1. R. Abraham, L. Gardini, C. Mira, Chaos in discrete dynamical systems (a visual introduction in two dimensions), Springer-Verlag, 1997.
2. B. Barucci, G.I. Bischi, R. Marimon, The stability of inflation target policies, mimeo European University Institute, Florence 1998.
3. L. Billings, J.H. Curry, On noninvertible maps of the plane: Eruptions, Chaos 6 (1996), 108-119.
4. L. Billings, J.H. Curry, E. Phipps, Lyapunov exponents, singularities, and a riddling bifurcation, Phys. Rew. Letters 6 (1997), 1018-1021.
5. G.I. Bischi, L. Gardini, Basin fractalization due to focal points in a class of triangular maps, International Journal of Bifurcation & Chaos 7 (1997), 1555-1577.
6. G.I. Bischi, A. Naimzada, Global analysis of a nonlinear model with learning, Economic Notes 26 (1997), 143-174.
7. G.I. Bischi, L. Gardini, C. Mira, Maps with denominator. Part 1: some generic properties, International Journal of Bifurcation & Chaos 9 (1999), 119-153.
8. J.H. Curry, L. Garnet, D. Sullivan, On the iteration of a rational function: computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267-277.
9. L. Gardini, G.I. Bischi, Focal points and focal values in rational maps, Grazer Math. Ber. (to appear).
10. R. Marimon, S. Sunder, Expectations and learning under alternative monetary regimes: an experimental approach, Economic Theory 4 (1994), 131-162.
11. C. Mira, Equation de Schroeder et solutions des recurrences. Generalisation des polynomes de Tchebycheff, Proceedings of Théorie de l'Iteration et ses Applications Toulose 1982, Editions CNRS, Paris 1982, 35-43.
12. C. Mira, Some properties of two-dimensional (Z_0-Z_2) maps not defined in the whole plane, Graz. Math. Ber. (to appear).
13. C. Mira, L. Gardini, A. Barugola, J.C. Cathala, Chaotic dynamics in two-dimensional noninvertible maps, World Scientific, Singapore 1996.
Google Scholar