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To the memory of Professor Győrgy Targonski 

A b s t r a c t . Let K be a convex cone in a real normed space X. A one-parameter 
family {Ft : t > o} of set-valued functions Ft : K —> n(K), where n(K) := 
{D : D C A', D jl 0}, is called cosine iff Fi+S + F , _ s = 2Ft o Fs, whenever 
0 < s < t and F0 is the identity map. A cosine family {Ft : t > o} is regular iff 
lim f-».o+ Ft(x) = {1} for every x. 

The growth and the continuity of regular cosine families are investigated. 

Let X, Y, Z be nonempty sets and let n(Y) denote the set of all no­
nempty subsets of Y. We recall that the superposition G o F of set-valued 
functions F : X —> n(Y) and G : Y —¥ n(Z) is denned by the formula 

(GoF)(x) :=(J{G(y):y£F(x)} for x £ X. 

A subset K of a real vector space X is called a cone if tK C K for all 
t € (0, +oo). A cone is said to be convex if it is a convex set. 

A set-valued function F : K —>• n(Y), where is a convex cone in X, 
is said to be superadditive iff F(x) + F ( y ) C F(x + y) for x,y £ K. 

Let A' be a convex cone in X and let Q + denote the set of all posi­
tive rational numbers. A set-valued function F : K -> n(Y) is said to be 
Q+-homogeneous if F(Xx) — \F{x) for A € Q + , a; G A'. 

Now, we assume that X and F are arbitrary real normed spaces. A 
set-valued function F : K —> n(Y) is called /ou>er semicontinuous at XQ 6 
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K iff for every open set V in Y such that F(x0) C\V ^ 0 there exists a 
neighbourhood U of zero in X such that F(x) D V ^ 0 for x 6 (x0 + U) D 
/<". A set-valued function F is called lower semicontinuous iff it is lower 
semicontinuous at every point x € K. 

A set-valued function F : K n(Y), is said to be bounded if for every 
bounded subset E of K the set F(E) - \J{F{x) : x € E} is bounded in Y. 

The following characterization of boundedness of Q+-homogeneous 
set-valued functions is easy to check. 

L E M M A 1. Let X and Y be two real normed spaces and let K be a 
convex cone in X. A -homogeneous set-valued function F : K —> n(Y) 
is bounded if and only if there exists a positive constant M such that 

(1) ||F( a ;)||:=sup{||2/||:yeF( a:)}<M|| a ;|| for x e K. 

L E M M A 2. Let X and Y be two real normed spaces and let K be a convex 
cone in X. Suppose that F : K —)• n(Y) is a Q+-homogeneous set-valued 
function. Then equality 

Hm \\F(x)\\ = 0. 
x-¥0,xEK 

holds if and only if there exists a positive constant M such that (1) holds. 

The proof is similar as in the classical case (see [2] Theorem 2.4.1). 
Under assumptions of Lemma 2 the functional 

l l P l l 11^)11 \\t || = sup ^r~rr^ 
x&K,x±0 \\x\\ 

is finite for every Q+-homogeneous set-valued function F : K —> n(Y) such 
that 

lim ||F(*)|| = 0. 
x-*0,x£K 

This functional will be called a norm. 

COROLLARY 1. Let X and Y be two real normed spaces and let K be 
a convex cone in X. Suppose that F : K -> n(K) and G : K —¥ n(Y) 
are bounded Q+-homogeneous set-valued functions. Then G o F is bounded, 
Q+-homogeneous and inequality 

\\GoF\\<\\G\\\\F\\ 

holds. 
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The set of all nonempty bounded subsets of a normed space Y will be 
denote by 5(F). 

L E M M A 3 (Theorem 3 in [7]). Let X arid Y be two real normed spaces 
and let K be a convex cone in X. Suppose that (F,- : i £ /) is a family of 
superadditive lower semicontinuous in K and Q+-homogeneous set-valued 
functions Fj : K —> n(Y). If F(x) = {JieI F,(x) and the set B = {x £ K : 
F(x) £ B(Y)} is of the second category in A , then F is bounded and B = A' . 

Lemma 3 and the same considerations as in the proof of Theorem 4 in 
[7] allow to derive the following lemma. 

L E M M A 4. Let X and Y be two real normed spaces and let K be a 
convex cone in X. Suppose that (F; : i £ I) is a family of superadditive 
lower semicontinuous in A' and Q+-homogeneous set-valued functions F; : 
A —>• n(Y). If K is of the second category in K and U i e / Fi{x) 6 B(Y) for 
x £ A ' , then there exists a constant M £ (0, +oo) such that 

sup \\Fi(x)\\ < M\\x\\ for x £ A'. 
iei 

R E M A R K 1. The assumption that the cone A' is a set of the second 
category in A' is essential and it can not be replaced by the completness 
of X. 

