ON REGULAR MULTIVALUED COSINE FAMILIES

ANDRZEJ SMAJDOR

To the memory of Professor Gyérgy Targonski

Abstract. Let K be a convex cone in a real normed space X. A one-parameter
family {F, : t > 0} of set-valued functions F; : K — n(K), where n(K) :=
{D : D CK, D 74 @} is called cosine iff Fi,; + Fi—, = 2F; o F,, whenever
0<s<t and Fy is the identity map. A cosine family {F; : ¢ > 0} is regular iff

llm t—o0+ Fi(z {x} for every z.
The growth and the continuity of regular cosine families are investigated.

Let X, Y, Z be nonempty sets and let n(Y) denote the set of all no-
nempty subsets of Y. We recall that the superposition G o F of set-valued
functions F: X — n(Y) and G : Y — n(Z) is defined by the formula

(G o F)( U{G cye F(z)} for z¢€X.

A subset K of a real vector space X is called a cone if tK C K for all

€ (0,400). A cone is said to be convez if it is a convex set.

A set-valued function F : K — n(Y), where K is a convex cone in X,
is said to be superadditive iff F(z) + F(y) C F(z +y) for z,y € K.

Let K be a convex cone in X and let Q4 denote the set of all posi-
tive rational numbers. A set-valued function F : K — n(Y) is said to be
Q4 -homogeneous if F(Az) = AF(z) for A € Q4,7 € K.

Now, we assume that X and Y are arbitrary real normed spaces. A
set-valued function F' : K — n(Y) is called lower semicontinuous at zo €
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K iff for every open set V in Y such that F(zo) NV # () there exists a
neighbourhood U of zero in X such that F(z) NV # @ for z € (zo + U) N
K. A set-valued function F is called lower semicontinuous iff it is lower
semicontinuous at every point z € K.

A set-valued function F: K — n(Y), is said to be bounded if for every
bounded subset E of K the set F(E)=|J{F(z):z € F} is boundedin Y.

The following characterization of boundedness of Q,-homogeneous
set-valued functions is easy to check.

LEMMA 1. Let X and Y be two real normed spaces and let I{ be a
convex cone in X. A Q-homogeneous set-valued function F : K — n(Y)
s bounded if and only if there exists a positive constant M such that

(1) IFE)I =suwpillyll:y € F@)} < Mljall  for @€ K.

LEMMA 2. Let X andY be two real normed spaces and let K be a convex
cone in X. Suppose that F : K — n(Y) is a Q4-homogeneous set-valued
function. Then equality

e WFl =0

holds if and only if there exists a positive constant M such that (1) holds.

The proof is similar as in the classical case (see [2] Theorem 2.4.1).
Under assumptions of Lemma 2 the functional

1Pl — IF()l

sup
z€K,z#0 Izl

is finite for every Q,-homogeneous set-valued function F : K — n(Y’) such
that
li F =0.
piim _ MF() =0

This functional will be called a norm.

COROLLARY 1. Let X and Y be two real normed spaces and let K be
a convexr cone in X. Suppose that F : K — n(K) and G : K — n(Y)
are bounded Q4 -homogeneous set-valued functions. Then G o F is bounded,
Q4 -homogeneous and inequality

|G o FIl < IGINHFII

holds.
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The set of all nonempty bounded subsets of a normed space Y will be
denote by B(Y).

LEMMA 3 (Theorem 3 in {7]). Let X and Y be two real normed spaces
and let K be a convex cone in X. Suppose that (F; : 1 € I) is a family of
superadditive lower semicontinuous in K and Q4 -homogeneous set-valued
functions F; : K — n(Y). If F(z) = U;¢; Fi(z) and the set B = {zx e K:
F(z) € B(Y)} is of the second category in K, then F is bounded and B=K.

Lemma 3 and the same considerations as in the proof of Theorem 4 in
[7] allow to derive the following lemma.

LEMMA 4. Let X and Y be two real normed spaces and let K be a
convez cone in X. Suppose that (F; : i € I) is a family of superadditive
lower semicontinuous in K and Q-homogeneous set-valued functions F; :
K = n(Y). If K is of the second category in K and ;¢ Fi(z) € B(Y) for
z € K, then there exists a constant M € (0,400) such that

sup | Fi(@)l| < Mllal| for « € K.
i€l

REMARK 1. The assumption that the cone K is a set of the second
category in K is essential and it can not be replaced by the completness
of X.

