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To the memory of Professor Gyorgy Targoński 

A b s t r a c t . In this paper we study the periodic structure of the antitriangular maps 
on I2 = [0, l] X [0, l] and obtain an ordering on the periods of these maps of a 
Sarkovskii type. 

1 . Introduction 

The periodic structure of discrete dynamical systems (X,f), where X 
is a phase space of dimension one and / a continuous map on X, has been 
a subject of great interest in the last thirty years after the appearance in 
1964 of the Sarkovskii's Theorem ([S]). When X is I = [0,1], R or S 1 , a 
tree or a finite graph some results on periodic structure have been obtained 
in a similar line to those established for the case X — I. We call them 
Sarkovskii's type results. When we say periodic structure results we mean 
that there exists some forcing relation among all the periodic points of the 
map / . Besides these relations can be interpreted in terms of the applications 
found in Dynamics of Populations. 

When X = I2 = [0,1] x [0,1] or R2, it is in general difficult to obtain 
results similar to those of the unidimensional case except for the case of 
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triangular maps, that is, maps F : I2 —>• I2 given by 

(1) F(x,y) = (f(x),g(x,y)), 

where f,geC(I,I) ([Kl]). 

Motivated by the cooperative behaviour of some groups of animals in 
the african savannah or some models of duopoly games (see [D]) we have 
considered maps F : I2 -4 I2 given by 

(2) F(x,y) = (g(y),f(x)), 

where f,g £ C (/,/). We have called them antitriangular maps since the 
effect in the coordinates of the map (2) is the opposite to that on the maps 

(!)• 

In this paper we have developed the periodic structure of antitriangular 
maps and found that we have some type of Sarkovskii's ordering to describe 
the set of periodic points. In fact, under this point of view, the antitriangular 
maps behave like some particular mixture of the behaviours of the maps fog 
and go f. 

2. Preliminaries: definitions and notation 

In a general setting, let X be a metric or compact metric space and 
(p : X —)• X a continuous map. We call n-iterate of if the map ipn = ipn~l ocp 
for n > 1 and cp° will represent the identity map on X. 

The orbit of a point x £ X will be the sequence Orb v(x) = ((pn(x))^=0. 
A point x g A' is said to be periodic if <fn(x) = x for some n > 0. When 
n = 1 the periodic point is a fixed point. The set of fixed points of <p will 
be denoted by Fix (<̂ ). The order or period of a periodic point x e X is the 
least m > 0 such that ipm(x) — x and it will be denoted by ord <p(x) or 
simply ord (x) if it is clear that it is under the map <p. If x 6 X is a periodic 
point then its orbit (finite) will be called a cycle or a periodic orbit. Finally 
we will denote by Per (if) the set of periods of the map <p. 

For maps F we will use the notation n m to indicate that the exi­
stence of a cycle of order n for F "forces" the existence of another cycle of 
order m for F. Also the notation n <=> m means that n m and m n. 



On the periodic structure of the antitriangular maps on the unit square 41 

3. M a i n result 

The aim of this paper is to describe the periodic structure that the 
antitriangular maps can have. 

First let us recall the well know result given by the Sarkovskii 's theorem 
on the periodic structure of continuous maps on the interval. If we give an 
ordering of the elements of the set N in the following way 

3 >s 
5 7 >s ... >s 271 + 1 >s ... 

2-3 >s 
2-5 >, 2-7 >s ... >s 2 • (2n+ 1) >s ... 

2 2 -3 >s 2 2 -5 >s 2 2 - 7 >, ... >s 22 • (2n + 1) >, -

2k -3 >s 2k -5 >s 2fe -7 >s ... >s 2k • [2n + 1) >s ... 

