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Abstract. It is known there are boundary value problems investigation of which is 
directly reduced to study of iteration of functions. This allows to carry on detailed 
and deep analysis of original problems. We consider such a class of simple (in form) 
problems, solutions of which demonstrate, nevertheless, very complicated behavior, 
make possible the simulation of self-birthing structures, including self-similar ones, 
and self-stochasticity phenomenon. 

1. At present time, the iteration theory of continuous functions on the 
real line as a part of the general dynamical system theory takes up a peculiar 
and very important place in the contemporary theory of dynamical systems 
and, especially, in its applications to investigation of the surroundings, laws 
governing the nature. 

While on the subject of iteration theory, it is customary to bear in 
mind a great variety of problems, which occur or might occur in studies 
on the iterations of functions (each therefore has its range of values to be 
contained in its domain of definition) depending for the most part on one 
real or complex variable, although it is not unusual to deal with more general 
functional spaces. This is how iteration theory is treated in Gy. Targoński's 
book [1]. 

Very popular now is the branch of iteration theory, which is referred to 
as the theory of one-dimensional dynamical systems. As in the case of arbi-
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trary dynamical systems, the main subject of investigation for this theory 
is trajectories and their properties. Several reasons for this can be pointed 
out. 

First, one-dimensinal dynamical systems (1-DS) have a broad range of 
dynamical behavior - from stable stationary points to the case where the 
completely deterministic behavior of trajectories does not differ, in practice 
from random processes; from the viewpoint of the descriptive theory of sets, 
they are as much complicated as dynamical systems on arbitrary compact 
sets [2]. 

Second, due to a relative simplicity of the "phase space" and "control 
laws", the one-dimensional dynamics allowed in sufficiently short time to 
create a developed theory, which is rich in deep results and efficient criteria 
illustrated by simple and visual computer experiments. Here only one exam
ple: the statement "topological entropy is positive" is equivalent to each of 
almost fifty (!) different statements [3]. 

Third, for wide circles of investigators 1-DS are the matter of a certain 
phenomenological interest. Namely, they help to understand general rules of 
initiation and development of real dynamic processes in the range from the 
simplest ones to chaotic and even turbulent processes. The theory of 1-DS 
is one of the main elements of chaotic dynamics, and now it is an obligatory 
part of textbooks on the theory of dynamical systems. 

It should be noted that solely 25-30 years ago, we had completely ano
ther relation to the iteration theory: the majority of mathematicians dealt 
with the theory of dynamical systems did not consider iteration of functions 
on the real line as a matter of their attention. However, the last twenty 
five years were the period of extensive development of various directions in 
theory of dynamical systems and, in particular, the iteration theory of dif
ferent classes of functions. Probably, significant merit in these achievements 
belongs to the European Conferences on the Iteration Theory, among the 
main initiators in the organization of which was Professor Gyorgy Targoński 
and in which the almost all of mathematicians participating actively in the 
formation of the theory took part at different times. 

2. Very promising for the extension of one-dimensional dynamics ad
vances is the application to research on nonlinear boundary value problems 
of mathematical physics, in particular, to a simulation of self-arising cha
otic evolutions in deterministic systems. It is known there are boundary 
value problems (BVP) investigation of which is directly reduced to study of 
iteration of functions. 

Already more than 15 years, I and my colleagues study such kind of 
B V P (see [4, 5, 6]), in particular, our report on ECIT'91 [7] was devoted to 
these problems. 
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The situation that today takes place with regard to this avenue of inve
stigation closely resembles the above-mentioned situation prevailed in itera
tion theory 30 years ago. There persists much speculation that when descri
bing intricate phenomena it is impossible to do without very complicated 
systems of equations. In this connection, I reason the following statement to 
be true: 

We have much information about properties of complicated equations, 
but we have not sufficiently much information about properties of simple 
equations! 

