1. G. Targonski, Topics in Iteration Theory, Vandenhoeck and Ruprecht, Göttingen 1991.
2. A.N. Sharkovskii, How complicated can be one dimensional dynamical systems: descriptive estimates of sets, in Dynamical systems and Ergodic theory, Banach Center Publ. 23 (1989), 447-453.
3. A.N. Sharkovsky, S.P. Kolyada, A.G. Sivak, V.V. Fedorenko, Dynamics of One-Dimensional Mappings, Naukova Dumka, Kiev 1989 (in Russian); Kluwer Academic Publ., Dordrecht 1997.
4. A.N. Sharkovsky, Yu.L. Maistrenko, E.Yu. Romanenko, Difference Equations and Their Applications, Naukova Dumka, Kiev 1986 (in Russian); Kluwer Academic Publ., Dordrecht 1993.
5. E.Yu. Romanenko, A.N. Sharkovsky, From one-dimensional to infinite-dimensional dynamical systems: ideal turbulence, Ukrain. Math. J. 48 (1996), 1604-1627 (in Ukrainian); Ukrain. Math. J. 48, 1817-1842.
6. E.Yu. Romanenko, A.N. Sharkovsky, Dynamics of solutions for simplest nonlinear boundary value problems, Ukrain. Math. J. 51 (1999), 810-826 (in Ukrainian).
7. A.N. Sharkovsky, E.Yu. Romanenko, Problems of turbulence theory and iteration theory, in Proc. of the European Conf. on Iteration Theory (ECIT-91), World Scientific, Singapore, 242-252.
8. A.N. Kolmogorov, V.M. Tikhomirov, ɛ-entropy and ɛ-capacity of sets in functional spaces, Uspekhi Mat. Nauk, 14 (1959), 3-86 (in Russian); in Selected Works of A.N. Kolmogorov, vol. III, Kluwer Academic Publ., Dordrecht 1993.
9. U. Burkart, A new proof of a Theorem of Sharkovskii, Lecture at the 1979 Intern. Symp. on Functional Equations, Abstract in Aequationes Math. 20 (1980), 300.
10. U. Burkart, Interval mapping graphs and periodic points of continuous functions, J. Combin. Theory, Ser. B 32 (1982), 57-68.
Google Scholar