>s 2 m 
>s > s 2 3 >s 2 2 > s 2 > s 1 

then if a continuous self-map of the interval / has a periodic point of period 
n, then it has also periodic points of all the orders m such that n >s m. Let 
S(n) be the set {m £ N : i i > s m} U {n} , where n € N. In the case of the 
symbol 2°° we have 5 ( 2 ° ° ) = {2* : k = 0,1,2,...}. The Sarkovskii's result 
states that given a continuous self-map <p on the unit interval then there is 
n e N = N U { 2 ° ° } such that 

Per (>p) = S{n). 

For general maps G : I2 —> I2 we can not find similar results to that of 
Sarkovskii's theorem, except for those we know as triangular maps 

F{x,y) = (f(x),g(x,y)) 

(see [Kl]). In fact for those maps the result is the same. In the case of anti­
triangular maps we obtain not the same but a similar result. The following 
example proves that the periodic structure of antitriangular maps can not 
be the same as that given by the Sarkovskii's result. 

E X A M P L E 3.1. Let F(x,y) - (y, 1 - x), 0 < x,y < 1. It holds that 
Fix (F) = We have not periodic points of period two since the 
condition F2(x,y) = (x,y) is only satisfied by the fixed point (|,|). For 
the same reason there are not periodic points of period three but it is true 
that F4(x,y) = (x,y) for any point (x,y) G I2. Therefore Per (F) = {1,4}. 

Let A be a subset of natural numbers. By 2(A\ {1}) we understand the 
set of elements of the type 2k, with k £ A \ {1} . 
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T H E O R E M 3.1. Let F : I2 —> I2 be an antitriangular map 

F{*,y) = G/(y),/(*)) 

where /, g G C(I). 
If Per (g o f) = 5(n) /o7- some TJ G N, then the set Per (F) is of one of 

the following types 
(1) Per (F) = 2 (S(n) \ {1}) U {fc : ife G S(n), k > 1, A; odd} U {1} . 
(2) Per(F) = 2 (5(n) \ {1}) U {k : G S(n), fc> 1, k odd} U {1} U {2}. 
i?oi/8 cases cart /toW and depend on the fixed points of g o f since 2 G 

Per (F) if and only if g o f has at least two fixed points. 

4. Prel iminary results 

We are starting introducing two results, one concerning the ordering of 
periodic points in the setting of compact metric spaces and another on the 
behaviour of the iterates of antitriangular maps. 

L E M M A 4.1. Let <p G C(X, X), where X is a compact metric space. 
Given n,m G N and x G X, it is held that x G Fix(<pn) if and only if x is a 
m—periodic point of ip, where in is a divisor of n (m \ n). 

P R O O F . It can be seen in [L]. • 

R E M A R K 4.1. The statement of Lemma 4.1 establishes that if <pn (x) — x 
then it must be ord v(x) — m, with m | n. 

A n easy calculation allows us to prove the following result. 

L E M M A 4.2. Let F : I2 —> I2 be an antitriangular map F(x,y) = 
(g(y), f(x)). For any k > 0 we have 

(1) F 2 k + l (x, y)={9o(fo g)k{y),f o (g o f)k(x)) . 
(2) F2k(x,y) = {(gof)k(x),(fog)k(y)). 

The following result establishes the behaviour of the periodic points in 
the composition of interval maps. 

L E M M A 4.3. Given f,g G C(I,I), we have 

Per (fog) = Per (go f). 

P R O O F . Let x G / be a periodic point of order k for gof. Then f(x) is a 
periodic point of period k for fog since Orb fog(f(x)) — f (Orb g0f(x)). Anal­
ogously if y G / is a point of order n for / o g, then Orb g0f(s(y)) = 
g (Orb f0g(y)) and therefore g(y) is a point of order n for gof. • 
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The inclusion of the order 2 in the set Per (F) depends on the number 
of fixed points of the maps go f and fog (in Example 3.1, 2 ^ Per (F) since 
g o / = / o g has only a fixed point, but if g o / had more than one fixed 
point then 2 G Per(F)). 

L E M M A 4.4. Given an antitriangular map F, the following properties 
are equivalent: 

(1) 2 i Per(F). 