In order to prove it we use an example from Chapter III, §3.7 of
N. Bourbaki’s book [1]. Let X = {z € C(R,R): lim z(t) = lim =z(t) =
t— =00 t—+o00
0}, llz|| = sup {|a(t)| : t € R} forz € X andlet K = {z € X :supp z €
¢(R)}, where ¢(R) is the set of all nonempty compact subsets of the set R of
all real numbers. We can check that in this case (X, || ||) is a Banach space,
K is a convex cone and set-valued functions F; : K — n(R), ¢ = 1,2,...
defined by formulas
Fi(z) = {iz(1)}

are additive, continuous and are Q. -homogeneous in K. Moreover, sets

|J Fi) = {iz(i) : i € N}

ieN
are finite. So almost all assumptions of Lemma 4 hold except the “category”
assumption. Let functions z;, ¢ € N be defined as follows

0, if —co<t<i-i,
i+ (1-14%), if i—-1<t <y,
—it+(1414), fi<t<it+?,
0, if i+ 1<t

.'I:i(t) =

18 - Annales...



274 Andrzej Smajdor

We see that every z; belongs to K, Fi(z;) = {i} and ||z:}| = 1 for every
¢ € N. Therefore the assertion of Lemma 4 does not hold.

REMARK 2. A convex cone K in Lemma 4 is of the second category in
K if one of the three following cases holds true:

a) X is a Banach space and intK # §),

b) X is a Banach space and K is closed,

c) X is a normed space and dim K = dim (K — K) < +oo.

Cases a) and b) are obvious. In case c), let » = dim (K — K). Then
there exist a basis {¢; — dy,...,c, — d,} of inK = K — K, such that the
set {c1,...cn,dy,...d,} is a subset of K. This subset is a spanning set of
K — K, therefore it contains a basis {e, ...,e,} C K of K — K. The formula
llzll = X0, &l for @ = &€y + ... + Enen, defines a norm in K — K. It is
easy to check that the ball B(zg, o) centered at o = Le; + ... + Le, with
the radius ry = % is a subset of K. So the interior of K is nonempty.

Let T and S be two metric spaces and let ¢(S) denote the set of all
compact elements of n(S). The Hausdorff distance derived from the metric
in S is a metric in ¢(S). A set-valued function F : T — ¢(S5) is said to be
continuous iff it is continuous as a single-valued function from T into the
metric space ¢(.5).

Let Y be a normed space. We denote by cc(Y) the family of all convex
members of ¢(Y). Observe that each linear set-valued function with closed
values has to have convex ones.

LEMMA 5. Let X and Y be two real normed spaces and let d be the
Hausdorff distance derived from the norm in'Y. Suppose that K is a convez
cone in X with nonempty interior. Then there ezists a positive constant My
such that for every linear continuous set-valued function F : K — c(Y) the
inequality

d(P(z), F(y)) < My||Fll]lz — ]

holds.

ProoF. Let “~” denote the Radstrém’s equivalence relation between
pairs of members of cc(Y) defined by the formula

(A,B)~ (C,D)e& A+ D=B+C.

For any pair (4, B), [A, B] denotes its equivalence class. All equivalence
classes form a real linear space Z with addition defined by the rule

[A,B]+[C,D]=[A+C,B+ D),
and scalar multiplication

A, B] = [AA, \B)
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for A > 0 and
MA, B] = [-AB, —AA]

for A < 0.
The functional
(A, B]|| := d(A, B),

is a norm in Z (see [5]). :
Now, let F : K — ¢(Y) be a linear continuous set-valued function. Then
the function f : K — Z given by

f(e) = [F(=), {0}],

is linear. Moreover, let zy € K and (z,) be a sequence of elements of K such
that z¢ = lim p—yco Zn. Then F(zo) = lim o0 F(25) and

Jim Hf(wn)—f(wo)ll— lim d(F(zn), F(20)) =0,

n—roo

so f is continuous. The function f can be extended to a linear function
f: X — Z. This function'is also continuous. Therefore

lim  f(e) =lim f(z) = f(0) =

z—+0,2€K r—0

and

lm d(F(z),{0))= _lim__|[F(z), {0}l = lim, |/(2)ll =

z—0,c€K €K

By Lemmas 1 and 2, F and f are bounded. Fix a z € int K. There exists
an ¢ > 0 such that 2+ 8 C K, where S is the closed unit ball in X. If
veESandu=1z+ v then v € K and ||u|| < ||12]l + 1, therefore