It is quite pertinent to cite herein the words of the book "The Feynman 
Lectures on Physics" by R.P.Feynman, R.B.Leighton and M.Sands, which 
has already been invoked in our work [5]: 

"...the complexities of things can so easy and dramatically escape the 
simplicity of the equations which describe them. Unaware of the scope of 
simple equations, man has often concluded that nothing short of God, not 
mere equations, is required to explain the complexities of the world." 

It is the elucidation of what is ahead in research of very simple (in 
form) nonlinear B V P that our explorations are directed towards. Below, 
we represent certain typical assertions concerning the simplest class of such 
nonlinear problems. 

3. We consider such a class of BVP, namely, 

du du r . 
W -xT = aaZ + bu> * € [ 0 , 1 ] , t e R + , a>0, 

(2) u\x=i = / ( M ) | X = O , 

where / is given C'-smooth function. 
B V P of the form (1),(2) are simplest nonlinear problems that one can 

envision. It takes sense to use them as a model for representation of self-struc
turing and self-stochasticity phenomena because in this case explanations 
are, probably, most simple. 

The problem (1),(2) is reduced to a difference equation: the general 
solution of (1) is 

(3) u(x, t) = e " x w ( x + at), 

where w is an arbitrary C^-smooth function, and on substituting (3) into the 
boundary condition (2), we obtain the difference equation with continuous 
argument 

(4) W{T + 1) = Xf{w{r)), A = exp (Ł/a), r € R+• 
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The initial condition for Probem (1), (2) 

(5) u|(=o = <p(x) 

implies the initial condition for the equation (4) 

(6) W(T) = A TY?(T) for r € [ 0 , l ] . 

It is obvious that equation (4) with the condition (6) has a unique 
C 1 -smooth solution, which we denote by wv, if and only if 

(7) V(1) = /(V(0)) and ¥>'(l) = /'(v(0))v'(0). 

A failure of the above assumptions leads to that the solution uv of Pro
blem (1), (2) and (5) is not C 1-smooth (and is even not continuous if the 
first of the assumptions (7) breaks down) only along a countable number of 
characteristics x + t = m, m = l , 2 , . . . 

Every solution uv can be written in the form 

(8) uv{x,t) = e(-h,a)x J^{(p{x + t-n)) for n < x + t < n +1, n = 0, 1 , . . . , 

where 

(9) p(r) = e W « l M r ) 

and / " is for the n-th iteration of function 

(10) fx:w^Xf(w). 

Thus, the behavior of solutions for Problem (1), (2) is determinated by 
the 1-D map f\. It takes sense to call f\ the resolvent map for Problem (1), 
(2). 

4. What in 1-D maps is most useful for BVP? What properties of 
1-D maps result in the "chaotization" of solutions for BVP, namely, in 
self-structuring and self-stochasticity phenomena for such solutions? 

Keeping in mind piecewise monotone 1-D maps, which are typical for 
applications, one can note the following. 

Self-structuring in solutions of a B V P is due to the complex structure 
of the basin of an attracting cycle or cycle of intervals of its resolvent 1-D 
map. Such a basin, as a rule, is a union of countably many intervals which 
are sequential preimages (for the resolvent map) of the domain of so-called 
immediate attraction of the cycle. This explains why time-evolving cascade 
processes of appearance of structures arise in solutions of B V P and how 
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they carry on. There can be observed two much different situations during 
a cascade process: either there exist structures that are conserved for "ar
bitrarily long", or each of the structures breaks down into smaller ones and 
the structures scales tend to zero with time. The first situation is the case 
if the resolvent map of B V P has an attracting cycle, the latter does if the 
map has a cycle intervals. 

Structures that are brought about in solutions of a B V P (during cascade 
processes) are coherent and, moreover, may be found to be self-similar. These 
properties have their origin in the geometry of the graphs of iterations of 
1-D maps. Namely, when n is large enough, the graph of / " is self-similar at 
Misiurewicz's points - that is, at repelling periodic points and their preima-
ges. A map / has a countable number of such points if / possesses a cycle 
of period > 2. 