(2) g o / has a unique fixed point, 

(3) f ° g has a unique fixed point. 

P R O O F . Let x G / be the unique fixed point of g o f. Then f(x) is the 
unique fixed point of / o g since if y ̂  f(x) is another fixed point for / o g 
we have g(fog(y)) = g(y) and so g{y) = x whence f(x) = (fog)(y) = y. 

Analogously if z G V is the unique fixed point of / o g then g(z) is 
the unique fixed point of g o f. Therefore the statements (2) and (3) are 
equivalent. 

Let us suppose that go f would have a unique fixed point OJ G / (in this 
case fog would have the unique fixed point /(u>)). If F2(x, y) = (x, y), then 
using Lemma 4.2 we would obtain that / o g{y) = y, but then g(y) = u>, 
f{u) = y. Then 

F(x, y) = F(u>, f(u)) = ( 5 ( / H ) , / H ) = (W, /(w)) = (x, y), 

that is, (x,y) would be a fixed point for F but not of order 2. Therefore 
2 i Per(F). 

Conversely, let us suppose that 2 ^ Per (F). If g o / has two distinct 
fixed points, x\ ^ x2, then f(xi), f{xo) are fixed points of / o g which are 
distinct, since f(x\) = /(a^) leads to x^ = g o f(xi) —go f(x2) = x2. In 
that case, the point (xi,f(x2)) verifies 

F{xuf{x2)) = {g(f(x2))J(Xl)) = ( * 2 ł /fa ) ) # (xi ,/(x 2 )) 

F2(XlJ(x2)) = (g(f(xl)),f(x2)) = (xuf(x2)), 

and it is a point of order 2 for F, in contradiction with 2 £ Per (F). Therefore 
g o f can have only a fixed point. • 
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In the following lemma we will prove that 2 (Per (g o /) \ {1}) C Per (F). 

L E M M A 4.5. If k £ Per (go /), k > 1, then 2k G Per (F). 

P R O O F . Let x G / be a point of order k for g o f with k > 1. Then the 
point (re, f(x)) G 7 2 is of order 2k for F. 

Using Lemma 4.2 we obtain that F2k(x, f(x)) = (a;, f(x)). Let p = 
ord p(x,f(x)). If p = 2A; we have finished, but if p < 2k then must be 
p < AT. In the sequel we analyse all the possibilities: 

(a) If p < Ar, then 2p < 2A; and therefore 

F2*>(x, f(x)) = F"(FP(x, /(*))) = F*(x, f(x)) = (s, /(*)). 

Using again Lemma 4.2 we obtain that (g o f)p(x) = x with p < A;, contra­
dicting orc\gof(x) = k. 

(b) If p = Ar with A; even, again Lemma 4.2 gives us (g o f)^(x) — x. 
But I < A; = ord (x), which is a contradiction. 

(c) If p = A; with A; odd, Lemma 4.2 gives us now 

fc— 1 
9°(f 0 0 ) " (/(*)) = 

that is, (g o f)^(x) = x. But < k = ord (a;) since we are supposing 
that A; > 1, getting a new contradiction. • 

L E M M A 4.6. Given an antitriangular map F(x,y) = (g(y), /(#)), for 
every n > 1 it is held that 2 n + l G Per (F) if and only if2(2n + l) G Per (F), 
that is, 2n + 1 <=> 2(2n + 1). 

P R O O F . Let (x,y) G / 2 be a periodic point for F of period 2(2n + 1). 
Then 

F 2 ( 2 n + 1 ) (x, y) = (( f l o Z ) 2 ' ^ 1 (x), (/ o g)2n+\y)) = (x, y). 

From it we have ord fl0/(£) | 2n 4- 1 and ord / o 5 ( y ) I 2?J. + 1 (Lemma 4.1), 
but ord gof(x) = ord jog(y) = 1 can not happen, since in that case the order 
of (x,y) for F would be at most 2 < 2(2n+ 1). Therefore, without loss of 
generality, we can suppose that 1 < ord g0/(x) < 2n + 1. 

