R O O F . Let [x,y) be a minimal non-commutative pair in G and let 
z be an element of minimal order in Z{G) \ $(G). Denote by 2m,2",2 p 

respectively the orders of x,y, z by H the subgroup generated in G by x 
and y, and by A' the subgroup generated in G by z. Then H and A* are 
normal subgroups of G, becouse H contains G' and K is contained in Z(G). 
Moreover, H is a Redei 2-group and 

G = (x, y, Z(G)) - {x, y, z, $(G)> = (x, y,z) = H- K. 

a) We may assume that x and y are rational. Then H is a rational group 
and x2"1 = y2" = [x,y] is the only element of order 2 in Z(H). 

Suppose H n K 1. Then necessarily z2" = x2™ . If m > p, then 
x2"1 P • z would be an be an element of order less that 2P in Z(G) \ <&(G). 
If m < p, then (x - z2" ™, y) would* be a non-commutative pair in G with 
\x • z2" m\ + \y\ < 2 m + 2n. Either way we get a contradiction. Therefore 
H n A" = 1 and hence G^Hx A' . 
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b) We may assume that x is rational and y is non-rational. Then H is 
a semi-rational group and x2*" — [x, y] ^ y2" . 

Suppose Hf)K ^ 1. Then z2" 1 must coincide with an element of order 
2 in Z(H), these elements being x2 = [x, y], y2 ,x2 • y2 (or only 
x- if n = 1). 
The equalities z2P 1 = x2™ \ z2F = y2' ' can be excluded as in the pre­
vious case. 

o m - l 2 N _ 1 / ł " - " \2" _ 1 J / 2 M _ 1 \ • • • i 

If m > n, then a: -y = (x -y) and (x,x -y) is a minimal 
non-commutative pair. 
If m < n, then x" -y = (x-y )" and (x-y , y) is a minimal 
non-commutative pair. 
If m = n > 3, then x2 • y2 = (x • y)2 and (x, x • y) is a minimal 
non-commutative pair. All the last three cases are leading to contradictions. 
Finally, if m = n = 2 the equality z2" = x2-y2 implies (x-y-z2" )2 = [x, y], 
hence (x,x • y • z2" *) is a minimal non-commutative pair in G containing 
two rational elements, in contradiction with the hypothesis. 

Consequently, H fl K = 1 and G = HxK. 
c) H, x and y are non-rational and the only elements of order 2 in Z(H) 

Ttl — 1 .-yTl — 1 tym — ł <y7l— 1 _ - m — 1 - - nil — 1 - - ryTTl — 1 nfl — 1 

area;- , y ,ar -yJ ,[.x,y],a;- •[a-Nyĵ ^ • [x, y], x- -y' 
[x,y] (or less elements). 
Suppose first that H fl K = 1. Then G = Hx K. 
Suppose that Hf)K ^ 1. Then z2" must coincide with one of the elements 
above. We know already that z2" cannot coincide with either of the first 
three elements in the list. 

If z2" = [x,y], then H fl K D H'. The inclusion cannot be strict, 
because it would follow that [x,y] would be a square in the non-rational 
Redei 2-group H and this is not possible according to the proof of Proposi­
tion 4.2 d). It results that H D K = H' and then G = HYK. 

Assume z2* = ar™ • [x, y]. If m < p, then (x • z2P "*, y) is a minimal 
non-commutative pair in G and x • z2" is rational, a contradiction. If 
m > p, then we can replace z by z' = x2™ P • z and we will arrive to the 
already discussed case {z')2V = [.r,y]. 

The same argument applies if z2" 1 = y2" 1 • [x, y] or if z2" 1 = x2™ 1 • 
y2" • [x,y] and x2™ • y2" is a power of a component of a minimal 
non-commutative pair. The proof of b) shows that the letter is actually 
the case if m ^ n or if m = n > 3. It remains only m = n = 2 and 
z2 — x2 • y2 • [x, y], but then (x, x • y • z2" ") is a non-commutative pair 
with |a-| + )x - y- z2" | = 4 + 2 < |x| + |y|, which contradicts the hypothesis. 

In conclusion, the assumption H fl K ^ 1 leads to H fl A' = H' and to 
G ^ HYK. 
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A complete list of the non-abelian 3-generated CS-'2-groups G with 
Z(G) ^ can be presented. 

T H E O R E M 4.2. Let G be a non-abelian 3-generated CS-2-group such 
that Z(G) ^ Then G is isomorphic to one of the following groups: 

a) x Z2P {p > 1) if G is rational; 
b) G m , n x Z 2 P {m > 2, n,p > 1, (ra, n) ^ (2,1)) if G is semi-rational; 
c) D 8 X Z 2 P [p> 1) or 

D8YZ2p (p > 2) or 
Gm^.iX^p {m >n>\, (m, n) / (1, l),p > 1) or 
Gm,n,iYZ2P (m > n > 1, (m, n) ^ ( l , l ) ,p> 2) 

G is non-rational. 

P R O O F . All the statements are following from Theorem 4.1 and Propo­
sition 4.2. 

We may wonder why are not appearing in this list the groups of the 
type QsYZ2p and Gm^YZov • The explanation is the following: they actually 
appear, but they are isomorphic to other groups in the list. More precisely, 
for every p > 2 we have 

On the other hand, the groups in Theorem 4.2 are pairwise non-isomorphic. 
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