These two properties of the graphs of resolvent map iteration - self-simi
larity and fractality - are inherited by the graphs of solutions of BVP. 

Self-stochasticity occurs in solutions of a B V P when its resolvent map 
has absolutely continuous invariant measure (a.c.i.m.). If for a map w 
f(w), there exists a.c.i.m. then one can find only the probability of a tra
jectory point fn(w) lying in one or another of regions of the phase space 
when n is large enough (using well-known G . D. Birkhoff's theorem). Such 
temporal stochasticity of trajectories wn = f{wn-\), n = 1 , 2 , t r a n s f o r m s 
into a spatial-temporal stochasticity of solutions of B V P with resolvent map 
/ . This is because these B V P are reduced to that of the infinite dimensional 
dynamical system given by the map 

W(T) ^ f(w(r)), » e C ( [ 0 , l ] , f i ) . 

Thus, we get a continual family of "oscillators": for every fixed r„ € [0,1] 
there is an "oscillator" of its own, namely, w(r*) i-» /(tu(r*)). All these 
"oscillators" act independently of one another (although following the same 
law), and, in case / has a.c.i.m., the deterministic function wn(r), r € [0,1], 
behave like random functions of r, given n large enough. Moreover, such 
deterministic functions tend in special metric as n —> oo to a certain ran
dom process, whose distributions can be described in terms of the invariant 
measure of the map / . 

The well-known Jakobson's theorem states that among maps closed 
to quadratic ones, maps that have a.c.i.m. are no exception, namely, for a 
one-parameter family of quadratic-like maps, Lebesgue measure of the set 
of those values of the parameter such that their corresponding maps possess 
a.c.i.m. is positive. This fact suggests at once that the same is true for B V P 
reducible to maps of this type and the phenomenon of spatial-temporal 
chaotization of their solution is no exception too. 
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5. Let us continue analysis of Problem (l), (2). 
Among the solutions of Problem (1), (2), it is expedient to separate out 

those independent of t, namely, functions of the form u(x, t) = je 
{b/a)x w i t h 

an appropriate constant 7 . We will call such solutions as trivial. For Problem 
(1), (2) the values of 7 are roots of the equation 7 = eb^af(y). 

We will consider properties of Problem (1), (2) depending on parameter 
b (assuming that parameter a in the equation (l) is fixed). 

5.1. For the sake of simplicity assume that 
• f is a C3-smooth function with f" < 0 and with negative Schwarzian 

derivative, 
. / ( 0 ) = / ( l ) = 0 . 

Then / is a unimodal function - i.e. there is the only point, say, w* such 
that / has a finite extremum at w = w* - and it attains a maximum at 
•w = w*. 

A class of maps of the form (10) is in such conditions typified by the 
family of quadratic maps w i-> \w(l - w). As the parameter b ranges from 
—00 to 00, the map fx exhibits all conceivable types of dynamical behavior 
that are realizable for quadratic maps (as well-known, these last may appear 
both very simple - similar to linear ones - and as intricate in a certain sense 
as dynamical systems on locally compact spaces may appear). In particular, 
there are bifurcation values b\ < b2 < b^ < 6* known respectively as 

- the largest of those b such that (10) has no fixed points on the interval 
(0,1), 

- the largest of those b such that (10) has no cycles of period 2, 
- the largest of those b such that (10) has no cycles of period different 

from 2*, i = 0,1,2, 
- the largest of those b such that (10) maps the interval [0,1] into itself. 
It is easily seen that 
• For any b < b„ the map fx possesses a bounded invariant interval 

h with ends being the repelling fixed point of fx and its preimage; for 
b\ <b < 6*, h = [0,1] and for b —>• -co , the length of Ą increases infinitely. 