In order to prove it we use an example from Chapter III, §3.7 of 
N. Bourbaki's book [ll. Let X — {x £ C(R,R) : lim x(t) = lim x{t) = 

0}, ||x|| = sup{|x(i)| : t £ R} for x £ X and let A = {x £ X : supp x £ 
c(R)}, where c(R) is the set of all nonempty compact subsets of the set R of 
all real numbers. We can check that in this case (X, \\ ||) is a Banach space, 
A' is a convex cone and set-valued functions F; : A' —> n(R), i — 1,2,... 
defined by formulas 

Fi{x) = {ix(t)} 

are additive, continuous and are Q+-homogeneous in A'. Moreover, sets 

|jF i(a;) = {ża:(t):t€N} 

are finite. So almost all assumptions of Lemma 4 hold except the "category" 
assumption. Let functions XJ, i £ N be defined as follows 

0, if -oo <t < i - \, 
it + (l- i2), if i - j < t < i, 
-it + {l + i2), i f t < t < t + i , 
0, if i: + \ < t. 

18 - Annales... 
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We see that every x2- belongs to A, Fi(xi) = {i} and ||ar,-|| = 1 for every 
i £ N. Therefore the assertion of Lemma 4 does not hold. 

R E M A R K 2. A convex cone K in Lemma 4 is of the second category in 
K if one of the three following cases holds true: 

a) X is a Banach space and intA ^ 0, 
b) X is a Banach space and K is closed, 
c) X is a normed space and dim A — dim (K - K) < +oo. 
Cases a) and b) are obvious. In case c), let n = dim (A' - A) . Then 

there exist a basis {ci - d \ , c „ - dn] of lin A = K - A , such that the 
set {ci, ...cn, di, ...dn} is a subset of A'. This subset is a spanning set of 
K - A', therefore it contains a basis { e i , e , J C K of A' - A'. The formula 
\\x\\ = Y^i=z\ If i i i f ° r x — f i e i + ••• + f n ^ m defines a norm in A - A . It is 
easy to check that the ball B(x0,r0) centered at x0 = + ... + ^en with 
the radius r 0 = ^ is a subset of A . So the interior of K is nonempty. 

Let T and 5 be two metric spaces and let c(S) denote the set of all 
compact elements of n(S). The Hausdorff distance derived from the metric 
in S is a metric in c(5). A set-valued function F : T —> c(S) is said to be 
continuous iff it is continuous as a single-valued function from T into the 
metric space c(5). 

Let Y be a normed space. We denote by cc(Y) the family of all convex 
members of c(Y). Observe that each linear set-valued function with closed 
values has to have convex ones. 

L E M M A 5. Let X and Y be two real normed spaces and let d be the 
Hausdorff distance derived from the norm in Y. Suppose that K is a convex 
cone in X with nonempty interior. Then there exists a positive constant Mo 
such that for every linear continuous set-valued function F : A" —> c(Y) the 
inequality 

d(F(x),F(y))<M0\\F\\\\x-y\\ 

holds. 

P R O O F . Let "~" denote the Radstrom's equivalence relation between 
pairs of members of cc(Y) defined by the formula 

(A, B) ~ (C, D) <^ A + D = B + C. 

For any pair {A,B), [A,B] denotes its equivalence class. All equivalence 
classes form a real linear space Z with addition defined by the rule 

[A, B) + [C, D] = [A + C, B + D], 

and scalar multiplication 

X[A, B] = [\A,\B] 
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for A > 0 and 
X[A, B] = [-XB, -XA] 

for A < 0. 
The functional 

\\[A,B]\\:= d(A, £), 

is a norm in Z (see [5]). 
Now, let F : K —> c(Y) be a linear continuous set-valued function. Then 

the function / : K —• Z given by 

f(x) = [F(x),{0}}, 

is linear. Moreover, let x0 G K and (xn) be a sequence of elements of K such 
that XQ — lim n->oo s-n- Then F(a;o) = l i m n-+oo 

F(x„) and 
lim ||/(a:n)-/(so)||= Hm d(F(xn), F(x0)) = 0, 

n—>co n-+oo 

so / is continuous. The function / can be extended to a linear function 
/ : X —• Z. This function'is also continuous. Therefore 

lim f(x) = lim f(x) = /(0) = 0 

and 

lim d(F(x), {0}) = lim \\[F(x), {0}]|| = lim ||/(z)|| - 0. 

