On dimension of attractors of reaction-diffusion equations with periodic right-hand side
Abstract
In this paper we study the finite-dimensionality of the global attractor of a discrete dynamical system generated by a reaction-diffusion equation with non-differentiable nonlinear term and periodic right-hand side. The existence of an exponential attractor is also proved. Explicit estimates of the fractal dimension are given.
References
1. A.V. Babin, B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dynam. Differential Equations 7 (1995), 567-590.
2. A.V. Babin, M.I. Vishik, Attracteurs maximaux dans les équations aux dérivées partielles, Nonlinear Partial Differential Equations and Their Applications (Ed. H. Brezis and J.L. Lions) Vol. 7, Research Notes in Math No. 122, Pitman (1985), 11-34.
3. A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, Nauka, Moscow 1989.
4. A.V. Babin, M.I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh 116A (1990), 221-243.
5. F. Balibrea, J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the nondifferentiable case, C. R. Acad. Sci. Paris 325 (1997), 759-764.
6. F. Balibrea, J. Valero, On dimension of attractors of differential inclusions and reaction-diffusion equations, Preprint, Departamento de Matemáticas, Universidad de Murcia 1997.
7. F. Balibrea, J. Valero, On dimension of attractors of differential inclusions and reaction-diffusion equations, Discrete. Contin. Dynam. Systems 5 (1999), 515-528.
8. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti 1976.
9. H. Brezis, Problémes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.
10. H. Brezis, Análisis Funcional, Alianza Editorial, Madrid, 1984.
11. V.V. Chepyzhov, M.I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279-333.
12. A. Eden, C. Foias, V. Kalantarov, A remark on two constructions of exponential attractors for ?-contractions, J. Dynam. Differential Equations 10 (1998), 37-45.
13. A. Eden, C. Foias, B. Nicolaenko, R. Temam, Ensembles inertielles pour des équations d'évolution dissipatives, C. R. Acad. Sci. Paris, Série I 310 (1990), 559-562.
14. A. Eden, C. Foias, B. Nicolaenko, R. Temam, Inertial sets for dissipative evolution equations. Part I: construction and applications, IMA Preprint No. 812, 1991, 135.
15. A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolutionary equations, Research in Applied Mathematics, No. 37, John Wiley & Sons, Masson, 1995.
16. A. Eden, B. Michaux, J.M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dynam. Differential Equations 3 (1991), 87-131.
17. A. Eden, J.M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl. 185 (1994), 321-339.
18. P. Fabrie, C. Galusinski, Exponential attractors for a partially dissipative reaction system, Asymptotic Analysis 12 (1996), 329-354.
19. J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, AMS, Providence, 1988.
20. O.A. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups (in russian), Zap. Nauchn. Sem. LOMI 182 (1990), 102-112 (English translation in J. Soviet Math, 62 (1992), 1789-1794).
21. M. Marion, Attractors for reaction-diffusion equations: existence and estimate of their dimension, Appl. Anal. 25 (1987), 101-147.
22. M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal. 20 (1989), 816-844.
23. G. Metivier, Valeurs propres d'opérators dé finis par la restriction de systèmes variationnels a des sous-espaces, J. Math. Pures Appl. 57 (1978), 133-156.
24. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
25. Yi. Zhao, The global attractor of infinite-dimensional dynamical systems governed by a class of nonlinear parabolic variational inequalities and associated control problems, Appl. Anal. 54 (1994), 163-180.
2. A.V. Babin, M.I. Vishik, Attracteurs maximaux dans les équations aux dérivées partielles, Nonlinear Partial Differential Equations and Their Applications (Ed. H. Brezis and J.L. Lions) Vol. 7, Research Notes in Math No. 122, Pitman (1985), 11-34.
3. A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, Nauka, Moscow 1989.
4. A.V. Babin, M.I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh 116A (1990), 221-243.
5. F. Balibrea, J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the nondifferentiable case, C. R. Acad. Sci. Paris 325 (1997), 759-764.
6. F. Balibrea, J. Valero, On dimension of attractors of differential inclusions and reaction-diffusion equations, Preprint, Departamento de Matemáticas, Universidad de Murcia 1997.
7. F. Balibrea, J. Valero, On dimension of attractors of differential inclusions and reaction-diffusion equations, Discrete. Contin. Dynam. Systems 5 (1999), 515-528.
8. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti 1976.
9. H. Brezis, Problémes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.
10. H. Brezis, Análisis Funcional, Alianza Editorial, Madrid, 1984.
11. V.V. Chepyzhov, M.I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279-333.
12. A. Eden, C. Foias, V. Kalantarov, A remark on two constructions of exponential attractors for ?-contractions, J. Dynam. Differential Equations 10 (1998), 37-45.
13. A. Eden, C. Foias, B. Nicolaenko, R. Temam, Ensembles inertielles pour des équations d'évolution dissipatives, C. R. Acad. Sci. Paris, Série I 310 (1990), 559-562.
14. A. Eden, C. Foias, B. Nicolaenko, R. Temam, Inertial sets for dissipative evolution equations. Part I: construction and applications, IMA Preprint No. 812, 1991, 135.
15. A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolutionary equations, Research in Applied Mathematics, No. 37, John Wiley & Sons, Masson, 1995.
16. A. Eden, B. Michaux, J.M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dynam. Differential Equations 3 (1991), 87-131.
17. A. Eden, J.M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl. 185 (1994), 321-339.
18. P. Fabrie, C. Galusinski, Exponential attractors for a partially dissipative reaction system, Asymptotic Analysis 12 (1996), 329-354.
19. J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, AMS, Providence, 1988.
20. O.A. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups (in russian), Zap. Nauchn. Sem. LOMI 182 (1990), 102-112 (English translation in J. Soviet Math, 62 (1992), 1789-1794).
21. M. Marion, Attractors for reaction-diffusion equations: existence and estimate of their dimension, Appl. Anal. 25 (1987), 101-147.
22. M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal. 20 (1989), 816-844.
23. G. Metivier, Valeurs propres d'opérators dé finis par la restriction de systèmes variationnels a des sous-espaces, J. Math. Pures Appl. 57 (1978), 133-156.
24. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
25. Yi. Zhao, The global attractor of infinite-dimensional dynamical systems governed by a class of nonlinear parabolic variational inequalities and associated control problems, Appl. Anal. 54 (1994), 163-180.
BalibreaF., & ValeroJ. (1999). On dimension of attractors of reaction-diffusion equations with periodic right-hand side. Annales Mathematicae Silesianae, 13, 61-71. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14137
Francisco Balibrea
Departamento de Matemáticas, Universidad de Murcia, Spain Spain
Departamento de Matemáticas, Universidad de Murcia, Spain Spain
José Valero
CEU San Pablo Elche, Spain Spain
CEU San Pablo Elche, Spain Spain
The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.
- License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license. - Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. - User Rights
Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor. - Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.