On the periodic structure of the antitriangular maps on the unit square



Abstract

In this paper we study the periodic structure of the antitriangular maps on I2 = [0,l]×[0,l] and obtain an ordering on the periods of these maps of a Sarkovskii type.


1. R.A. Dana, L. Montrucchio, Dynamics complexity in duopoly games, Journal of Economic Theory 40 (1986), 40-56.
2. P.E. Kloeden, On Sharkovsky's cycle coexistence ordering, Bull. Austral. Math. Soc. 20 (1979), 171-177.
3. A. Linero Bas, Puntos periódicos de aplicaciones continuas en espacios de dimensión uno, Tesina de Licenciatura, Universidad de Murcia, 1991.
4. A.N. Šarkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Ukrain. Math. J. 16 (1964), 61-71 (in Russian); English version in Internat. Journal of Bifurcation and Chaos 5 (1995).
Download

Published : 1999-09-30


Balibrea GallegoF., & BasA. L. (1999). On the periodic structure of the antitriangular maps on the unit square. Annales Mathematicae Silesianae, 13, 39-49. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14135

Francisco Balibrea Gallego  balibrea@gaia.fcu.um.es
Departamento de Matemáticas, Universidad de Murcia, Spain  Spain
Antonio Linero Bas 
Departamento de Matemáticas, Universidad de Murcia, Spain  Spain



The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.

  1. License
    This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.
  2. Author’s Warranties
    The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s.
  3. User Rights
    Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor.
  4. Co-Authorship
    If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.