• For b < b2, the behavior of trajectories / " («? ) is very simple, namely, 
when n —> 00, fx(w) tends to the (unique) attracting fixed point if w € intlb 
and to —00 if w $ 

• If b > &„, then the map fx has no bounded invariant intervals and for 
all points w 6 R outside of a Cantor-like set of measure zero (which belongs 
to [0,1]), the trajectories /"(w>) tend to -00. 

Thus the dynamics of the map fx can be found to be intricate only on 
the interval [0,1] and only for b G (62, 6*]. Let us put 

A{f) = {hM and A*, (/) = (&«>, & J-
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Remind some facts. In the interval A(f), there exists an open dense subset 
Aattr such that for b G AaUr, the map fx has an attracting cycle of period 
> 2 and almost every bounded trajectory is asymptotically periodic. 
In the interval Aoo(f) there exists a subset Aacim of positive measure which 
consists of those values of b such that fx has a smooth invariant measure. 
As a consequence almost every bounded trajectory is everywhere dense on 
a set that consists of a finite number of intervals (which make up a cycle of 
intervals) and its behaviour can be described in terms of probability theory. 

The topological entropy of the dynamical system specified by the map 
fx is positive if and only if b G A^; similarly, the closure of the set of 
the points whose trajectories are Lyapunov unstable is of positive fractal 
dimension if and only if b G Aoo (by the fractal dimension is herein meant 
the so-called "box-counting" dimension, for example). 

5.2. Now we can turn back to solutions of Problem (l), (2). 
Whatever b, the problem has (in general, two) trivial solutions, namely, 

ux{x,i) = 0 and u2(x,t) = ye~(b/a)x
i where 7 is the nonzero root of the 

equation 7 = / A (7); 
Por b < 621 a solution uv is bounded if and only if e(b/a)x(p(x) G h 

when x G [0,1]. Therewith, if e (hla)xy{x) G J h for all x, then uv(x,t) 
tends as t —>• 00 uniformly to one of the trivial solutions and thus u^x, i) is 
asymptotically stable. 

Inasmuch as the solutions of Problem (1), (2) are continuous functions, 
it is evident that bounded when b > 6„ are trivial solutions only. 

So, we have a criterion for the boundedness of the solutions of Problem 

T H E O R E M 1 (on boundedness of solutions), (i) Probierń (1), (2) has 
bounded solutions different from the trivial ones if and only ifb<b*. 

(ii) When b\ < b < b*, a solution uv is bounded if and only if <p G ${b), 
where 

Hereinafter we will consider the long-time behavior of the bounded so
lutions of Problem (l), (2) when b G A(f). If b G A(f), then all bounded 
solutions different from the trivial ones oscillate as t —> 00 with nonvanishing 
amplitude. Besides, therewith all these solutions, along with both the trivial 
solutions, are Lyapunov unstable with respect to C 1 - and C°-metrics alike. 

5.3. Problem (1), (2) induces on the space of initial functions a dyna
mical system of translations along solutions, namely, 

(1). (2). 

for 

( U ) {$(b),R+,Sł}, 
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where S*[y?](a:) = u^x^t), <p £ $(6). Since uv(x,t) can be written as in (8), 
5'[<p](a;) takes the form 

(12) St[ip](x) = e-^f[x+tH^({x + t})) 

with [•] and {•} on the right of (12) being respectively for the integral and 
fractional parts of a number. If b € A(f), then every solution u(x,t) of 
Problem (l), (2) such that u{x, 0) belongs to <b(b) matches the trajectory that 
starts with the "point" <p(x) = u(x, 0) and every trajectory Sl[<p] matches the 
solution that is generated by the initial condition u(x, 0) = <p(x). 