If ord g0f(x) < 2n+1 then ord goj(x) would be an odd number less than 
2n + 1 and the Sarkovskii's theorem would give us 

Per (gof) = Per (fog) D S(ord (x)) D S(2n + 1). 

In fact there exists y £ / of order 2n + 1 for / o g. From the orbit 

Orbg 0 f(g(y)) = {g(y),g o (f o g ) ( y ) , g o ( f o g ) 2 n ( y ) } 



On the periodic structure of the antitriangular maps on the unit square 45 

we select the point x = g o (/ o g)n(y) which is of order 2n + 1 for g o f and 
besides 

fo(gof)n(x) = (fog)2n+l(y) = y. 

In this way 

F 2 n + 1 (x,y) = (go(fog)n(y),fo(gofr(x)) = (x,y). 

According to the election of x and y, the order of the point (x, y) can not be 
less than 2n + 1 since in this case we would have an odd order of the type 
2k + 1 with k < n giving 

F 2 f c + 1 ( z , y ) = (go(fog)k(y),fo(gof)k(x)) = (x,y) 

and as a consequence must be x = g o (/ o g)k(y) in contradiction with the 
election of z within the orbit Orb fl0/(<7 (]/))• Therefore 2n+ 1 € Per(F). 

Let us suppose now that (x, y) £ I2 be a. point of order 2n + 1 for F 
with n > 1, 

F 2 n + 1 (X, y) = (go(fo g)»(y)J o (g o f)n(x)) = (x, y) 

and try to obtain a periodic point for F of period 2(2n + 1). Using the 
(2n + 1) —iterate we get 

x = (gof)2n+l(x), y=(fog)2n+\y). 

Repeating the arguments used to obtain the implication 2(2?i + 1) 2n + 1 
we find that Per (g o /) = Per (fog) D S(2n + 1). We can consider that 
ordg0f(x) = ord/og{y) = 2n + 1 (otherwise there is no problem to find 
another pair (x, y) in such a way that the orders of x and y are 2n + 1 and 
ord F(X,V) = 2n+ 1). Then (x, (f o g)(y)) e I2 has order 2(2n+ 1) for F : 

(a) F2^)(x,(fog)(y)) = {(g o f ) ^ (x), (/ o g ) ^ (/ o g)(y)) = 
{x, (fog)(y)), and therefore ordF(x, {f o g)(y)) \ 2(2n + 1). 

(b) I f o r d F ( x , ( / o S f ) ( y ) ) = l , t h e n 

F2 (x, {f o g)(y)) = F(x, (/ o g)(y)) = (x, (/ o g) (y)) 

F2(x,(fog)(y))=((gof)(x),(fog)2(y)), 

in contradiction with the fact that ord goj(x) = 2n + 1 > 1. 
(c) If ord F ( z , (fog){y)) = 2Ar, with Ar < 2n, the iterate F 2 f c (x , {fog)(y)) 

leads to a contradiction with the fact that x and (fog)(y) are periodic points 
of order 2n + 1 since F2k = ((g o /) f c , (/ o g)k) ,k<2n. 
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(d) If ord p(x, (/ o g) (y)) = 2m + 1 with m < n and 2m + 1 | 2n + 1 we 
have 

F 2 m + l (x, (/ o g)(y)) = (g o (/ o g)m(/ og)(y),fo(go f)m (x)) 

= (x,(f°g)(y)) 

and as consequence must be (/o y) 2 m + 1(a,-) = .T which is a contradiction 
since ord (x) = 2n 4- 1 > 2m + 1. 