1)l = 17w = FCal < 1@+ G
< AN+ 1) < A+ 20221

Take z,y € K,z # y. Smce|| lES we have

(@) = fW)Il =l ylHlf(ll )||<|lf||Mo||w yll;

where M := 1+ 2||1z||. This implies that

d(F(z), F(v)) = I[F (=), F@)ll = lIf(z) = FWIl < MollFllllz — yll.

18 %
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This is a stronger version of Lemma 16 in [3](see also Lemma 7 in [4]).
The application of the Ridstrém’s equivalence relation allows to omit the
assumption that X is a separable Banach space. This is an idea of dr Joanna
Szczawinska.

LEMMA 6 (Lemma 1.9 in [6]). Let X be a metric space with a metric p
and let F' be a set-valued function from X into X. If for a positive number
M the inequality

d(F(z), F(y)) < Mp(z,y)
holds for every x,y € X, then
d(F(A), F(B)) < Md(A, B)
for every nonempty subsets A, B of X, where d is the Hausdorff distance
derived from the metric p.

Let (K,+) be a semigroup. A one-parameter family {F, : t > 0} of
set-valued functions F; : K — n(K) is said to be a cosine family iff

where I denotes the identity map and
(2) Ft+s+Ft—s=2FtOF37

whenever 0 < s < ¢.

EXAMPLES:

1. K = (~00,+00), Fi(z) = z[cost, cosht].
2. K = (~00,+400), F;(x) = z[cost, 1].

3. K = [0,+00), Fy(z) = z[1, cosh ).

Let X be a real normed linear space. A cosine family {F; : t > 0} is
reqular iff

Jim d(F(@), {x}) =0,
where d is the Hausdorff distance derived from the norm in X.

THEOREM 1. Let X be a real normed space, and let K be a convez cone
in X of the second category in K. If {F, : t > 0} is a regular cosine family
of continuous superadditive Q- -homogeneous set-valued functions F, : K —
c(K), then there exist two constants M > 0 and w > 0 such that

|Fy|| < Me* for t>0.
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Proo¥F. The proof will be divided into three steps.

1° There exists an 1, 0 < 1 < 1 such that the function t — ||Fy|| is
bounded for 0 <t <.

Suppose that it is false. Then there is a sequence (t,,) satisfying condi-
tions: t,, > 0, lim oo t, =0 and ||F; || > n for n = 1,2,... . From Lemma
4 it follows that for some z € K the sequence (|| F;, (¢)||) is unbounded con-
trary to the regularity of the family {F; : ¢ > 0}. Thus there exist an 7,
0 <np<1and L >0 such that

IFII<L  for t €0,n]

Since ||Fo]| = ||I]| = 1 we have L > 1.

2° Let m > 1 be an arbitrary constant. If s > 0 and ||F;|| < m, then for
every n = 1,2, ... we have ||F,5|| < (3m)™.

The proof is by induction on n. The case n = 1 is trivial. If n = 2 we

obtain
| Fasl] < | Fsesll + 21 Fsl|* < 2m* +1 < (3m)*.

Now, we suppose that » > 3 and
| Fisll < (3m)* for 1<k < n.
By (2) we have

||F(n+1)s($)” = d(F(n+1)s(x) + F(n-—l)s(x)’ F(n*l)s(x))
= d(2Fns oFy ((l)), F(n—l)s(z)))
< QUFusll WFsll + 1 Fn—yysID Il

for every z € K. Consequently,

I (Finsays ()|
I(Fngnysll = sup DR <o B  NES + 1 Fierysl
o#40,0€K |||l

< 2m(3m)"™ + (3m)"7! < (3m)™*! < (3m)™H
Hence the desired inequality is proved forn =1,2,....
3¢ For each t > 0 there exists one and only one positive integer n such
that (n — 1)n <t < n7n. Now if we take s = t/n and use 2°, we obtain
IFl = |1 Fusll < BL)" = (3L)*/"(3L)™~"/" < 3L(3L)"/™.