What are the w-limit sets of trajectories of Syst.(ll)? The space $(6) 
equipped a priori with the C 1-metric is not compact. This causes the tra
jectories £*[<£>] to be noncompact for almost all (p e $(&). As a consequence, 
their u;-limit sets either are at all empty or, if not so, are noncompact and 
therefore they do not characterize completely the asymptotic behavior of 
5*[</>]. Thus, we have to complete the phase space <J>(6) with help of a me
tric such that the trajectories of Syst.(ll) to be compact in a new extended 
space. 

To carry out this approach, we employ two metrics denoted by gA and 
g*. The former effects completing the phase space $(6) with upper semi-
continuous functions and the latter does with random functions. 

The metric gA is denned on the space of upper semicontinuous (in 
general, multivalent) functions C : [0,1] —>• 2 J , with / being a bounded 
interval, in the following way: 

(13) £ A ( C i , C 2 ) = A ( g r C i , g r C 2 ) , 

where gr C stands for the graph of a function C and A(-, •) stands for Hausdorff 
distance between sets. 

The metric g* is so constructed that it evaluates the distance between 
two functions through the distances between all their finite-dimensional di
stributions locally ensemble-averraged. This makes possible to employ g* 
both for deterministic and random functions. We do not use the metric g* 
in this work and refer interested readers to other our works (see, for example, 
[7, 5, 6]). 

5.4. How can the u;-limit sets u>bVp] of trajectories of Syst.(ll) be con
structed in the spaces $A(6) that are arrived at by completing <b(b) via the 
metrics £ A ? 

The space $ A(6) is compact and, consequently, every trajectory of 
Syst.(ll) has a compact w-limit set in $ A (&). Syst.(ll) induces on $A(6) by 
continuity the dynamical system 

(14) S'}, where S'[C] (x) = e -<»/«>*/[*+'](£({* + *})), 
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which determinates a motion on w-limit sets of the original system (11). 

T H E O R E M 2 (on long-time behavior of solutions). Let b G A(f). For 
every <p £ $(&) (excepting ip(x) = e - ' 6 / " ' * • const), the trajectory Sł[tp] 
of Syst.(ll) has in the space $A(6) an u-limit set WbW\, which consists of 
discontinuous upper semicontinuous functions. 

Thus, for all b G A(f), Syst.(14) has in $A(6) a global attractor AT{b) 
(by which is meant the smallest closed subset of $A(&), which contains the 
w-limit set of almost every trajectory starting in $(6)) and this attractor 
consists of discontinuous functions. It is worthy of note that the set of di
scontinuity points of each of these functions might appear to be nowhere 
dense or, conversely, everywhere dense. 

T H E O R E M 3 (on self-similarity and fractal dimension). Let b G A(f) 
and <p G $(b). The graph of each of the (upper semicontinuous) functions 
Q that belong to i^bVp] C &A(b) is self-similar at every point x = x* such 
that w, = e( 6/ a) x*<^(a:») is a Misiurewicz's point of the resolvent map f\. 
Therewith the fractal dimension of the graph gr (,t is more than 1 if and only 
ifbeA^f). 

It should be noted that for every self-similarity point which corresponds, 
by Theorem 3, to a certain cycle of the resolvent map f\, the scaling fac
tor of self-similarity at such a point equals the Lyapunov multiplier of the 
corresponding cycle of f\. 

To give a more detail description of the solutions behavior, let us restrict 
ourselves to those functions <p G &(b) such that 

the function e(b/a)x<p(x) is different from a constant on any interval 
from [0,1]. 

The subset of these functions is denoted by $*(&). It is clear that $*(&) 
is everywhere dense in $(&) with respect to the C 1-topology. 

T H E O R E M 4 (on asymptotic periodicity and stability of solutions). For 
almost every b £ A(f) there exists an integer p — p(b) > 2 such that whatever 
<fi G <&*(b), the ijj-limit set u>b[<t>] of the trajectory Sl[(p] of Syst. (11) consists 
of upper semicontinuous functions that combine in <I>A(&) into a cycle of 
period p/a of the extended system (14); this cycle is stable with respect to the 
metric QA . 