By Lemmas 1 and 2, F and / are bounded. Fix a z e intft'. There exists 
an € > 0 such that \z + S C where 5 is the closed unit ball in X. If 
v e S and w = \z + v, then u € K and ||«|| < ||\z\\ + 1, therefore 

<ll/||(IHI + ll^ll)< ||/||(l + 2||^||). 

Take x,y £ K,x^ y. Since jjfE ĵj £ $> w e n a v e 

- / M i l = Ik - 2/llll/(pffji)H < l l / I M I * - y||, 

where M 0 := 1 + 2||^||. This implies that 

d(F(x), F(y)) = ||[F(*), F(y)}\\ = \\f(x) - /(y)|| < M 0 | |F | | | | * - y\\. 

18 * 
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This is a stronger version of Lemma 16 in [3](see also Lemma 7 in [4]). 
The application of the Radstrom's equivalence relation allows to omit the 
assumption that X is a separable Banach space. This is an idea of dr Joanna 
Szczawińska. 

L E M M A 6 (Lemma 1.9 in [6]). Let X be a metric space with a metric p 
and let F be a set-valued function from X into X. If for a positive number 
M the inequality 

d(F(x),F(y))<Mp(x,y) 

holds for every x, y € X, then 

d{F{A),F{B)) < Md(A,B) 

for every nonempty subsets A, B of X, where d is the Hausdorff distance 
derived from the metric p. 

Let (K, -f) be a semigroup. A one-parameter family {Ft : t > 0} of 
set-valued functions Ft : K —> n{K) is said to be a cosine family iff 

F 0 = / , 

where / denotes the identity map and 

(2) Ft+s + Ft_s = 2FtoFs, 

whenever 0 < s < t. 

E X A M P L E S : 

1. K = (—oo, +oo), Ft(x) — x[cost,cosht], 
2. K = (—co, +oo), Ft{x) — x[cosi, 1]. 
3. K = [0,-r-co), Ft(x) = x[l,cosht]. 

Let X be a real normed linear space. A cosine family {Ft : t > 0} is 
regular iff 

\\m+d(Ft(x),{x}) = 0, 

where d is the Hausdorff distance derived from the norm in X. 

T H E O R E M 1. Let X be a real normed space, and let K be a convex cone 
in X of the second category in K. If {Ft : t > 0} is a regular cosine family 
of continuous superadditive Q^-homogeneous set-valued functions Ft : K —> 
c(A'), then there exist two constants M > 0 and u > 0 such that 

||F^l < M e u l for t > 0. 
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P R O O F . The proof will be divided into three steps. 
1° There exists an n, 0 < n < 1 such that the function t t-» ||Ff|| is 

bounded for 0 < t < n. 
Suppose that it is false. Then there is a sequence (tn) satisfying condi­

tions: tn > 0, lim n-too tn = 0 and \\Ftn\\ > n for n = 1, 2,... . From Lemma 
4 it follows that for some x G K the sequence ( | |F T N (x)\\) is unbounded con­
trary to the regularity of the family {Ft : t > 0}. Thus there exist an r/, 
0 < t] < 1 and L > 0 such that 

I I F I I < L for i € [0,r,]. 

Since | | F 0 | | = | | / | | = 1 we have L > 1. 
2° Let m > 1 be an arbitrary constant. If s > 0 and \\FS\\ < m, then for 

every n = 1,2,... we have \\Fns\\ < (3m)n. 
The proof is by induction on n. The case n = 1 is trivial. If n = 2 we 

obtain 

ll*2.|| < + 2| |F S | | 2 < 2m2 + 1 < (3m)2. 

Now, we suppose that n > 3 and 

\\Fks\\ < (3m)fc for\<k<n. 

By (2) we have 

l|F(n+i).(*)ll = d(F(n+l)s(x) + F{n_l)s(x), F ( n_ 1 ) s(x)) 
= d{2FnsoFs{x),F{n_1)s(x))) 

<(2\\Fns\\ IIF.H + HF^D.IDNI 

for every x 6 K. Consequently, 

l l(F ( B + 1 ).|| = sup l l ^ y ^ H < 2||Fn.|| IIF.H + | | F ( N _ ] ) S | | 

< 2m(3m)n + (3m)"-1 < {3m)n+1 < (3m)"+1. 

Hence the desired inequality is proved for n = 1,2,.... 
3° For each t > 0 there exists one and only one positive integer n such 

that (n - l)r/ < £ < nn. Now if we take s = t/n and use 2°, we obtain 

HFJII = | | F N , | | < (3L)n = (3I)t/"(3L)"-'/*' < 3L(3L)'/". 