(e) It is ord p(x, (f o g)(y)) ^ 2n + 1 since if 

F2n+l(x,(fog)(y)) = (x,(fog)(y)), 

then g o (/ o «,)»(/ o y)(y) = x, / o (g o f)n(x) = (f o g){y), but 

9 o {f o y)"(/ og)(y) = gofogo(fo g)n{y) = 

= (g°f)°(9°(fog)n)(y) = (g°f)(x), 

obtaining that (g o f)(x) = a;, which is a contradiction. 
(f) Finally, must be ordp(x, (/ o g)(y)) = 2(2?i + 1), obtaining that 

2n + 1 2(2n+ 1). • 

5. P r o o f of T h e o r e m 3.1 

We divide the last section in two parts. In the first we give a picture of 
forcing relations in Per(F) to illustrate Theorem 3.1 which will be finally 
proved in the second part. 

5.1. Picture of forcings in Per(F). Using all the results obtained 
in the previous section we are able to order N \ {2} in such a way that the 
following picture of forcing for all the orders of F is held. 

P R O P O S I T I O N 5.1. Given the antitriangular map F(x,y) = [g{y), f{x)) 
in I2, the following set of forcings for the periods of F is held 

2-3 2-5 2-7 2 • (2» + 1) 
J> $ Z 
3 5 => 7 2n + 1 

=» 2 2 • 3 2 2 -5 2 2 -7 . 2 2 •(2n + l) 

=̂  2 r • 3 2 r -5 2 r - 7 2 r •(2n+l) 

. . . 2m+l 2m => . =» 2 3 =>22 1. 
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P R O O F . The initial chain of double implications is a consequence of 
Lemma 4.6. Now we are proving that if we consider a particular n of the 
picture, then there are points of order m for any m placed after n in the 
ordering. 

(a) If n is odd, n > 3 and n G Per (F), then 2n G Per (F). From this it 
is easy to obtain that n G Per (fog) = Per (gof). Let (x, y) G I2 be a point 
of order 2n for F. By Lemma 4.2 we get (g o f)n(x) = x, (/ o g)n{y) = y. If 
ord 9of{x) = ord jog{y) = 1 then we obtain F2(x, y) = (x, y) but 27?. > 2. In 
this case some of the orders of x or y is an odd number m < n (see Lemma 
4.1) . According to Sarkovskii's theorem, Per(yo /) D S(m) D S(n) and 
using Lemmas 4.5 and 4.6 we have 

Per (F) D 2 (S(n) \ {1}) U {k : k G S(n), fc odd} . 

Therefore n p for any p placed after n in the ordering given in the state­
ment of the proposition. 

(b) The case n = 2q with q odd and q > 3 can be brought to the case 
n = q using the equivalences given in Lemma 4.6. 

(c) If n = 2k • m with k > 2, m odd, rn > 3, and (x,y) G / 2 is 
a point of order n for F, then using Lemmas 4.1 and 4.2 we obtain that 
ord f l 0/(x) I 2k~1m and ord /og(y) \ 2k~lm. If ord (x) = 2s and ord (y) = 2l 

with s, t < k - 1, we obtain that F 2 * (a;, y) = (x, y) which is a contradiction. 
In such case some of the two orders given above, for example ord (x), must 
be of the type 2sp where s < k - I, p > I is odd and p | m. Using the 
Sarkovskii's order we obtain that Per(go f) D S{2'p) D S(2k-1m) and 
reasoning as in (b) we obtain that n =>• q for any number q placed after n in 
the ordering of the statement of the Proposition. 

(d) If n = 2k, k > 2 and (x,y) G I2 is a point of order n for F, 
then it is held that (g o /) 2* _ 1(a:) = x and (/ o g)2 ~\y) = y. Then 
ord (a;) | 2 f c _ 1 and ord (y) \ 2k~1 (according to Lemmas 4.1 and 4.2). If 
q — max {ord (x), ord (y)} < 2k~x the we would obtain F2q(x,y) = (.T,y) 
which is a contradiction ( 2q < 2k ). Then must be for example ord (x) = 
2k~\ But this means that Per (g o f) D S(2k~1) and therefore Per(F) D 
2 ( 5 ( 2 F C _ 1 \ {1})(Lemma 4.5), that is, n => 2 s for s = 0 , 2 , 3 , k . For n = 2 2 

we have to prove only that 2 2 => 1, but using the fixed point Brouwer 's the­
orem that statement is true. 0 