In particular, if b G Aattr then every function Q G ^fcM) t € [0,p/a], 
is single-valued (and hence, continuous) on the open dense set 

Dt((p) = { i G [0,1] : the point w = <p({x + t}) is stable under the map 
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and on every subinterval of Dt(<p), the function Ct(x) coincides with one 
of the functions •yie~{hla)x, i = 1,2, ...,p, with {71, 7 2 , . . . , 7p} being an 
attracting cycle of the resolvent map f\. 

This theorem, in particular, implies that for almost all b G A(f) the 
attractor AT(b) of Syst.(ll) consists of an uncountable number of periodic 

• trajectories of Syst.(14) with the same period p/a. 
If p = 1, we arrive at different situation: whatever initial function <p G 

$*{b) we take, its corresponding w-limit set Ub[<p] consists of a single point 
- a certain discontinuous function C*(x). As a result, the attractor AT(b) is 
nothing but the only point {C*}, which is clearly a fixed point of Syst.(14). 
We get a classic example of such a situation in the case where the resolvent 
map turns out to be the chaotic parabola w (->• 4w(l - w), w G [0,1]. In this 
case, C*(x), as a function from [0,1] in R, is discontinuous at every point 
and the value of C*(z) at given x G [0,1] is the interval [0, e-(b/a)*]. 

According to Theorem 4, almost all solutions uv of almost every boun
dary value problem of the form (1), (2) with 6 G A(f) are asymptotically 
periodic in t with the same period. If P^(x, t) is the p/o-periodic in t function 
given by 

(15) Pv(x,t) = ftmodp/oOO and $ t m o d p / . e 

then 

(16) Q
A(uv{x,T),Pip(x,T))^0 as T -> 00. 

Therewith the gradient catastrophe happens to almost every solution M V 

sooner or later, namely, for any K > 0 there is a r = r((f) > 0 such that 
when T > r, in the domain [0,1] x [T, T + p/a] there exist characteristics -
lines of the form x + t = const - along which the modulus of gradient for 
a solution uv becames greater than K. If for some <p G <&(b), the value of 
a function Ct G t^blf] is a nontrivial interval at every point x G [0,1], then 
the corresponding solution uv behaves extremely irregularly and there is no 
way of telling certainly its values when t is large enough (note that the set of 
values of b such that almost every <p G <b(b) has this property is of positive 
Lebesgue measure, specifically, this set contains AaCi,n). 

To make a description of such "unpredictable" solutions, the metric Q* 
is appropriate. The situation that a deterministic system possesses trajec
tories whose u>-limit sets consist of random functions was given the name 
self-stochasticity [7, 5] and such a trajectory was called self-stochastic. In 
the previous example, the resolvent map f\, being the chaotic parabola, has 
a smooth invariant measure with the density — , \ and, consequently, 

7 T W — W) 
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almost all the trajectories are attracted to the same fixed point of the exten
ded dynamical system, namely, to the point {/*(e'6/a^ • x)} of the exten
ded phase space, where / * is the purely random process with the uniform 
(in z) distribution Fj#(w;z) = \ arcsin yfw. 

For arbitrary dynamical system, the diversity of the long-time behavior 
of its trajectories is characterized by the topological entropy of the system. 
If the attractor of the system consists of periodic trajectories with their 
periods being bounded in common (for Syst.(ll) this is so), then the topo
logical entropy of the system on the attractor is equal to zero. Nevertheless, 
for a finite-dimensional dynamical system with such attractor, its topolo
gical entropy is very often found to be positive - to "settle down" on the 
unstable trajectories of the system (for 1-D maps, such is the case almost 
always (in the topological sense)), which means that the greatest diversity 
of the behavior of trajectories is observed not on the attractor of the system 
(which is responsible for the long-time behavior of almost all trajectories 
of the system) but on its repellers. As for Syst.(ll), its topological entropy 
ent (6) can be equal to 0 or oo only (whilst on the attractor AT(b), it is 
always equal to 0). Namely, ent (b) = 0 if b $ A(f) and ent (6) = oo if 
b G A(f). In particular, in case fx is the chaotic parabola (then b G A(f)), 
ent (6) = oo whereas the attractor AT(b) consists of a single fixed point. 
From the aforesaid it may be inferred that it is desirable to use, along with 
the notion of topological entropy, another (but closely allied) notions, for 
example, those used in estimating of the capacity of functional spaces (for 
instance, "s-capacity" and "e-entropy" [8]). 

