1. A. Aigner, Bemerkung und Lösung zum Problem Nr. 29, Elemente der Mathematik, 15 (1960), 66-67.
2. A. Brauer, A note on a number theoretical paper of Sierpiński, Proc. Amer. Math. Soc., 11 (1960), 406-409.
3. P. Chowla, On the representation of -1 as sum of squares in a cyclotomic field, J. Number Theory, 1 (1969), 208-210.
4. P. Chowla, S. Chowla, Determination of the stufe of certain cyclotomic fields, J. Number Theory, 2 (1970), 271-272.
5. J. Krempa, On finite generation of unit group for group rings, Groups '93 Galway/St Andrews, vol. 2, London Math. Soc. Lecture Note 212, Cambridge University Press, Cambridge (1995), 352-367.
6. J. Krempa, Rings with periodic unit groups, Abelian groups and modules, A. Facchini, C. Menini, Kluwer Academic Publishers, Dordrecht (1995), 313-321.
7. J. Krempa, Some examples of reduced rings, Algebra Colloqium, 3 (1996), 289-300.
8. R. Kučera, K. Szymiczek, Witt equivalence of cyclotomic fields, Math. Slovaca, 42 (1992), 663-676.
9. T.Y. Lam, The algebraic theory of quadratic forms, W.A. Benjamin Inc., Reading Massachusetts (1973).
10. Z.S. Marciniak, S.K. Sehgal, Units in group rings and geometry, Methods in Ring Theory, V. Drensky, A. Giambrouno, S.K. Sehgal, Marcel Dekker Inc., New York (1998), 185-198.
11. C. Moser, Representation de -1 comme somme de carres dans un corps cyclotomique quelconque, J. Number Theory, 5 (1973), 139-141.
12. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Second ed., PWN and Springer-Verlag, Warszawa-Berlin-Heidelberg-New York (1990).
13. D.J.S. Robinson, A course in the theory of groups, 2nd, extended edition, Springer-Verlag, Berlin (1996).
14. L.H. Rowen, Ring theory, vol. I, Academic Press, New York (1988).
15. S.K. Sehgal, Topics in group rings, Marcel Dekker Inc., New York (1978).
16. W. Sierpiński, Sur une décomposition des nombres premiers en deux classes, Colloq. Math., 10 (1958), 81-83.
17. W. Sierpiński, Elementary theory of numbers, 2nd edition, revised by A. Schinzel, PWN, Warszawa (1987).
18. K. Szymiczek, Bilinear algebra. An introduction to the algebraic theory of quadratic forms, Algebra, Logic and Applications Series Volume 7, Gordon and Breach Science Publishers, Amsterdam (1997).
Google Scholar