1. L.S. Block, W.A. Coppel, One-Dimensional Dynamic, Lecture Notes in Math. 1513, Springer-Verlag, Berlin 1992.
2. L.S. Block, E.M. Coven, I. Mulvey, Z. Nitecki, Homoclinic and nonwandering points for maps of the circle, Ergodic Theory Dynamical Systems 3 (1983), 521-532.
3. L.S. Block, J. Guckenheimer, M. Misiurewicz, L.S. Young, Periodic points and topological entropy of one-dimensional maps, in Global theory of dynamical systems (Proc. Internat. Conf., Univ., Evanston, III., 1979, 18-34.) Lecture Notes in Math. 812 Springer, Berlin 1980.
4. L.S. Block, Periods of periodic points of maps of the circle which have a fixed point, Proc. Amer. Math. Soc. 82 (1981), 481-486.
5. M. Kuchta, Characterization of chaos for continuous maps of circle, Comment. Math. Univ. Carolinea 31 (1990), 388-391.
6. G. Liao, Q. Fan, Minimal subshift which display Schweizer-Smítal chaos and have zero topological entropy, Science in China 41 (1998), 33-38.
7. M. Misiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems 2 (1982), 221-227.
8. B. Schweizer, J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737-754.
Google Scholar