5.5. Further features of B V P can be obtained by reference to the so-called 
"universal" properties of 1-D maps, that involve, in particular, Feigenbaum's 
constants 6 = 4.6992 . . . and a = 2.5029 . . . 

T H E O R E M 5 (on ordering of bifurcations). // the resolvent map fx for 
Problem (1), (2) has no cycles of period n\ for 6 = 6' and has a cycle of 
period n 2 for 6 = 6" and n\ -< n 2 , then for any n such that nx -< n -< n<i, 
there exists an interval Bn C (6', 6") such that for b G Bn and almost every 
<p G $(6) the u-limit set u[<p] is a cycle of period n/a in the space 3>A(6). 

Here, the symbol "-<" is used in the sense of the ordering 

1 < 2 < 2 2 -< 2 3 < . . . < 5 • 2k < 3 • 2k ^ ... 

^ 7 - 2 ^ 5 - 2 ^ 3 - 2 ^ . . . ^ 9 ^ 7 ^ 5 ^ 3 . 

It should be noted here that U . Burkart who was just a Ph.D. student 
of Prof. Gy. Targoński, was among the first to suggest a new proof of the 
statement that this ordering of natural number characterizes coexistence of 
the periods of periodical points for iteration of continuous functions [9, 10]. 
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For any <p G $ = n 6 e ( _ 0 0 ) i ) > ] $ ( 6 ) 1 we put 

Pm[f] = inf {b : u[<p] is a cycle of period m/a in $A(&)}, 

Pmif] = inf {6 : is a cycle of period m/a in ^A(6) 

and every function from u[(p] is a multi-valued at each x G [0,1]}. 
For almost all <p G 3>, the values /?m[y] and / S ^ M a r e independent on 

yj, and we will write /3m and instead of /3m[<p] and /3m[y>]. We have, as a 
consequence of Theorem 5, /3m, < f3m2 if mx ^ m 2 . In addition, it can be 
showed that /? 6 > 2 » < /? 2„ < /?2»m for any odd m > 1. 

T H E O R E M 6 (on rate of bifurcations). 

for any odd m > 1. 

We can characterize the long time behaviour of solutions of problem (1), 
(2) through the use of Feigenbaum's constant a. We refer to a discontinuous 
T-periodic in t function P(x, t): [0,1] X R+ -> R as piecewise-exponential, if 
ZT = [0,1] x [0, T] falls into a finite number of subsets where P(x, t) equals 
ye{b/a)x ^ s o w n c o n s t a n t j 0 n each subset. 

T H E O R E M 7 (on approximation of solutions). Let <p G Whatever e > 
0, for every b G (/32-»>/?2«)> ź^ere ezisi 2"/a-periodic in t piecewise-exponential 
function P*(x,t) and a set B£ C Z2nja with mesBe < £ such that for so
lutions of problem (1), (2), the relation dn/dn+i —> a(= 2.502...) holds if 
n —>• 00 where 

dn — sup limsup sup \uv(x,t + i 2n/a) - P£(x,t)\. 

All the theorems presented, owing to the reduction of Problem (1), (2) to 
the difference equation (4), result directly from the properties of dynamical 
systems induced by difference equations of the form w(t + 1) = h(w(t)), t G 
R+, whose properties are in turn determined by the dynamics of the 1-D 
map w i—>• h(w). 
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