Let us define M := 3L and w = (1/r/) /n(3L). Then we see that the assertion 
of the theorem holds. 



278 Andrzej Smajdor 

A cosine family {Ft : i > 0} is continuous iff the function t H-> Ft(x) is 
continuous for every x 6 K. 

T H E O R E M 2. Let X be a real Banach space and let K be a convex cone in 
X such thatmtK ^ 0. If{Ft : t > 0} is a regular cosine family of continuous 
additive set-valued functions Ft : K —¥ cc{K), then it is continuous. 

P R O O F . The proof will be divided into eight steps. 
1° We assume that there exist XQ € K and t0 € [0, +oo) such that the 

function t H-> Ft(xo) is discontinuous at the point to- Since the considered 
cosine family is regular, to is positive. 

2° Let us define 

Ln := sup{d(Ft(xo),Fs(x0)) : | t - t 0 | < ^ - , | s - * o | < A * > 0, s > 0}. 

for every positive integer n. 
3° There exists L > 0 such that Ln> L for every n. 
Obviously ( L „ ) is a non-negative and non-increasing sequence. Hence 

there exists a 

We see that Ln> L for any n. Suppose that L — 0. For every e > 0 there 
exists a positive integer n such that 

whenever \t - t 0 | < \s - t0\ < |£, t > 0 and s > 0. This implies that 
the function t i-» Ft(xo) is continuous at t0 contrary to our assumption 1°. 
Therefore L > 0 and we take L = L. 

4 ° For every positive integer n there exist two positive numbers s and 
t such that \s - t01 < |t - to I < & and d(Ft(x0), Fs{x0)) > Ln - £ > 0. 
Hence t ^ s. Therefore there exist two sequences (tn) and (s„) such that 
sn > tn > 0, \tn-t0\ < g£, | sn-*o | < & and d(F t n (xo), F S n (x0)) > - £ 
for every n. 

5° 2t„ — s n € (0, +oo) for every n. 
It suffices to show that tn > sn - tn By 4° clearly 

L = lim Ln € K . 

d(F t(a:o), ^ f a o ) ) < e, 

«n - = (-Sn ~ to) + (to ~ *n) < ~r~ 

and 

*n — £o — (^0 — ^n) > 
8n- 1 

8n 
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6° 

for every n — 1,2,.... 
From 4° we have \sin - t0\ < < j £ and |(2i4n - * 4 n ) - *o| = 

|2(*4n - *0) + (*0 - *4n)| < 2|t4n - *o| + 1*0 ~ *4n| < | & < B v 2 ° W e h a V e 

the inequality. 
7° lim n^oo Ln = 0 
We have 

2d(F t + s(xo),F t(z 0)) 
= d(2F t +,(a0) +2Ft_ s(x 0),2F ((i 0) +2F,_,(x0)) 
< d(2Ft o Fs(xQ) + F ( + S (x 0 ) + Ft_,(a;o), 2F t(x0) + 2Ff_s(a;o)) 
< 2d(Ft o F,{x0), Ft(x0)) + d(Ft+s{x0), Ft-S{x0)), 

whence 

(3) 2d(Ft+s(x0), Ft{x0)) < 2d(Ft o Fs{x0), Ft{x0)) + d{Ft+s{x0), Ft-.(x0)) 

According to Lemmas 5 and 6 the inequality 

d(Ft[F,(a:o)],Ft(a:o)) < M 0 | |F t | |d(F,(* 0), W ) 

holds for nonnegative t and s. Now we take t = tin, s = S 4 „ - tin in (3). 
Then we obtain 

2d(FS4n(x0),FUn(x0)) 

= 2diFUn+(^n-Un ){Xo), FUn , ( l 0 ) ) 

< 2d(Ft4noFS4n-t4^x0),Ft4n(xo)) + d(FS4n(x0),F2t4rt-S4n(x0)) 
< 2M0\\FUn \\d(FS4n_Un (x0), {x0}) + d(FS4n (x0), F 2 t 4 n _ S 4 „ (x0)). 

Using 4° and 6° we have 

2(Lin - ^ ) < 2M0\\FtAn\\d(FS4n.t4n (x0), {x0}) + Ln. 

Now, Theorem 1 impUes that 

2Lin -Ln< 2M0Me^"d{FS4n.t4n{x0), {x0}) + 

for some M > 0 and u> > 0 and for every n and we obtain the desired result. 
Since 7° contradicts 3° we have proved our theorem. 
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R E M A R K 3. In the proof of Theorems 1 and 2 we have essentialy used 
ideas of M. Sova [8] for cosine operator functions. 
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