Some characterizations about Siegel curves
Abstract
Let Ψ: ℝ×T ↦ T be a continuous dynamical system on the two-dimensional torus T. The aim of this paper is to prove some characterizations about the existence of a Siegel curve, i.e. a simple closed curve which cuts every half-trajectory of the dynamical system (T,Ψ). This result completes and precises some results obtained in our article [7].
References
1. D.V. Anosov, V.I. Arnold (eds.), Dynamical Systems I, Encyclopedia Math. Sci. vol. 1, Springer-Verlag, 1988.
2. N.P. Bhatia, G.P. Szegoe, Stability Theory of Dynamical Systems, Grundl. Math. Wiss. 161, Springer-Verlag, 1970.
3. I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory, Grundl. Math. Wiss. 245, Springer-Verlag, 1982.
4. O. Forster, Riemannsche Flaechen, Heidel. Taschenbuecher, Springer-Verlag, 1977.
5. M. Hmissi, Semi-groupes déterministes, Lect. Notes in Math. 1393, Springer-Verlag, 1989, 135-144.
6. M. Hmissi, Recouvrement parallélisable du plan, Proc. European Conference on Iteration Theory, Lisboa 1991, J.P. Lampreia et al. (eds.), World Scientific, 1992, 136-145.
7. M. Hmissi, M. Sieveking, Sur I'existence des courbes de Siegel, Grazer Math. Ber. 334 (1997), 139-146.
8. C.L. Siegel, Notes on differential equations on the torus, Ann. Math. 46 (1945), 423-428.
2. N.P. Bhatia, G.P. Szegoe, Stability Theory of Dynamical Systems, Grundl. Math. Wiss. 161, Springer-Verlag, 1970.
3. I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory, Grundl. Math. Wiss. 245, Springer-Verlag, 1982.
4. O. Forster, Riemannsche Flaechen, Heidel. Taschenbuecher, Springer-Verlag, 1977.
5. M. Hmissi, Semi-groupes déterministes, Lect. Notes in Math. 1393, Springer-Verlag, 1989, 135-144.
6. M. Hmissi, Recouvrement parallélisable du plan, Proc. European Conference on Iteration Theory, Lisboa 1991, J.P. Lampreia et al. (eds.), World Scientific, 1992, 136-145.
7. M. Hmissi, M. Sieveking, Sur I'existence des courbes de Siegel, Grazer Math. Ber. 334 (1997), 139-146.
8. C.L. Siegel, Notes on differential equations on the torus, Ann. Math. 46 (1945), 423-428.
HmissiM. (1999). Some characterizations about Siegel curves. Annales Mathematicae Silesianae, 13, 143-148. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14144
Mohamed Hmissi
med.hmissi@fst.rnu.tn
Département de Mathématiques, Faculté des Sciences de Tunis, Tunisia Tunisia
Département de Mathématiques, Faculté des Sciences de Tunis, Tunisia Tunisia
The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.
- License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license. - Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. - User Rights
Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor. - Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.