R E M A R K 5.1. According to Proposition 5.1 and Lemma 4.4, the kernel 
of periodicity (see [ALM] ) of the antitriangular maps is the set {2,3,2 • 3} 
since the period 2 does not force any other period and at the same time it 
is not forced by any period. If an antitriangular map has a point of period 
3 or 2 • 3 then has points of all periods. 
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5.2. P r o o f of the T h e o r e m . The last statement of Theorem 3.1 is a 
direct consequence of Lemma 4.4. Using Lemmas 4.5 and 4.6 we know that 
for some n 6 N it is held 

Per (F) D 2 • (S(n) \ {1}) U {k : k G S(n), k odd} U {1} = Sd{n), 

where S(n) = Per (g o /) = Per (/ o g) is a segment of the Sarkovskii's 
ordering and 5j(n) can be considered as a segment in the order of the anti­
triangular maps. 

To end the proof it is necessary to prove that there are not other periods 
in Per(F), except 2, which can appear or not depending on the number of 
fixed points of fog. 

Let us suppose that m G Per (F) and consider the following situations: 
(a) If m = 2rq with r > 2, q > 1 and q odd, we can repeat the considera­

tions made in the proof of Proposition 5.1 to obtain that S(n) = Per (gof) 3 
5 ( f ) . Therefore, 

m = 'A G 2 ( S ( y ) \ {1}) C 2 (5(n) \ {1}) C Per (F). 

(b) If m is odd and m > 3, it has been proved in Proposition 5.1 that 
Per (g o f) = 5(n) D S(m). Using Lemma 4.6 we have 

m G 2 (S(m) \ {1}) U {fc : k odd, A G S(m)} C 

C 2 (5(n) \ {1}) U {k : k odd, k 6 5(n)} C Per (F). 

(c) Finally, if m — 2q with q odd and c > 3, by Lemma 4.6 is q G Per (F) 
and similarly to the previous case 

m = 2? G 2 (5(c) \{1})C2 (5(n) \ {1}) C Per (F). 

(d) It only remains the study of the case m = 2. The inclusion of this 
order depends of the number of fixed points in the map gof. • 

R E M A R K 5.2. Theorem 3.1 can be easily extended to E 2 but in this 
case the situation Per (F) = 0 can occur (for example, consider the map 
F(x, y) = (y + l,x+ I) defined in R 2 ) . 

Besides, Theorem 3.1 admits a converse result. Given a segment Sd(n) 
for some n G N there are antitriangular maps F\, F 2 : I2 -4 I2 such that 

Per (Fx) = Sd(n) U {2} , Per (F 2) = Sd(n). 

To prove this it is sufficient to consider the antitriangular maps F\ia(x, y) = 
(y,ax(\ - x)), F2,p{x,y) = (y, cos {(in(x - £ ) ) . When a G [2,4], the lo­
gistic map fa(x) = ax(l - a;) has two fixed points, and by Lemma 4.4, 
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2 € Per (Fi , a) also, when « € [2 ,4 ] , Per (fa) can be any initial segment S(n) 
of the Sarkovskiis ordering, therefore Per (F\, a) can be any set Sd{m) U {2} 
with m 6 N . If [3 6 [0,1) , then fp(x) — cos (/?7r(a; - |)) has a unique fixed 
point, that is, 2 ^ Per (F\,/3); like in the above family, we demonstrate that 
Per (F\,(i) can be any segment Sd{n), n G N . 

R E M A R K 5 . 3 . The notion of antitriangular map can be extended to the 
case of maps on / " with n > 3, having a particular structure, and we guess 
that periodic structures similar to the case n = 2 can be found. This must 
be true even for maps defined on E " and T N (the n-dimensional torus). But 
this will be presented in a forthcoming paper. 
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