Let us define M := 3L and w = (1/9) In(3L). Then we see that the assertion
of the theorem holds.
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A cosine family {F}; : t > 0} is continuous iff the function ¢ — F;(z) is
continuous for every z € K.

THEOREM 2. Let X be a real Banach space and let K be a convex cone in
X such that int K # Q. If {F; : t > 0} is a regular cosine family of continuous
additive set-valued functions F; : K — cc(K), then it is continuous.

PRroOOF. The proof will be divided into eight steps.

1° We assume that there exist zo € K and £, € [0,+00) such that the
function t — Fy(z¢) is discontinuous at the point ¢y. Since the considered
cosine family is regular, ¢, is positive.

2° Let us define

t t
Ly = sup {d(Ft(xO)’Fs(xO)) : It - tO‘ < 8_(:13]3_ t0| < 8_(’:L’t >20,s> O}

for every positive integer n.

3° There exists L > 0 such that L, > L for every n.

Obviously (L,) is a non-negative and non-increasing sequence. Hence
there exists a

L=lim L, €eR.
n—oo

We see that L, > L for any n. Suppose that L = 0. For every ¢ > 0 there
exists a positive integer n such that

d(Fy(z0), Fs(20)) < ¢,

whenever [t — to] < 2%, |s—to| < g, ¢ > 0 and s > 0. This implies that
the function ¢t — Fy(zo) is continuous at ¢, contrary to our assumption 1°.
Therefore L > 0 and we take L = L.

4° For every positive integer n there exist two positive numbers s and
t such that |s — to| < &, |t —to| < £ and d(F(zo), Fs(20)) > Ln — £ > 0.
Hence ¢ # s. Therefore there exist two sequences (t,) and (s,) such that
Sn > tn >0, |tn —to] < 22, |sn —to| < £ and d(F}, (z0), Fs, (%0)) > L — L1
for every n.

5° 2t, — s, € (0,+00) for every n.

It suffices to show that ¢, > s, — t,, By 4° clearly

Sn_tn=(3n‘“t0)+(t0_tn)55

and

= — — > — .
tn =to — (to — tn) 2 8n 4n



On regular multivalued cosine families 279

60
d(F34n (1:0)’ F2t4n"s4n (zo)) S Ln
for every n =1,2,....

From 4° we have |s4, — to| < 3= < £ and |(2t4n — s4n) — to| =

|2(£4n — to) + (to — 54n)| < 2/tan —tol + |to — s4n| < 22 < Lo By 2° we have
the inequality.

7°lim ;00 Ly =0

We have

2d(Fiy5(20), Fi(2o0))
= d(2F4s(20) + 2F;_s(z0), 2Fi(z0) + 2F;-s(20))
< d(2F; 0 Fy(0) + Fips(wo) + Fims(zo), 2F(z0) + 2F;_5(20))
< 2d(F; o Fy(zo), Ft(»’lf‘o))“i- d(Fy5(z0), Fi-s(20)),

whence
(3) 2d(Fits(w0), Fi(m0)) < 2d(Fy 0 Fi(w0), Fi(o)) + d(Fry5(z0), Fi—s(z0))
According to Lemmas 5 and 6 the inequality

d(F[F,(20)), Fi(w0)) < Mol|Filld(Fs (20), {z0})

holds for nonnegative ¢ and s. Now we take t = t4,, § = 54, — t4y, in (3).
Then we obtain

2d(F,, (20), Fi,, (20))
= 2d(Ft4u+(s4n_t4n)(z0)7 thn’ (wo))
< 2d(F,, o Fy,, —t,, (20), Ft,, (20)) + d(Fs,, (20}, Faty, -s4, (70))
< 2Mo||Fy,, l|d(Fs,, ~t,, (%0), {20}) + d(F,, (20), Faty, 54, (20))-

Using 4° and 6° we have

2(Lian = 32) < 2M Fo Jld(Frgy s (20), {20)) + Lo
Now, Theorem 1 implies that

Lan - L < 2MoMe“n d(F,,. _.._ (20), {z0}) + 51;

for some M > 0 and w > 0 and for every n and we obtain the desired result.
Since 7° contradicts 3° we have proved our theorem.
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REMARK 3. In the proof of Theorems 1 and 2 we have essentialy used
ideas of M. Sova [8] for cosine operator functions.
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